
TT-QEC: Transferable Transformer for Quantum
Error Correction Code Decoding

1

Hanrui Wang1, Pengyu Liu2, Kevin Shao1, Dantong Li3, Jiaqi Gu4,
David Z. Pan3, Yongshan Ding3, Song Han1

1MIT 2CMU 3Yale University 2ASU 2UT Austin

FASTML Workshop @ ICCAD 2023

Quantum Computing has Ubiquitous Potential Applications

Cryptograph Chemistry Optimization

Machine Learning Pharmaceutical Climate

Practical Quantum Computing is Getting Real

IBM Superconducting
Roadmap

IonQ Trapped-Ion
Roadmap

Quantum Computing Basics

• Quantum Bit (Qubit)

• Statevector: contains complex numbers for n qubit system

• The square sum of magnitude of numbers are 1

• 1 qubit:

• 2 qubits:

Quantum Computing Basics

• Quantum Operations (Gates)

• Quantum algorithms apply gates to qubit to manipulate the quantum states

|0>

|0>

Encode
Problem

XX

Apply
Operations to

Qubits
M

M

Measure
Qubits

Quantum Computing Challenges

• Reliability

• 1Q gate error rate ~10–3

• 2Q gate error rate ~10–2

Quantum Classifier
State
Preparation

Error Correction
• Trade redundancy for reliability

• In the classical case

7

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0Noise Majority
Voting

Quantum Error Correction
• Difference

• Both bit flip (0 to 1) and phase flip error (1 to -1)

• We need two dimensions of the error correction

• One checks X dim and one checks Z dim

8

Quantum Error Correction
• Difference

• Cannot directly measure the quantum information

• The redundancy is on the basis of information, not information itself

• q0 = a0 |0> + a1 |1>

• |0> = [1 0]T

• |1> = [0 1]T

• Due to non-clone theorem, cannot get q1 that is exactly the same as q0

• However, we can get a0 |00> + a1 |11>

• For more qubits a0 |00000> + a1 |11111>

9

Quantum Error Correction
• When bit flip error occurs

• a0 |10000> + a1 |01111>

• When phase flip error occurs

• a0 |00000> + a1 |-11111> = a0 |00000> - a1 |11111>

• How to know where is the error?

• Check the qubit parity

• We use some qubits to store information and some obtain parity (syndromes)

10

a0 |10000>a0 |00000>
Parity = 1Parity = 0

a0 |01000>
Parity = 1

Surface Code

• Data qubits (white) store information distributedly

• a0 |0000000000000000000000000> +
a1 |1111111111111111111111111>

• Syndrome Qubits (Green): check bit flip parity

• Syndrome Qubits (Yellow): check phase flip parity

11

Syndrome Extraction

• Syndrome Extraction process

12

Surface Code

• Example of indicating X error from Z

13

Surface Code

• Example of indicating X error from Z

14

Challenge of QEC
• Complicated syndromes

15

Challenge of QEC
• Degeneracy

16

• Complicated graph for practical case

• Multiple rounds of extraction

• Extraction itself may contains errors

17

Challenge of QEC

The iterative correction process

• Quantum Error Correction

Error correction code running on quantum Decoder running on classical

The iterative correction process

• Quantum Error Correction

Error correction code running on quantum

Error Syndromes

Decoder running on classical

The iterative correction process

• Quantum Error Correction

Error correction code running on quantum Decoder running on classical

Error Syndromes

Correction Operations

ML-based Decoders

• Reduced decoding time

• Adaptable to various noise models

• Easy for retraining for performance optimization

• Different models has been proposed

• MLP, 3D convolution, Graph Neural Networks

Krastanov, Stefan, and Liang Jiang. "Deep neural network probabilistic decoder for stabilizer codes." Scientific reports 7.1 (2017): 11003.
Varsamopoulos, Savvas, Ben Criger, and Koen Bertels. "Decoding small surface codes with feedforward neural networks." Quantum Science and Technology 3.1 (2017):
015004.
Chamberland, Christopher, et al. "Techniques for combining fast local decoders with global decoders under circuit-level noise." arXiv preprint arXiv:2208.01178 (2022).

Challenges of ML Decoder

• Large training cost for different distance of QEC codes

• Efficiency and speed of the ML model

22

Proposed Transformer Based QEC

• Easy transfer learning between different code distance with Transformer model

• Specific hardware accelerator for Transformer ML

23

Model Architecture

• Transformer-Encoder to process the input syndromes

• Transformer-Decoder to predict the error on each of the qubit

24

Input Features

• Features contains the locations and the binary syndrome value

• 3D positional positional encoding

25

Transformer based QEC decoder

• Transfer learning to other code distances

H. Wang, et al. “TransformerQEC: Transferable Transformer for Quantum Error Correction Code Decoding." FASTML@ICCAD 2023

Whole Pipeline

• One final layer of global decoder for the

27

Accuracy Results

• Low logical error rate with QEC

28

Accuracy Results

• Lower logical error rate than baseline methods

29

How to further improve the efficiency of
ML for Quantum Science?

30

Classical Accelerator Support

SpAtten for Transformer Acceleration [HPCA’21]

PointAcc for 3D Conv Acceleration [MICRO’21]

SpArch for sparse matrix multiplication [HPCA’20]

Hanrui Wang, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head pruning." HPCA 2021.
Zhang, Zhekai*, Hanrui Wang* (co-first). "Sparch: Efficient architecture for sparse matrix multiplication." HPCA. 2020.
Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, Song Han "Pointacc: Efficient point cloud accelerator." MICRO, 2021.

Classical Accelerator Support

SpAtten for Transformer Acceleration [HPCA’21]

PointAcc for 3D Conv Acceleration [MICRO’21]

SpArch for sparse matrix multiplication [HPCA’20]

Hanrui Wang, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head pruning." HPCA 2021.
Zhang, Zhekai*, Hanrui Wang* (co-first). "Sparch: Efficient architecture for sparse matrix multiplication." HPCA. 2020.
Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, Song Han "Pointacc: Efficient point cloud accelerator." MICRO, 2021.

Cascade Token/Head Pruning

Query

Key

Value

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

Q * KT

Attention
Score

11

11
Row-wise

Softmax

Attention
Probability

11

11

Attention Probability * V

Compute next layer’s
Query, Key and Value

Head 88 heads

8 heads

Cascade Token/Head Pruning

Query

Key

Value

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

Attention FFN
QKV FC

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

Layer 1 Layer 2

8 heads 8 heads

Q
K
V

Q
K
V

Cascade Token/Head Pruning

Query

Key

Value

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

Attention FFN
QKV FC

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

Attention FFN
QKV FC

Layer 1 Layer 2 Layer 3
• Not all tokens/heads are created equal
• Find unimportant tokens and heads in front layers
• Remove them in latter layers

8 heads 8 heads 8 heads

Q
K
V

Q
K
V

Q
K
V

Cascade Token/Head Pruning

Query

Key

Value

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

5
to

ke
ns

5
to

ke
ns

5
to

ke
ns

11 tokens, 8 heads 5 tokens, 6 heads

Attention
FFN

QKV FC

Get
Token/Head
Importance

scores

8 heads 6 heads

Prune
Unimportant

Tokens/Heads

Q
K
V

Cascade Token/Head Pruning

Query

Key

Value

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

5
to

ke
ns

5
to

ke
ns

5
to

ke
ns

11 tokens, 8 heads 5 tokens, 6 heads

Attention
FFN

QKV FC

2
to

ke
ns

2
to

ke
ns

2
to

ke
ns

2 tokens, 4 heads

Attention
FFN

QKV FC
Attention

FFN
Classifier

✅

8 heads 6 heads 4 heads

Get
Token/Head
Importance

scores
Prune

Unimportant
Tokens/Heads

Get
Token/Head
Importance

scores
Prune

Unimportant
Tokens/Heads

Q
K
V

• Pruned tokens/heads will never be used in all following layers: “Cascade”

Cascade Token/Head Pruning

Query

Key

Value

11
 to

ke
ns

11
 to

ke
ns

11
 to

ke
ns

5
to

ke
ns

5
to

ke
ns

5
to

ke
ns

Attention FFN
QKV FC

2
to

ke
ns

2
to

ke
ns

2
to

ke
ns

Attention FFN
QKV FC

Attention
FFN

Classifier
✅

8 heads 6 heads 4 heads

Get
Token/Head
Importance

scores
Prune

Unimportant
Tokens/Heads

Get
Token/Head
Importance

scores
Prune

Unimportant
Tokens/Heads

Q
K
V

• Pruned tokens/heads will never be used in all following layers: “Cascade”

11 tokens, 8 heads 5 tokens, 6 heads 2 tokens, 4 heads

Find Unimportant Tokens with
Attention Probabilities

• If one column in attention probability is small: the token is unimportant to all other tokens

• Maintain an importance score for each token

• Accumulate attention probs to the importance scores

• Top-k scores indicate top-k important tokens

Row-wise

Softmax

Attention
Probability

Small score tokens can be pruned away

Importance Scores

Quick Select

• Top-k Engine has high-parallelism

• 16 ‘<’ comparators and 16 ‘>’ comparators in Quick Select

• Compare the elements with pivot in parallel

40

Dedicated Accelerator

• Pipelined architecture to improve the throughput

41

Performance Comparisons
• Over general-purpose CPUs/GPUs on attention layers
• SpAtten applies all algorithmic optimizations
• 30 benchmarks average

42

162

1,193

347

4,059

1,095
406

5,071
1,910

10

100

1000

10000

Speedup Energy Efficiency

Lo
g

Sc
al

e
Over TITAN Xp GPU
Over Xeon CPU
Over Nano GPU
Over Raspberry Pi CPU

SpAtten Transformer Accelerator & Chip Tape-out

• Achieve 0.6ms latency, 1.6uJ energy for one round of correction
• Transformer accelerator leverages attention sparsity for better efficiency

H. Wang, et al. "SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning."HPCA 2021

Future Research

Compilation stack
and hardware

accelerator for fault
tolerant quantum

computing

Efficient machine
learning algorithms

and systems for
quantum information

science

Thank You!

Hanrui Wang is on academic job market this year,
please reach out for any opportunities.

