

1

Benchmarking the Robustness of Neural Networkbased Partial Differential Equation Solver

Jiaqi Gu¹, Mohit Dighamber², Zhengqi Gao², Duane S. Boning² ¹Arizona State University, ²MIT <u>http://jqgu.net</u>, jiaqigu@asu.edu <u>https://scopex-asu.github.io</u>

November 2, 2023

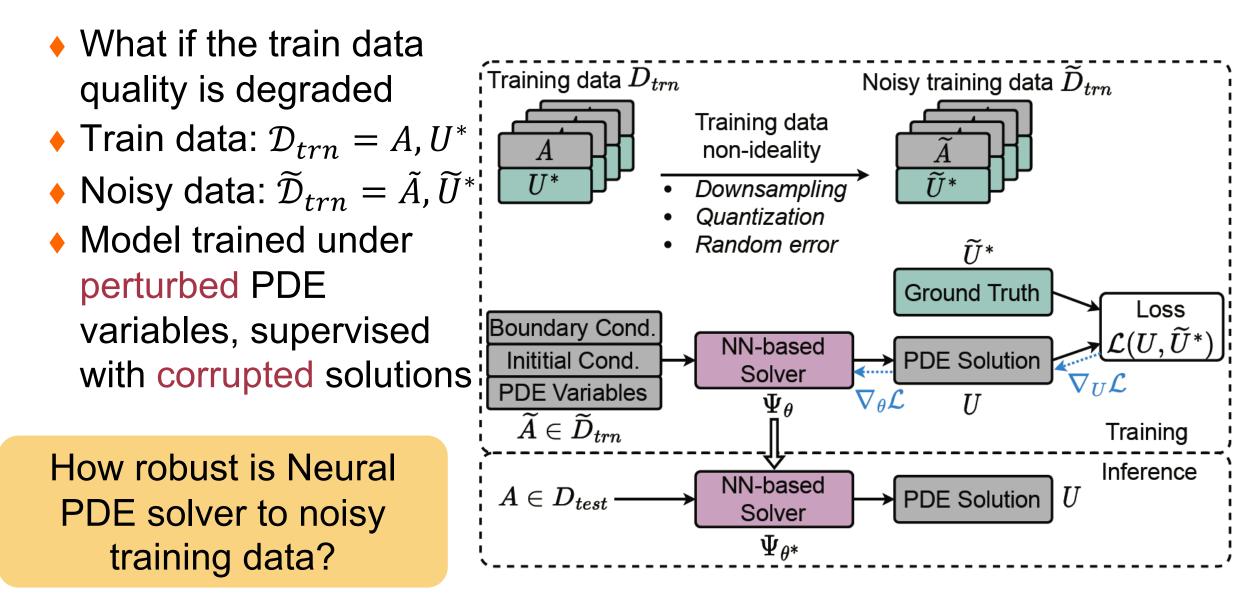
Machine Learning for Science

- Al shows its power in scientific computing
- ML can learn how to solve partial differential equations (PDEs)
 - > Neural PDE solver Ψ_{θ}
 - > Learn a mapping from PDE variables \mathcal{A} to PDE solution \mathcal{U}
- Example models
 - > CNNs, PINN, Fourier neural operators
- Scientific applications
 - > Physical simulation, flow prediction, weather forecast...

The fundamental driving force is *High-Quality Data However...*

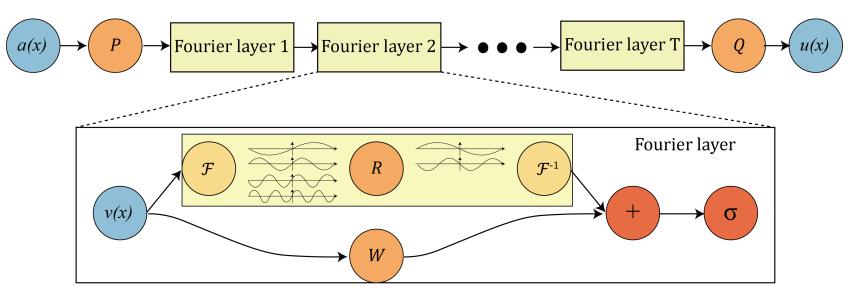
High-resolution, high-fidelity data is hard/costly to collect

Training Data Robustness for Neural PDE Solver



Case Studies for This Topic – Neural PDE Solver

Model: State-of-the-art Fourier Neural Operator (FNO)



- Data-driven
- N-dimensional FFT + complex matrix multiplication + iFFT

Case Studies for This Topic -- Benchmarks

Tasks

2D Darcy flow: flow of a fluid through $-\nabla \cdot (a(x)\nabla u(x)) = f(x)$ $x \in (0,1)^2$ a porous mediumu(x) = 0 $x \in \partial(0,1)^2$

1D Burgers equation: one dimensional $\partial_t u(x,t) + \partial_x (u^2(x,t)/2) = \nu \partial_{xx} u(x,t),$ flow of a viscous fluid $u(x,0) = u_0(x),$

2D Navier-stokes equation: viscous, incompressible fluid in vorticity form $\partial_t w(x,t) + u(x,t) \cdot \nabla w(x,t) = \nu \Delta w(x,t) + f(x)$ $\nabla \cdot u(x,t) = 0,$ $w(x,0) = w_0(x),$

2D frequency-domain Maxwell equations: photonic device simulation

$$(\nabla \times (\boldsymbol{\epsilon}_r^{-1}(\boldsymbol{r}) \nabla \times) - \omega^2 \mu_0 \boldsymbol{\epsilon}_0) \mathbf{H}(\boldsymbol{r}) = j \omega \mathbf{J}_m(\boldsymbol{r})$$

Case Studies for This Topic – Error Settings

Random noises

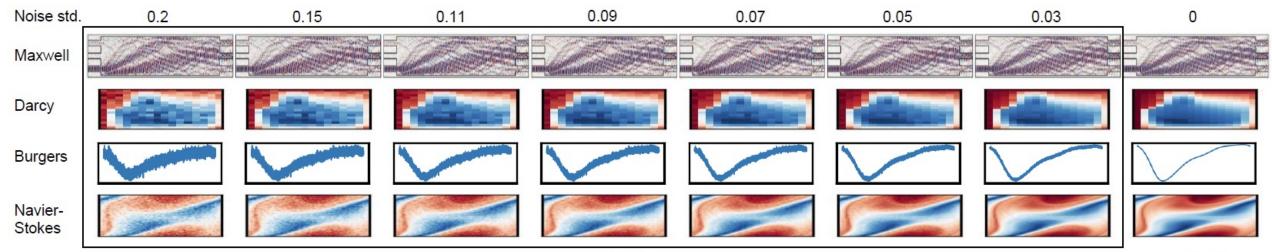
> Emulate independent, uniform, high-frequency errors

 $\hspace{0.5cm} \tilde{\mathcal{A}} \leftarrow \mathcal{A} + \epsilon, \hspace{0.5cm} \epsilon \sim \mathcal{N}(0,\sigma^{2}); \tilde{\mathcal{U}} \leftarrow \mathcal{U} + \epsilon, \hspace{0.5cm} \epsilon \sim \mathcal{N}(0,\sigma^{2}) \\ \end{array}$

- Data down-sampling errors
 - Down-sample huge simulation dataset
 -) $\tilde{\mathcal{U}} \leftarrow Interp_{1/s} (Interp_s (\mathcal{U}))$
- Numerical quantization errors
 - Happens in high-precision, high-dynamic range simulation tasks
 - Data compression to low-bit introduces more errors
 - $\tilde{\mathcal{U}} \leftarrow Q(U; \mathcal{U}_{min}, \mathcal{U}_{max})$

Random Noises on Training Data

- Emulate independent, uniform, high-frequency errors
- $\blacklozenge \tilde{\mathcal{A}} \leftarrow \mathcal{A} + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2); \tilde{\mathcal{U}} \leftarrow \mathcal{U} + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$
- Global pattern does not change significantly
- Local fine-grained features are corrupted

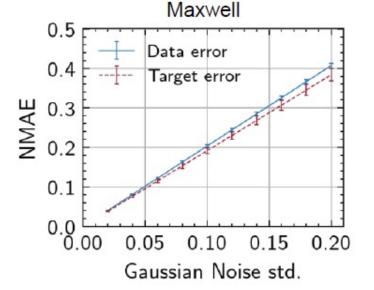


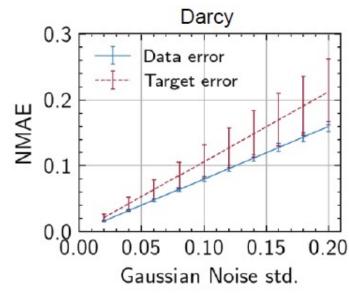
Noisy

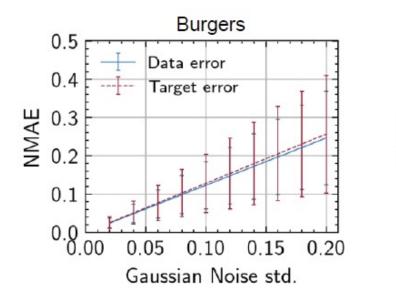
7

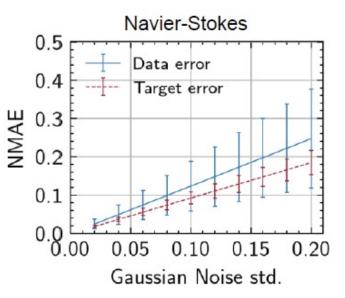
Random Noises: Training Data Error

- As the first-order effect, let's look at how much errors on the data
- NMAE= $|U \widetilde{U}|_1 / |U|_1$
- In general it leads to 2%-30% errors on input and target
- Much higher errors on sparse fields, e.g., optical fields with low light intensities









Random Noises: Training Dynamics

Grad Similarity

grad

Noisy

grad

- Evaluate alignment between <u>ideal</u> gradients and <u>noisy gradients</u>
- Angular similarity across epochs

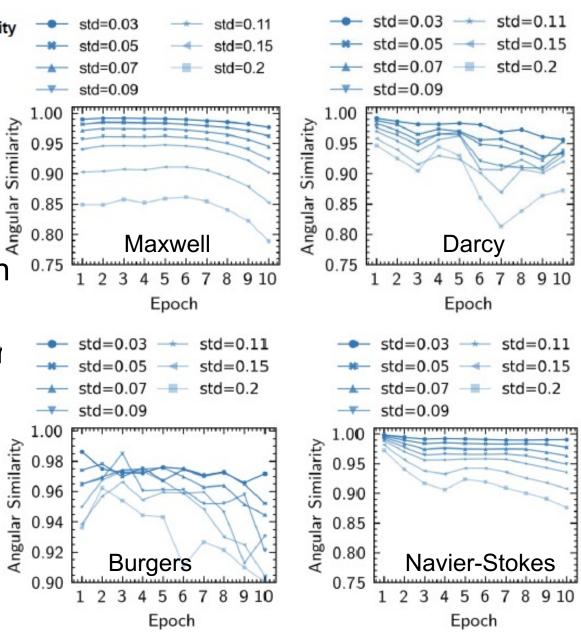
Similarity = $1 - \arccos\left(\frac{\nabla_{\theta} \mathcal{L}(\mathcal{D}_{trn}) \cdot \nabla_{\theta} \mathcal{L}(\widetilde{\mathcal{D}}_{trn})}{\|\nabla_{\theta} \mathcal{L}(\mathcal{D}_{trn})\| \cdot \|\nabla_{\theta} \mathcal{L}(\widetilde{\mathcal{D}}_{trn})\|}\right)/\pi$

- Align at the beginning, more mismatch later
- Smooth functions (Burgers) are easier to learn, more tolerant to data noise.
- High-frequency Maxwell Eq. is more sensitive to noises Noise-free Noise-free

grad

Noisy

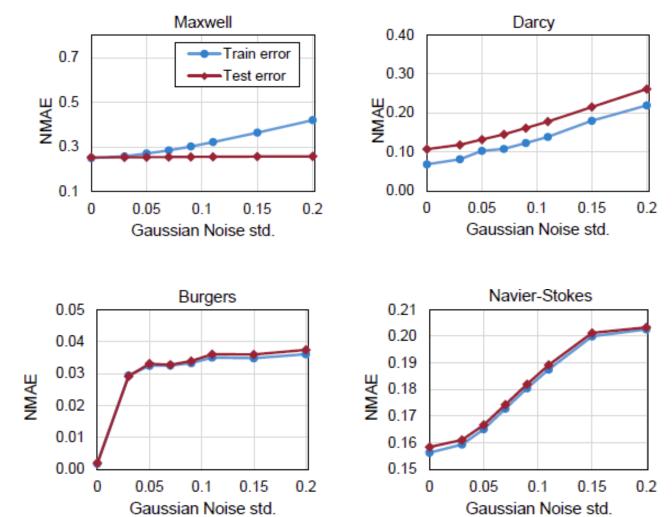
grad



9

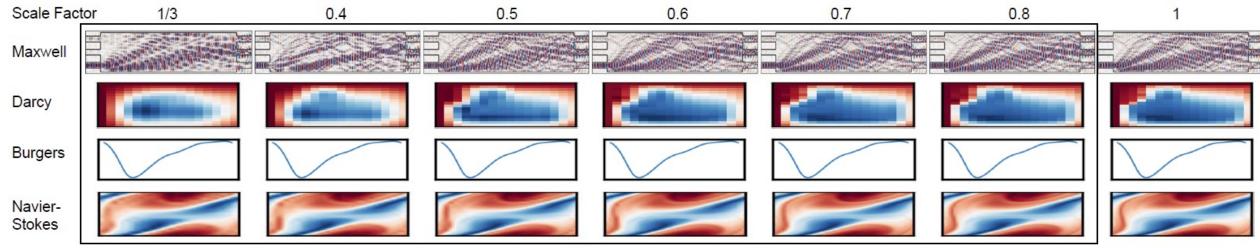
Random Noises: Model Robustness

- Training/Test NMAE
- Train/Test error increase simultaneously with larger noise
- Burgers equation significantly degrades with even small noise
- Maxwell equation shows the same test error immune to train noises
 - Extra regularization and data augmentation helps improve noise tolerance even with large gradient mismatch



Data Downsampling on Training Data

- Compress high-res raw data with downsampling to save cost
- $\tilde{\mathcal{U}} \leftarrow Interp_{1/s} (Interp_s (\mathcal{U}))$
- We inject bicubic/linear resizing errors to input/target
- Structural errors and related to local field/flow patterns
 - > E.g., Light waves in Maxwell is severely distorted



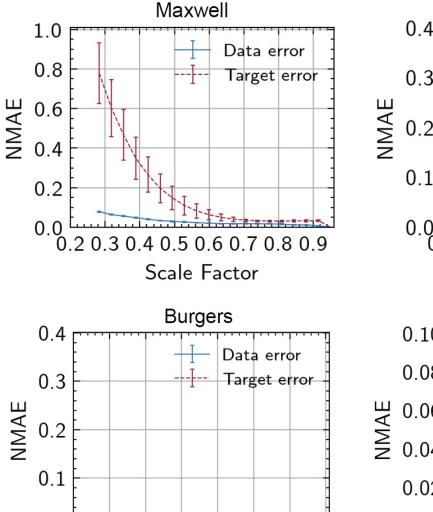
11

Ideal

Data Downsampling: Training Data Error

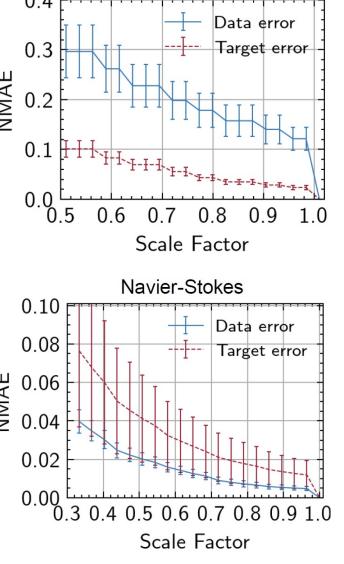
0.0

- Downsampling is disastrous for Maxwell, with 0.2 (5x) downsampling, almost 80% error on waves
- No errors on Burgers with very smooth patterns
- Navier-stokes: relatively smooth flow, robust to downsampling (4%-8% error)



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

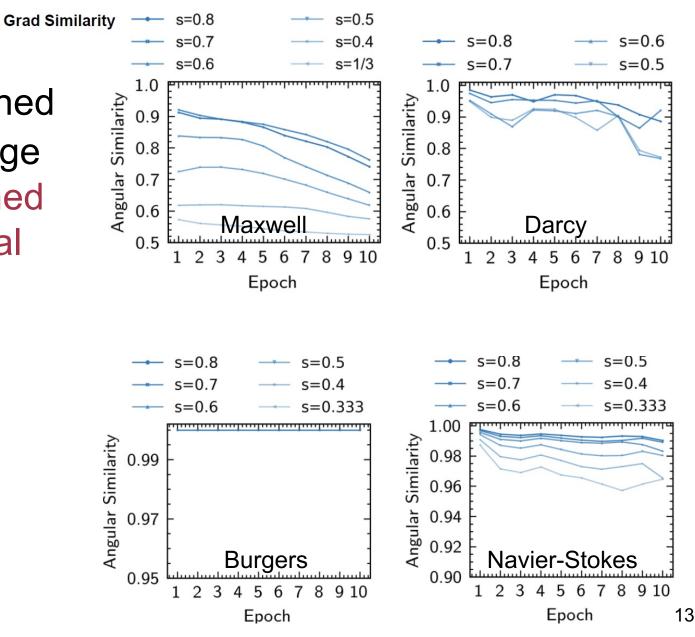
Scale Factor



Darcy

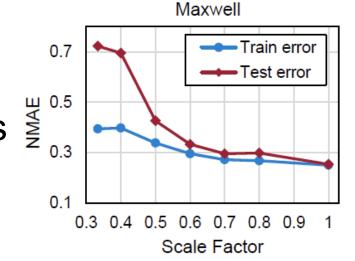
Data Downsampling: Training Dynamics

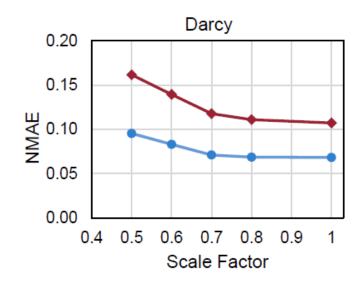
- Gradients for Burgers and Navier-Stokes are well-aligned
- Maxwell equations have large distortion, severe mismatched gradients (almost orthogonal with 3x resizing)
- For smooth patterns, the gradients are insensitive to data compression error.

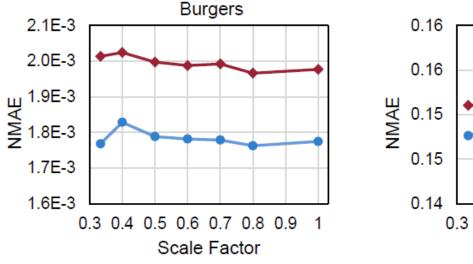


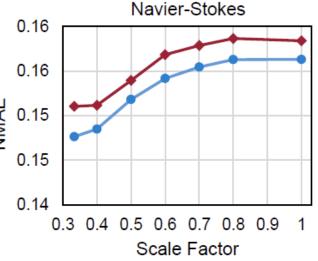
Data Downsampling: Model Robustness

- Rapid degradation on Maxwell equation
- Regional correlated errors cause a systematic bias on data distribution.
 Regularization cannot counter it.
- Navier-Stokes: both train/test errors are improved with small errors (smoothing effects help better converge)









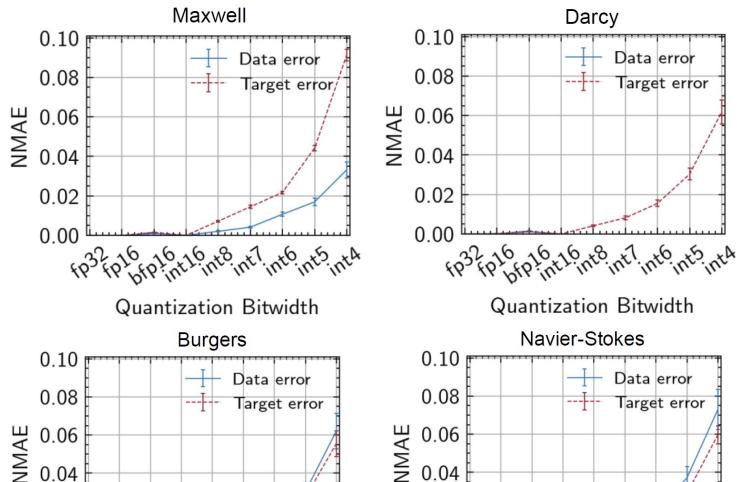
Numerical Quantization on Training Data

- Compress double/complex128 to low-bit data (INT4-16, BFP16, FP16) to save cost
- $\tilde{\mathcal{U}} \leftarrow Q(U; \mathcal{U}_{min}, \mathcal{U}_{max})$ quantize after min max scaling
- Still good visualization quality
- Subtle impact on global patterns, maintains relative magnitude ordering for local data

Bitwidth	int4	int5	int6	int7	int8	int16	bfp16	fp16	fp32
Maxwell									
Darcy				\sim		\sim	\sim		
Burgers									
Navier- Stokes									

Numerical Quantization: Training Data Error

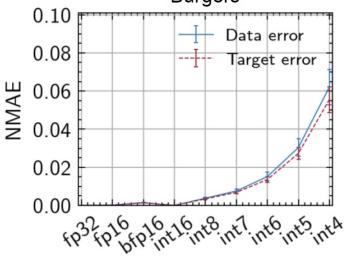
- No significant difference across 4 benchmarks
- 4-8% relative absolute errors
- INT4 have relatively large errors



0.04

0.02

0.00



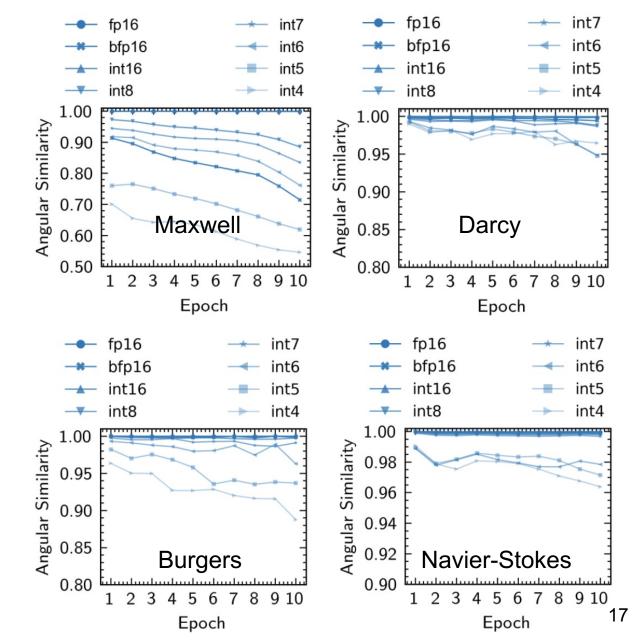
Quantization Bitwidth

Quantization Bitwidth

fp3 {p16, p16, t16, nt8,

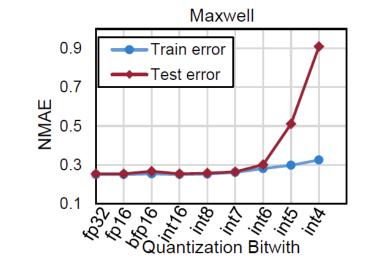
Numerical Quantization: Training Dynamics

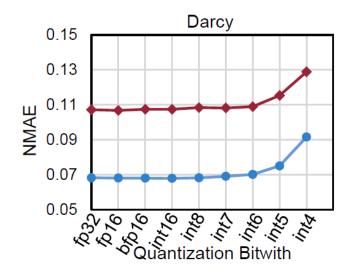
- Only Maxwell benchmarks shows high sensitivity to quantization errors on gradients.
 - Quantizing Real/Imaginary part separately lead to significant phase rotation -> large angles in gradient mismatch
- BFloat16 [E8M7] has larger range and fewer fraction bits, shows more errors than FP16 [E5M10]

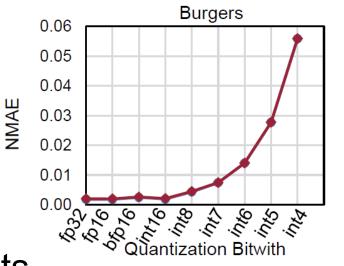


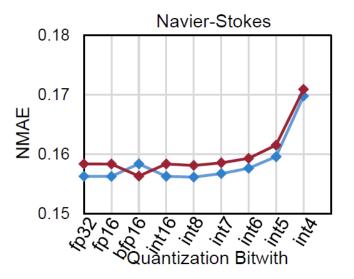
Numerical Quantization: Model Robustness

- Significant impacts on training error on Maxwell with 4-bit.
 - Gradient misalignment
 - Intrinsic sensitivity to input permittivity ϵ
 - Large quant error makes it hard to learn.
- Maxwell maintains high inference fidelity
 - Good robustness from regularization
- >8-bit has negligible impacts









Conclusion & Future Directions

- We evaluate the training data robustness of Neural PDE solver (FNO) on Burgers equation, Darcy flow, Navier-Stokes equations, and Maxwell equations
- We benchmark random errors, data downsampling, and numerical quantization and investigate data error, training dynamics (gradients), and generalization
- <u>Conclusion</u>
- High-res data with low-freq field/flow patterns demonstrate better tolerance, especially for downsampling errors
- Regularization helps enhance the resilience, but cannot counter systematic bias from regional errors
- Future: Compare data-driven/physics-informed, explore more equations, propose data quality metrics