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Machine Learning for Science

t AI shows its power in scientific computing
t ML can learn how to solve partial differential equations (PDEs)

› Neural PDE solver Ψ!
› Learn a mapping from PDE variables 𝒜 to PDE solution 𝒰

t Example models
› CNNs, PINN, Fourier neural operators

t Scientific applications
› Physical simulation, flow prediction, weather forecast…
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The fundamental driving force is High-Quality Data
However…

High-resolution, high-fidelity data is hard/costly to collect



Training Data Robustness for Neural PDE Solver

t What if the train data 
quality is degraded

t Train data: 𝒟!"# = 𝐴,𝑈∗

t Noisy data: &𝒟!"# = '𝐴, &𝑈∗

t Model trained under 
perturbed PDE 
variables, supervised 
with corrupted solutions
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How robust is Neural 
PDE solver to noisy 

training data?



Case Studies for This Topic – Neural PDE Solver

t Model: State-of-the-art Fourier Neural Operator (FNO)

t Data-driven
t N-dimensional FFT + complex matrix multiplication + iFFT
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Case Studies for This Topic -- Benchmarks

t Tasks
› 2D Darcy flow: flow of a fluid through 

a porous medium

› 1D Burgers equation: one dimensional 
flow of a viscous fluid

› 2D Navier-stokes equation: viscous, 
incompressible fluid in vorticity form

› 2D frequency-domain Maxwell 
equations: photonic device simulation
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Case Studies for This Topic – Error Settings

t Random noises
› Emulate independent, uniform, high-frequency errors
› $𝒜 ← 𝒜 + 𝜖, 	𝜖 ∼ 𝒩 0, 𝜎" ; /𝒰 ← 𝒰 + 𝜖, 	𝜖 ∼ 𝒩 0, 𝜎"

t Data down-sampling errors
› Down-sample huge simulation dataset
› /𝒰 ← 𝐼𝑛𝑡𝑒𝑟𝑝#/% (𝐼𝑛𝑡𝑒𝑟𝑝%	(𝒰))

t Numerical quantization errors
› Happens in high-precision, high-dynamic range simulation tasks
› Data compression to low-bit introduces more errors
› /𝒰 ← 𝑄(𝑈;𝒰&'(, 𝒰&)*)	
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Random Noises on Training Data

t Emulate independent, uniform, high-frequency errors
t '𝒜 ← 𝒜 + 𝜖, 	𝜖 ∼ 𝒩 0, 𝜎% ; 2𝒰 ← 𝒰 + 𝜖, 	𝜖 ∼ 𝒩 0, 𝜎%

t Global pattern does not change significantly
t Local fine-grained features are corrupted

7



Random Noises: Training Data Error

t As the first-order effect, 
let’s look at how much 
errors on the data

t NMAE= |𝑈 − &𝑈|&/| |𝑈 &
t In general it leads to 2%-

30% errors on input and 
target

t Much higher errors on 
sparse fields, e.g., optical 
fields with low light 
intensities
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Random Noises: Training Dynamics

t Evaluate alignment between ideal 
gradients and noisy gradients

t Angular similarity across epochs

t Align at the beginning, more mismatch 
later

t Smooth functions (Burgers) are easier 
to learn, more tolerant to data noise.

t High-frequency Maxwell Eq. is more 
sensitive to noises
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Random Noises: Model Robustness

t Training/Test NMAE
t Train/Test error increase 

simultaneously with larger noise
t Burgers equation significantly 

degrades with even small noise
t Maxwell equation shows the same 

test error immune to train noises
› Extra regularization and data 

augmentation helps improve 
noise tolerance even with large 
gradient mismatch
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Data Downsampling on Training Data

t Compress high-res raw data with downsampling to save cost
t 2𝒰 ← 𝐼𝑛𝑡𝑒𝑟𝑝&/( (𝐼𝑛𝑡𝑒𝑟𝑝(	(𝒰))
t We inject bicubic/linear resizing errors to input/target
t Structural errors and related to local field/flow patterns

› E.g., Light waves in Maxwell is severely distorted
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Data Downsampling: Training Data Error

t Downsampling is 
disastrous for Maxwell, 
with 0.2 (5x) 
downsampling, almost 
80% error on waves

t No errors on Burgers 
with very smooth 
patterns

t Navier-stokes: 
relatively smooth flow, 
robust to downsampling 
(4%-8% error)
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Data Downsampling: Training Dynamics

t Gradients for Burgers and 
Navier-Stokes are well-aligned

t Maxwell equations have large 
distortion, severe mismatched 
gradients (almost orthogonal 
with 3x resizing) 

t For smooth patterns, the 
gradients are insensitive to 
data compression error.
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Data Downsampling: Model Robustness

t Rapid degradation on 
Maxwell equation

t Regional correlated errors 
cause a systematic bias 
on data distribution. 
Regularization cannot 
counter it.

t Navier-Stokes: both 
train/test errors are 
improved with small 
errors (smoothing effects 
help better converge)
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Numerical Quantization on Training Data

t Compress double/complex128 to low-bit data (INT4-16, BFP16, 
FP16) to save cost

t 2𝒰 ← 𝑄(𝑈;𝒰)*# , 𝒰)+,) quantize after min max scaling
t Still good visualization quality
t Subtle impact on global patterns, maintains relative magnitude 

ordering for local data
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Numerical Quantization: Training Data Error

t No significant difference 
across 4 benchmarks

t 4-8% relative absolute 
errors

t INT4 have relatively large 
errors
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Numerical Quantization: Training Dynamics

t Only Maxwell benchmarks 
shows high sensitivity to 
quantization errors on 
gradients.
› Quantizing Real/Imaginary part 

separately lead to significant 
phase rotation -> large angles in 
gradient mismatch

t BFloat16 [E8M7] has larger 
range and fewer fraction bits, 
shows more errors than FP16 
[E5M10]
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Numerical Quantization: Model Robustness

t Significant impacts on 
training error on Maxwell 
with 4-bit.
› Gradient misalignment
› Intrinsic sensitivity to input 

permittivity 𝜖
› Large quant error makes it 

hard to learn.
t Maxwell maintains high 

inference fidelity
› Good robustness from 

regularization
t >8-bit has negligible impacts
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Conclusion & Future Directions

t We evaluate the training data robustness of Neural PDE solver (FNO) 
on Burgers equation, Darcy flow, Navier-Stokes equations, and 
Maxwell equations

t We benchmark random errors, data downsampling, and numerical 
quantization and investigate data error, training dynamics (gradients), 
and generalization

t Conclusion
t High-res data with low-freq field/flow patterns demonstrate better 

tolerance, especially for downsampling errors
t Regularization helps enhance the resilience, but cannot counter 

systematic bias from regional errors
t Future: Compare data-driven/physics-informed, explore more 

equations, propose data quality metrics 
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