FPGA Deployment of LFADS for Real-time Neuroscience Experiments

Elham E Khoda

University of Washington, Seattle

Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Yihui Chen, Scott Hauck, Shih-Chieh Hsu, <u>Elham E Khoda</u>, and Bo-Cheng Lai.

2nd November, 2023

FastML@ICCAD 2023

UNIVERSITY of WASHINGTON

Introduction

- Brain encodes behaviors through neural activities
- Information about cognitive and motor processes is distributed within many neurons in the brain
- Understanding this neural code can help us relate the neural activity to behavior
 - Neural activities are noisy
 - $\circ \rightarrow$ Encoding behaviors is very difficult
- Need algorithms that model the neuron activity to uncover the underlying dynamics
 - Clean version

Latent Factor Analysis via Dynamical Systems (LFADS)

• SOTA for inferring single-trial neural dynamics

Latent Factor Analysis via Dynamic Systems (LFADS)

LFADS is a sequential model based on Variational Autoencoder

- LFADS assumes the observed spikes are samples from a Poisson process with firing rates
- Decoder learns the firing rates a function of time
- Training objective: Decoder is trained to infer a reduced set of latent dynamic factors

Autoencoder-based LFADS

Started with a simplified model:

Variation Autoencode → Autoencode

- No random sampling on FPGA
 Making it much easier to deploy
- It has minimal effects on performance

Autoencoder-based LFADS

Autoencoder architecture with

- Bidirectional GRU Encoder
- GRU Decoder

Key features:

- Input: Sequential spiking data
- Output: Firing rate

Experimental Data

- Monkey reaching tasks**
 - Perform a center-out reaching task with eight outer targets
 - Spiking activity from the primary motor cortex (M1) along with the 2D hand position are recorded during each trial

* *Gallego Juan A, Perich Matthew G, Chowdhury Raeed H, Solla Sara A, Miller Lee E. Long-term stability of cortical population dynamics underlying consistent behavior // Nature Neuroscience. 2020. 23, 2. 260–270.

Experimental Data

• Monkey reaching tasks**

- Perform a center-out reaching task with eight outer targets
- Spiking activity from the primary motor cortex (M1) along with the 2D hand position are recorded during each trial

	Dataset*	Train	Val	Test
•	\circ total of 170 trials.	136 trials	17 trials	17 trials
			-	

- 136 trials (80%) for training
- 17 trials for validation and testing
- Each trial with shape (1,73,70): 70 recording channels, with 73 discrete time steps per channel

*Cole Hurwitz, Akash Srivastava, Kai Xu, Justin Jude, Matthew G. Perich, Lee E. Miller, and Matthias H. Hennig. 2021. Targeted neural dynamical modeling.(2021). arXiv: 2110.14853 [q-bio.NC].

* *Gallego Juan A, Perich Matthew G, Chowdhury Raeed H, Solla Sara A, Miller Lee E. Long-term stability of cortical population dynamics underlying consistent behavior // Nature Neuroscience. 2020. 23, 2. 260–270.

Model Performance Evaluation

Two Metrics are used for this study

- Negative Poisson log-likelihood (NPLL)
 - Between the predicted log firing rates and input spikes
 - LFADS assumes spiking variability follows a Poisson distribution

• Coefficient of determination (R2 score)

- Fitting the reconstructed temporal factors *ft* to the measured behavioral data (hand position)
- Training set for the linear regression model, fit on test set
- A score closer to 1: stronger alignment of the factors with the behavioral data

Quantization - Aware Training

- QAT using <u>QKeras</u>
- To minimize quantization error and accuracy drop
 - State, weight and bias quantizer
 - Adopting piecewise linear hard activation to eliminate quantization error
 - Automatic adjustment for bitwidth on accumulator to avoid overflow

QAT Results: Total bit-width scan

Noticeable degradation in performance **below total width of 10 bits** in both NPLL and R2 Score

Behavioural Reconstruction

- Similar degradation in behavior reconstruction
 - The hand movement trajectories in the 2D x y plan
 - Same direction are grouped together and denoted by the same color

Dotted = target, Solid = predicted

Post-training Quantization

• At least **6 integer bits and 10 fractional bits**, <16,6>, are needed to achieve a similar performance as the floating-point model.

Resource Unitization

- Post training quantization (PTQ)
- Logic synthesis result
- Target platform : Alveo **U250**
- The limitation of FPGA inference for

higher bit width is DSPs

LFADS on **FPGA**

- Target platform : U55C (NRP)
- Precision: ap_fixed<16,6> , Frequency=200 MHZ, apply dataflow scheme
- Average latency : 41.97 us

(Run 1000 times and calculate the average)

V synthesis	U55C (NRP)
HLS version	2022
BRAM	474 (23.51%)
DSP	1,869 (20.71%)
FF	150,882 (5.79%)
LUT	164,726 (12.64%)

Summary and Outlook

One of the first FPGA deployment of LFADS model

- Shown results of a simplified LFADS model with Autoencoder structure
- Quantization of GRU layers are implement and optimized
- We are able to fit the best model within a board
 - \circ ~ We can fit the model in the Alveo U55C ~
- Improve inference latency by 1000 times
 - Observed latency is ~42 micro-seconds

Next steps:

Deployment of the original Variational Autoencoder-based LFADS

Backup

Model Architecture

Model: "lfads"

Layer (type)	Output Shape	Param #			
dropout (Dropout)	multiple	0			
EncoderRNN (Bidirectional)	multiple	52224			
dropout_1 (Dropout)	multiple	0			
dropout_2 (Dropout)	multiple	0			
DenseMean (Dense)	multiple	8256			
DenseLogVar (Dense)	multiple	0 (unused)			
activation (Activation)	multiple	0 (unused)			
DecoderGRU (GRU)	multiple	24960			
Dense (Dense)	multiple	256			
NeuralDense (Dense)	multiple	350			
Total params: 86,059 Trainable params: 86,046 Non-trainable params: 13					

Different Data Transmission Scheme

- IO_parallel
 - In order to access all input (output) at a cycle, it needs to do array_reshape
 - Doing array_reshape complete in GRU layer will beyond the limit 65536.
 - Total bits width in Input : 73x64x16bits = 74752bits > 65536
 - It can't be synthesized.
- IO_stream
 - Input (Output) is transmitted sequentially.
 - It doesn't need to do array_reshape to access the input (output) at a cycle.
 - It can be synthesized and even apply for larger size.

QAT Precision

- Input, output <16,6>
- 3 integer bits for activations Inp
- 0 integer bits for weights

8-bit model:

LFADS

Latent Factor Analysis via Dynamical Systems (LFADS)

- LFADS models the complex brain activities
 - Brain are extremely complex, which is extremely hard to model
- LFADS combines feed forward processing and sequential processing
 - Feed forward processing purely depends on input
 - Sequential processing mainly depends on dynamic
- Low latency processing provides the possibility of real-time data processing