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Introduction

e Brain encodes behaviors through neural activities
e Information about cognitive and motor processes is
distributed within many neurons in the brain
e Understanding this neural code can help us relate the neural
activity to behavior
o Neural activities are noisy
o — Encoding behaviors is very difficult
e Need algorithms that model the neuron activity to uncover the
underlying dynamics
o Clean version

neurons

Latent Factor Analysis via Dynamical Systems (LFADS)

e SOTA forinferring single-trial neural dynamics
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Latent Factor Analysis via Dynamic Systems (LFADS)

LFADS is a sequential model based on Variational Autoencoder

e LFADS assumes the observed spikes are samples from a Poisson process with firing rates
e Decoder learns the firing rates a function of time
e Training objective: Decoder is trained to infer a reduced set of latent dynamic factors
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Autoencoder-based LFADS

Started with a simplified model:

Variation Autoencode — Autoencode

e No random sampling on FPGA
o Making it much easier to deploy

e It has minimal effects on
performance
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Autoencoder-based LFADS

Autoencoder architecture with

e Bidirectional GRU Encoder

e GRU Decoder

Key features:

e Input: Sequential spiking data

e Output: Firing rate
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Experimental Data

e Monkey reaching tasks**
o Perform a center-out reaching task with eight outer targets
o  Spiking activity from the primary motor cortex (M1) along with the 2D hand position are recorded
during each trial

* *Gallego Juan A, Perich Matthew G, Chowdhury Raeed H, Solla Sara A, Miller Lee E. Long-term stability of cortical population dynamics underlying
consistent behavior // Nature Neuroscience. 2020. 23, 2. 260-270. 6



Experimental Data

e Monkey reaching tasks**
o Perform a center-out reaching task with eight outer targets

o  Spiking activity from the primary motor cortex (M1) along with the 2D hand position are recorded
during each trial

e Dataset* Train Val Test

o total of 170 trials. 136 trials 17 trials | 17 trials
o 136 trials (80%) for training

o 17 trials for validation and testing

o  Each trial with shape (1,73,70): 70 recording channels, with 73 discrete time steps per channel

*Cole Hurwitz, Akash Srivastava, Kai Xu, Justin Jude, Matthew G. Perich, Lee E. Miller, and Matthias H. Hennig. 2021. Targeted neural dynamical
modeling.(2021). arXiv: 2110.14853 [qg-bio.NC].

* *Gallego Juan A, Perich Matthew G, Chowdhury Raeed H, Solla Sara A, Miller Lee E. Long-term stability of cortical population dynamics underlying
consistent behavior // Nature Neuroscience. 2020. 23, 2. 260-270.




Model Performance Evaluation

Two Metrics are used for this study

e Negative Poisson log-likelihood (NPLL)
o Between the predicted log firing rates and input spikes
o LFADS assumes spiking variability follows a Poisson
distribution

e Coefficient of determination (R2 score)
o  Fitting the reconstructed temporal factors ft to the
measured behavioral data (hand position)
Training set for the linear regression model, fit on test set
o A score closer to 1: stronger alignment of the factors with
the behavioral data
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Show TF model training

Loss = Poisson Log-likelihood loss
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[ input_3 | input: [ [None, 73, 70)] |
] InputLayer | output: I [(None, 73, 70)] I

[ initial_dropout l input: l (None, 73, 70) |
| Dropout [ output: [ (None, 73, 70) |

| Encoder_Bidirectional GRU(EncoderGRUForward) I input: ] (None, 73, 70)
| Bidirectional(QGRU) | output: ] [(None, 128), (None, 64), (None, 64)] |

‘ q_act0 ‘ input: | (None, 128) |
[ QActivation l output: l (None, 128) |

| postencoder_dropout | input: | (None, 128) |
| Dropout output: | (None, 128) I

, dense_latent I input: | (None, 128) |
I QDense l output: | (None, 64) l

[ qactl [ input: [ (None, 64)| [ input_4 [ input: [[None, 73, 64)] |
| QActivation | output: I (None, 64) ‘ I InputLayer I output: | [(None, 73, 64)] |

[ DecoderGRU [ input: [ [(None, 73, 64), (None, 64)] |
[ QGRU  [output: | (None, 73, 64) |

| q_act2 | input: | (None, 73, 64) |
| QActivation | output: | (None, 73, 64) |

| postdecoder_dropout | input: | (None, 73, 64) ‘
I Dropout l output: | (None, 73, 64) '

l dense | input: | (None, 73, 64)|
l QDense | output: | (None, 73, 4) |

I q_act3 { input: { (None, 73, 4) I
I QActivation { output: { (None, 73, 4) l

[ nerual_dense [ input: [ (None, 73, 4) |
| QDense | output: | (None, 73, 70) |




Quantization -Aware Training
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https://github.com/google/qkeras

QAT Results: Total bit-width scan

Noticeable degradation in performance below total width of 10 bits in both NPLL and R2

Score

1880

Negative Poisson Log-likelihood
= = = = = =
[o0] [o0] [o0] [o0] [eo] [o0]
N w N v ()] ~
o o o o o o

=
©
=
o

L:I é I8 1I0 1I2 1l4 16
Total bit

(a) QAT NPLL

R2 Score

0.8

0.6

04r

0.2

0.0F

-0.21

4.1 é é 1I0 1I2 1I4 16
Total bit

(b) QAT R?

11



Behavioural Reconstruction

e Similar degradation in behavior reconstruction
o  The hand movement trajectories in the 2D x - y plan
o Same direction are grouped together and denoted by the same color

Dotted = target, Solid = predicted
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Post-training Quantization

e At least 6 integer bits and 10 fractional bits, <16,6>, are needed to achieve a similar

performance as the floating-point model.
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Resource Unitization

e Post training quantization (PTQ)

Resource Utilization
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e Target platform : Alveo U250

e The limitation of FPGA inference for
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LFADS on FPGA

Target platform : U55C (NRP)

Precision: ap_fixed<16,6>, Frequency=200 MHZ, apply dataflow scheme

Average latency : 41.97 us

(Run 1000 times and calculate the average)

V synthesis US55C (NRP)
HLS version 2022
BRAM 474 (23.51%)
DSP 1,869 (20.71%)
FF 150,882 (5.79%)
LUT 164,726 (12.64%)
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Summary and Outlook

One of the first FPGA deployment of LFADS model

e Shown results of a simplified LFADS model with Autoencoder structure
e Quantization of GRU layers are implement and optimized

e We are able to fit the best model within a board ===,
o  We can fit the model in the Alveo U55C

e Improve inference latency by 1000 times
o Observed latency is ~42 micro-seconds

Next steps:

Deployment of the original Variational Autoencoder-based LFADS -~ %(\
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Backup
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Model Architecture

| input_3 | input: } [(None, 73, 70)] |
[ TnputLayer | output: | [(None, 73, 70)] |

Model: "1fads" [initial_dropout | input: | (None, 73, 70) |
| Dropout [ output: | (None, 73, 70) |
Layer (type) Output Shape Param #
[ Encoder_Bidirectional GRU(EncoderGRUForward) | input: | (None, 73, 70)
d ropout (D ropout ) mult iple 0 | Bidirectional(QGRU) | output: | [(None, 128), (None, 64), (None, 64)] |
EncoderRNN (Bidirectional) multiple 52224 [ aact0 [ input: | (None, 128) |
QActivation | output: | (None, 128)
l | | |
dropout_1 (Dropout) multiple 0
[ postencoder_dropout | input: | (None, 128) |
. D t tput: | (N , 128)
dropout_2 (Dropout) multiple ) ‘ e output; | Mone, 126) |
: [ dense_latent [ input: | (None, 128) |
DenseMean (Dense) multiple 8256 [~ QDenss [ output: | None, 6 |
DenselLogVar (Dense) multiple @ (unused) [ aactl [ input: | Mone, 64| [ input_d [ input: | [None, 73, 601 |
| QActivation | output: | (None, 64) | | InputLayer | output: | [(None, 73, 64)] |
activation (Activation) multiple @ (unused)
[ DecoderGRU [ input: | [(None, 73, 64), (None, 64)] |
DecoderGRU (GRU) multiple 24960 [ QGRU | output: | None, 73, 64) |
Dense (Dense) multiple 256 [ aactz_[ input: | (None, 73, 64) |
| QActivation } output: | (None, 73, 64) |
NeuralDense (Dense) multiple 350

[ postdecoder_dropout | input: [ (None, 73, 64) |
| Dropout [ output: [ (None, 73, 64) |

Total params: 86,059
Trainable params: 86,046
Non-trainable params: 13

| dense | input: | (None, 73, 64)|
| QDense | output: | (None, 73, 4) |

[ qact3 [ input: | (None, 73, 4) |
\ QActivation ‘ output: ‘ (None, 73, 4) |

}nerualidensel input: [ (None, 73, 4) ]
| QDense [ output: | (None, 73, 70) |




Different Data Transmission Scheme

e |O_parallel
o Inordertoaccess all input (output) at a cycle, it needs to do array_reshape
o Doing array_reshape complete in GRU layer will beyond the limit 65536.
o Total bits width in Input : 73x64x16bits = 74752bits > 65536
o |t can’t be synthesized.

o |O stream
o Input (Output) is transmitted sequentially.
o Iltdoesn’t need to do array_reshape to access the input (output) at a cycle.
o |t can be synthesized and even apply for larger size.
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QAT Precision

e Input, output <16,6>

e 3integer bits for activations  Inputs g0 as initial condition <8,3>
e Ointeger bits for weights l <16,6>
zeros as
Dropout inputs | GRU <8,0>
8-bit model:
<85> <8,3>
Dropout
Biderectional GRU |<8,0> P
<8,3>
l <8,3>
Dropout Dense(factor) | <8,0>
<8,3> <8,3>

Dense(latent) | <8,0> Dense(neural) | <8 0>

é <8,3> ' <1665
d log_f
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LFADS

Latent Factor Analysis via Dynamical Systems (LFADS)

e LFADS models the complex brain activities
o  Brain are extremely complex, which is extremely hard to model
e LFADS combines feed forward processing and sequential processing

o Feed forward processing purely depends on input
o Sequential processing mainly depends on dynamic

e Low latency processing provides the possibility of real-time data processing
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