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Faulty and slow decisions can risk human safety or incur significant cost 
(experimental resources or lost opportunities)

AI at LLNL/DOE

Cyber-Physical Security HealthcarePower Grid



Existing AI techniques are quite brittle

• Red AI: Designing an input, which seems normal for a human but is wrongly 
classified by ML models

• Applicable to images, text, graphs, etc.

• Spam filtering, malware detection, intrusion detection, etc.

• Demos:

• Attacking an image classification system

• Attacking a text-based search system

https://kennysong.github.io/adversarial.js/
https://imperceptible.ml/generator


LLNL’s Red AI: digital to physical world

• Our Red AI team has developed real-time physical world attack to gauge model 
vulnerabilities 

• Our attack algorithm uses a light-projector to fool machine learning based video 
surveillance systems
• Applicable to any predictive model, e.g., deep neural nets, random forest, rule-based systems
• Does not require complete access to the model, i.e., can attack ML as a service system
• Extends to other modalities, e.g., natural language processing systems



Light projection attack demo

Attacking real-world Yolo-v5 detector running on Nvidia Xavier chip using 
MIPI camera feed (attacker does not need access to detection system)
• Make coffee cup invisible to the detector
• Fooling Yolo-v5 to incorrectly detect cup as a scissor



Existing validation approaches give false sense of security 

• Common robustness evaluation practice is to 
train a system on a training data set, and then 
test it on another set

• This is insufficient to provide security 
guarantees as an attacker/nature can send 
inputs that differ from the test set

• Almost all the heuristic defenses have been 
“broken” soon after they were proposed

Athalye, A., et. al., “Obfuscated Gradients Give a False Sense of Security.” ICML 2018



Is AI/ML useless for high-regret applications?

• Can we ever design deep neural networks (DNNs) that cannot be fooled with 
certain known unknown attacks or guarantee predictable behavior to achieve safe 
operation in many real-world applications?

• This might appear impossible given the following popular beliefs 
• Deep Learning is a black-box
• No one knows why and how Deep Learning works
• There are no guarantees with Deep Learning

Foolproof/Certified ML
 

Yet Another AI Snake Oil?



LLNL’s Foolproof AI: formal verification and provably 
robust design

Our Blue AI team has developed automated 

tools to make ML systems foolproof
§ guarantee a self-driving car will always stop on a stop 

sign

• Provable robustness analysis on any neural 
network structures (Verification)

• Differentiability and ease of use of our 
framework allow us to train foolproof ML 
(Design)

“Nothing is more useless than 
theory and guarantees that do 

not hold in practice” 
-- Unknown 

ML
Safety

Toolbox



But how does it work?

Foolproof defense relies on our ability to “verify the robustness” of a given DNN

• Using formal methods to rigorously prove that certain properties hold



Our Magic Sauce: relaxation based formal verification

We employ linear relaxation techniques to compute 
provable linear bounds on DNN output
• obtain linear relaxations of any non-linear 

units 
• “glue” these relaxations according to the 

network structure (or a compute graph)

Upper Bound

Decision Boundary

ML
Safety

Toolbox

Statistics 
Optimization 
Software Eng.



Foolproof AI by design

These bounds can be combined with training to design provably robust DNNs
• ensure that the whole bounding box is classified correctly



What are we able to achieve?

Foolproof for adversarial shifts
• Imperceptible Perturbations
• Geometric Perturbations
• Any shift that can be modelled (e.g., 

simple natural shifts, logic tables)

Foolproof for common corruptions
• Complex natural shifts
• Shifts in scientific domains

Provably enforcing certain application 
specifications
• Unmanned airborne collision avoidance 

system (ACAS-Xu)



We can achieve certified accuracy

• Certified robustness on complicated networks that could not be supported 
by prior work

• Certified defense on ImageNet where previous approaches could not scale

Dataset DenseNet W-ResNet ResNeXt

CIFAR10 32.43% 32.23% 31.75%

ImageNet 14.56% 15.86% 13.05%

Model 2-word 4-word 6-word

LSTM 23.4% 23.4% 23.4%

Transformer 22.6% 22.6% 22.6%

These numbers imply that an adversary cannot fool these 
many test samples regardless of the amount of compute it 
throws at any adversarial example generation algorithm

Robust Vision Models with l_inf attack Robust NLP Models with substitution attack



Cutting-edge science to real-world impact on safety-
critical applications
• Winner of International Verification of Neural Networks Competition (VNN-

COMP 2022) α,β-CROWN is built upon our AutoLiRPA technique 

• The goal of the competition is to compare neural network verification 
methods, in terms of scalability and runtime speed 
• standard formats (ONNX for NNs and VNNLIB for specifications), hardware (AWS)

• In addition, to verifying standard vision benchmarks (CIFAR classifiers), α,β-
CROWN performed the best on
• ACAS-XU airborne collision avoidance benchmark
• AFRL ACT3’s SafeRL benchmark for aircraft rejoin

RL Benchmarks

Small models

Complex properties

Noise robustness in RL:

● Cartpole
● LunarLander
● AFRL’s SafeRL 

benchmark for aircraft 
rejoin* 

* https://github.com/act3-ace/SafeRL     



• First positive result on designing CARDs
• Compact – small in size (reduction from 1gb to <1mb) and latency (reduction 

from 100ms to <1ms)
• Accurate – state-of-the-art accuracy 
• Robust – graceful degradation     
• Deep Neural Nets

• Our tools are not image specific and apply to text/tabular modality

Existing DNNs are not suitable for real-time and 
resource-limited applications
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A new paradigm for learning efficient DNNs

We proposed a new paradigm for learning neural networks – instead of iteratively 
weight-training, we simply prune and binarize weights (Multi-Prize Tickets (MPT))

15Diffenderfer, J., & Kailkhura, B. “Multi-Prize Lottery Ticket Hypothesis: Finding Accurate Binary Neural Networks by Pruning A Randomly Weighted 
Network”. ICLR 2021.

• MPTs result in ∼32× memory saving and ∼58× computation saving
• Top model in RobustBench leaderboard



• Application to radio frequency ML system
• Develop a signature detection and classification system for Army tactical vehicles, to 

reduce cognitive burden on Army signals analysts

• Developing low-power hardware AI chip for real-world demonstration (100x energy 
gains)

We have developed a RF-ML system that is ~500x 
smaller and ~50x faster 
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500x smaller, 2x faster500x smaller, 50x faster
6% better top 
accuracy

Better robustness 
at all SNRs 
(20db dense = 
0db MPT)



Characterization on edge devices

• We characterize the test-time adaptation 
performance of standard neural nets on 
corrupted CIFAR-10 at edge devices 
• FPGA, Raspberry-Pi, and Nvidia Xavier NX

• Our characterization provided some very 
interesting results 
• Approach that only updates the normalization 

parameters with Wide-ResNet, running on Xavier 
GPU, to be overall effective in terms of balancing 
multiple cost metrics 

• However, the adaptation overhead is extremely high 
(around 213 ms) 

• Our results strongly motivate the need for 
algorithm-hardware co-design for efficient 
on-device DNN adaptation



Takeaways from this talk

• Deep learning in real-world systems 
is probably here to stay

• It is possible to verify important 
properties of DNNs and design 
Foolproof AI

• It is possible to achieve efficiency 
and performance simultaneously

Ongoing efforts for ensuring that AI 
systems in the real world do the “right 
thing”

• Broadening the scope of the 
adversary

• Efficient training and inference 
schemes for LLMs/VLMs

• Co-design for efficient AI
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