
FPGA Deployment of LFADS for Real-time 
Neuroscience Experiments

Elham E Khoda 
University of Washington, Seattle

Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Yihui Chen, 
Scott Hauck, Shih-Chieh Hsu, Elham E Khoda, and Bo-Cheng Lai.

2nd November, 2023

FastML@ICCAD 2023
1



Introduction

● Brain encodes behaviors through neural activities
● Information about cognitive and motor processes is 

distributed within many neurons in the brain
● Understanding this neural code can help us relate the neural 

activity to behavior
○ Neural activities are noisy 
○ → Encoding behaviors is very difficult

● Need algorithms that model the neuron activity to uncover the 
underlying dynamics 
○ Clean version

Latent Factor Analysis via Dynamical Systems (LFADS)

● SOTA for inferring single-trial neural dynamics

2 Denoising neural activities



Latent Factor Analysis via Dynamic Systems (LFADS)

LFADS is a sequential model based on Variational Autoencoder

● LFADS assumes the observed spikes are samples from a Poisson process with firing rates
● Decoder learns the firing rates a function of time
● Training objective: Decoder is trained to infer a reduced set of latent dynamic factors 
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Autoencoder-based LFADS

Started with a simplified model:

Variation Autoencode → Autoencode

● No random sampling on FPGA
○ Making it much easier to deploy

● It has minimal effects on 
performance

4



Autoencoder-based LFADS

Autoencoder architecture with

● Bidirectional GRU Encoder
● GRU Decoder
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Key features:

● Input: Sequential spiking data
● Output: Firing rate



Experimental Data

● Monkey reaching tasks** 
○ Perform a center-out reaching task with eight outer targets
○ Spiking activity from the primary motor cortex (M1) along with the 2D hand position are recorded 

during each trial

* *Gallego Juan A, Perich Matthew G, Chowdhury Raeed H, Solla Sara A, Miller Lee E. Long-term stability of cortical population dynamics underlying 
consistent behavior // Nature Neuroscience. 2020. 23, 2. 260–270. 6



Experimental Data

● Monkey reaching tasks** 
○ Perform a center-out reaching task with eight outer targets
○ Spiking activity from the primary motor cortex (M1) along with the 2D hand position are recorded 

during each trial

● Dataset* 
○ total of 170 trials. 
○ 136 trials (80%) for training
○ 17 trials for validation and testing
○  Each trial with shape (1,73,70): 70 recording channels, with 73 discrete time steps per channel

*Cole Hurwitz, Akash Srivastava, Kai Xu, Justin Jude, Matthew G. Perich, Lee E. Miller, and Matthias H. Hennig. 2021. Targeted neural dynamical 
modeling.(2021). arXiv: 2110.14853  [q-bio.NC].

* *Gallego Juan A, Perich Matthew G, Chowdhury Raeed H, Solla Sara A, Miller Lee E. Long-term stability of cortical population dynamics underlying 
consistent behavior // Nature Neuroscience. 2020. 23, 2. 260–270.
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136 trials 17 trials 17 trials

Train Val Test



Model Performance Evaluation

Two Metrics are used for this study

● Negative Poisson log-likelihood (NPLL) 
○ Between the predicted log firing rates and input spikes
○ LFADS assumes spiking variability follows a Poisson 

distribution

● Coefficient of determination (R2 score)
○ Fitting the reconstructed temporal factors 𝑓𝑡 to the 

measured behavioral data (hand position)
○ Training set for the linear regression model,  fit on test set
○ A score closer to 1: stronger alignment of the factors with 

the behavioral data
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Show TF model training

Loss = Poisson Log-likelihood loss
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Quantization -Aware Training

● QAT using QKeras
● To minimize quantization error and 

accuracy drop
○ State, weight and bias quantizer
○ Adopting piecewise linear hard activation to 

eliminate quantization error
○ Automatic adjustment for bitwidth on 

accumulator to avoid overflow
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https://github.com/google/qkeras


QAT Results: Total bit-width scan

Noticeable degradation in performance below total width of 10 bits in both NPLL and R2 
Score
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Behavioural Reconstruction

● Similar degradation in behavior reconstruction
○ The hand movement trajectories in the 2D 𝑥 − 𝑦 plan 
○ Same direction are grouped together and denoted by the same color

Dotted = target,  Solid = predicted
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Post-training Quantization

● At least 6 integer bits and 10 fractional bits, <16,6>, are needed to achieve a similar 

performance as the floating-point model.
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Resource Unitization

● Post training quantization (PTQ)

● Logic synthesis result

● Target platform : Alveo U250

● The limitation of FPGA inference for 

higher bit width is DSPs
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LFADS on FPGA

● Target platform : U55C (NRP)

● Precision: ap_fixed<16,6> , Frequency=200 MHZ, apply dataflow scheme

● Average latency : 41.97 us

(Run 1000 times and calculate the average)
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V synthesis U55C (NRP)

HLS version 2022

BRAM 474 (23.51%)

DSP 1,869 (20.71%)

FF 150,882 (5.79%)

LUT 164,726 (12.64%)



Summary and Outlook

One of the first FPGA deployment of LFADS model

● Shown results of a simplified LFADS model with Autoencoder structure
● Quantization of GRU layers are implement and optimized 
● We are able to fit the best model within a board

○ We can fit the model in the Alveo U55C
● Improve inference latency by 1000 times

○ Observed latency is ~42 micro-seconds

Next steps:

Deployment of the original Variational Autoencoder-based LFADS
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Backup



Model Architecture
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Different Data Transmission Scheme
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● IO_parallel
○ In order to access all input (output) at a cycle, it needs to do array_reshape

○ Doing array_reshape complete in GRU layer  will beyond the limit 65536.

○ Total bits width in Input : 73x64x16bits = 74752bits > 65536

○ It can’t be synthesized.

● IO_stream
○ Input (Output) is transmitted sequentially.

○ It doesn’t need to do array_reshape to access the input (output) at a cycle.

○ It can be synthesized and even apply for larger size.



● Input, output <16,6>

● 3 integer bits for activations

● 0 integer bits for weights

8-bit model:

QAT Precision
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LFADS

Latent Factor Analysis via Dynamical Systems (LFADS)

● LFADS models the complex brain activities
○ Brain are extremely complex, which is extremely hard to model 

● LFADS combines feed forward processing and sequential processing
○ Feed forward processing  purely depends on input
○ Sequential processing mainly depends on dynamic

● Low latency processing provides the possibility of real-time data processing
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