
Quantifying the Efficiency of 
High-Level Synthesis for 
Machine Learning Inference
Caroline Johnson, Scott Hauck, Shih-Chieh Hsu, Waiz Khan, Matthew 
Bavier, Oleh Kondratyuk, Trinh Nguyen, Stephany Ayala-Cerna, 
Anatoliy Martynyuk, Aidan Short, Jan Silva, and Geoff Jones

NSF #2117997

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997
http://a3d3.ai


Our Process
> Goal: quantify the losses/gains from using the HLS4ML platform
> Compare resources and performance

HLS 
MODEL

SV
MODEL



Our Analysis
> Results are in terms of max resource usage
> HLS results are dashed, SV results are solid

Resources: Ax more, Latency: Bx worse, Clock Period: Cx better

Dashed - HLS
Solid - SV



Benchmark 1

One-Layer Model



Initial Approach

- Heavy pipelining
- Constant folding, II = 1
- Neural-network specific DSP Optimizations

Overall goal: 
Match HLS4ML’s accuracy with better performance and resource usage



Multiplier Packing into DSPs

Virtex 7 supports 25x18 bit multiplication
- Bitwidths <=8 can be combined via the DSP pre-adder

weight 1

weight 2 << X

input

output = weight 1 * input 
and weight 2 * input



Multiplier (DSP) Packing

> Besides latency, all ~ equal
Bitwidths 7 and 8 packing reduces the LUT cost to 0.68x and 0.70x

> Tradeoff of DSP usage not beneficial in our DSP limited design

Dashed - SV with 
packing
Solid - SV without 
packing



One Layer - Initial Results

HLS4ML is outperforming on almost all metrics.

Resource: 1.28x more, Latency: 1.7x worse, Period: 1.46x better

Dashed - HLS
Solid - SV



Missing DSPs?
Hint from HLS4ML: DSPs decrease as bitwidth goes down

 output = input*6 could instead be output = (input<<2)+(input<<1)
Shift-add module:



Shift-Add Capabilities
Vivado HLS Vivado

+-(input<<c1)+-(input<<c2) +-(input<<c1)+-(input<<c2)
for any c1 or c2 where c1 and c2 must be less than 3 

or 
+-(input<<c1) 

for any c1



Shift-Add Module
Implemented a module that allows for DEPTH powers of 2 to be added

Depth = 0: 
always uses DSP

Depth = 1: 
input << i

Depth = 2:
 input <<i + input << j

Depth = 3:
 input << i + input << j + input <<k

Depth = 4: 
input << i + input << j + input << k + input << l



Updated One Layer Results

DEPTH = 2
DSP usage identical for < 24, DSP > 24 → does not fit into 1 DSP anymore

Resource: 0.97x less, Latency: 1.17x worse, Period: 1.54x better

Dashed - HLS
Solid - SV



DSPs > 24
HLS4ML “Magic Multiplier” Subroutine



Updated Results
HLS4ML “Magic Multiplier” Subroutine

Resource: 1.03x more, Latency: 1.11x worse, Period: 1.44x better

Dashed - HLS
Solid - SV



Optimized Results

> Tuning of shift-add DEPTH parameter based on optimal results per bitwidth

Resource: 0.49x less, Latency: 1.12x worse, Period: 1.49x better

Dashed - HLS
Solid - SV

DEPTH VALUE: 2 3 4 5 6



Major Takeaways from One-Layer Model
> DSP packing is not beneficial for multiplication-heavy algorithms 

such as these ML ones

> HLS4ML handles DSPs better than the tools normally allow for

> HLS4ML multiplier subroutine allows for DSP usage at higher 
bitwidths



Benchmark 2
CNN Model



Convolution Streaming Method



CNN Model Initial Results

HLS4ml outperforming in all resources, except for DFFs

Resource: 0.82x less, Latency: 1.67x worse, Period: 1.13x worse

Dashed - HLS
Solid - SV



Optimized Results

DFFs become the limiting factor. 
Shift-add DEPTH of 3 (now use 0.58x DSPs)

Resource: 1.23x more, Latency: 1.19x better, Period: 1.21x better

Dashed - HLS
Solid - SV



Conclusions

> HLS4ML is leveraging the power of Vivado HLS in ways that normal 
optimizations do not

> To achieve the same resource usage, we had to mimic HLS results

Should we ever hand code again?
Depends on the application. HLS4ML does these specific models very well, 

but does it scale?



Next Steps

Using our two models, build larger and more applicable models to see 
how our results scale.

Encoder model
Convolution with Stride of 2
Reuse of 3 and 9

Jet Tagger
Introducing more complex layers - Batch Normalization



Questions?



Overall Results


