Designing Hardware for Machine Learning

John Wawrzynek

johnw@berkeley.edu
University of California, Berkeley

mailto:johnw@berkeley.edu
mailto:johnw@berkeley.edu
mailto:johnw@berkeley.edu
mailto:johnw@berkeley.edu

Machine Learning has been Great for Computer Architects!

e \With the slowing of Moore’s Law and the end of Dennard Scaling,
architects have turned to “accelerators” and purpose built processors
as a way to continue to scale performance, energy efficiency, and
cost.

e For ML, relatively easy to achieve high efficiency (compared to
general purpose code) - simpler control flow.

e Embarrassing parallel (loads of data-level parallelism), lower precision
requirements.

Highly impactful!
No end in sight!

Outline

Past

Present

Future

Work at Berkeley - Early 1990’s

e Community wide keen interest in parallel processing . —.
e How to we find parallelism in problems and
exploit in hardware? :
e [CSI was successful at using ANN’s trained with back- xﬂ_,@
propagation for front-end signal processing of speech
signals for speech recognition tasks. MLPs not DNNs! mputlayec Flidden layet Ouwpuclzyes
e Training was taking months on CPUs.

e Our pitch: connectionist models (neural networks) could be a general model
for many computations and are naturally parallel.
e Got funded from the ONR to design and build a “connectionist network
supercomputer (CNS)”.
e Quickly realized that training and inference is dominated by multiply/add
operations and these vectorize => designed a vector processor.
Fast ML for Science @ ICCAD 2023

TO Vector Microprocessor (1995)

World’s first single chip vector processor
MIPS CPU + vector lanes

Three graduate students, 1 year
15X the performance of workstation

SPERT-II: A Vector Microprocessor System and its Application to
Large Problems in Backpropagation Training

James Beck, David Johnson, & Nelson Morgan

John Wawrzynek, Krste Asanovié, & Brian Kingsbury

University of California at Berkeley

Department of Electrical Engineering and Computer Sciences

Berkeley, CA 94720-1776
Proceedings of MicroNeuro 96

Host Workstation

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, CA 94704-1105

R
Hi
=4
=
o1 8.
e it
&
5
i
e, 18
pe
™

Rl W I

SPERT-II . -
Board [TOChpi | | | | | | |
Vector Arithmetic Pipeline
e | "]]
Core |
| ! i1 i I
Vector Registers
- +———+—
Xilinx ,8’ Vector Arithmetic Pipeline
Ppoa o2 ISPl | [fver | | |
8 Inst. Vector Memory Pipeline
1ICache [l |VN[PI I 1

Data 8MBSRAM
8 -« a
7% 512K x 8
Address
18

Libraries for
Speech
researchers

System lived on for
a decade!

Lessons from the 90’s

1. NN training/inference dominated by multiply/add operations
 Full precision rarely needed
« Data-level parallelism (vectors/matrices)

Obviously lives on today with TPUs, efc.
2. ANN'’s good general computation model

» Wide range of function approximation, regression, classification, etc., useful tool
in optimization.

3. Software is key to adoption

GPUs with Cuda/openCL, now TensorFlow/PyTorch

Fast ML for Science @ ICCAD 2023

Learning Model Capabilities Scaled Directly with Hardware Advances

Late 2000’s - renewed interest in NNs, now deep

Driven by availability of high-performance hardware (GPUs)
ML models and HW development fundamentally linked:
Success in LLMs tied directly to massive hardware compute
capability (Even more important than algorithm details?)

e e y
S ‘P\\'//ww"//[X0
NGNS 7))
A A A

Example: LLMs

GPT-4 trained on ~25,000 Nvidia A100 GPUs for 90-100 days,
~1.8 trillion parameters across 120 layers (~13T tokens in training)
[https://archive.md/2RG8X]

How can we continue to scale HW performance (efficiency) 044 TPU v3 (45 TFLOPIS)
to the benefit of ML?
e Scalable HW architectures + HW/Algorithm co-design

https://archive.md/2RG8X

Increasing Number of Parallel Resources
Many PEs with Network on Chip/Package (NoC/NoP)

NoC/NoP Chip

11311 PE

Noplll

(a) Simba chiplet (b) Simba package

Simba
16PEs x 36 Chiplets

L 1
.
C JRURANERUAUNNUEENNURRPRRARONRERE RN

Wafer-scale hip

T T
Cerebras WSE-2 Largest GPU

46,225mm? Silicon 826mm?’ Silicon
2.6 Trillion transistors 54.2 Billion transistors
Cerebras

84 Interconnected Chips

Fast ML for Science @ ICCAD 2023

https://people.eecs.berkeley.edu/~ysshao/assets/papers/shao2019-micro.pdf

Scheduling a constant challenge:

Particularly for multi-core architectures. How to partition and schedule execution to
efficiently use parallel resources.

e Algorithm e Hardware
Problem instances are huge (large Relatively small amount of fast
amount of state, large number of hardware resources (memory,
operations) computational units)

Perhaps the most important part of support software.

Hardware-Aware Scheduling and

Scheduling-Informed Hardware Design

CoSA: Scheduling by Constrained Optimization
for Spatial Accelerators [21°ISCA]

DNN Layer NoC Accelerator
Inputs Weights Outputs Weight Buffer
O]
» |
: Blidid ;
3 L FrEtd
7 il s
g —H H H a
Jad = (& 7(£
< 3 |-|‘ﬁ
o g — -
=(P - 1) x Stride + R § el] W
|:| Pro g Element
R, S: weightwidth and height ® Rout Reduction
P, Q: output width and height
C: input channel size Schedule Accumulation
K: output channel size Buffer
N: batch size
. [muLt o Adder
Variables CoSA
Constraints Objectives

Fast ML for Science @ ICCAD 2023

Scheduling Decisions:
1. Loop tiling

2. Loop permutation

3. Spatial mapping

Objective is to minimize
latency and energy

Mixed Integer Programming
(MIP) for scheduling DNN on
NoC accelerator with multi-
level memory hierarchies

10

Three operation-level scheduling decisions

Problem:

Architecture:

e Inputs Constraints:

----- 7 nested loops

R=3, S=3, P=28, Q=28, C=128, K=128, N=1

_____ 5 levels of memory

64 MAC
Registers AccumBuffer
8x8 1x8
entries: 1 entries: 128
size: 64B size: 384B
WeightBuffer InputBuffer
1x8 1x1
entries: 4096 entries; 8192
size: 4KB size: 8KB

e Output Schedule:
DRAM [Weights:147456 Inputs:115200 Outputs:100352]

| for P in [0:4)

R e, RN
| for Cin [0:16) (Spatial-X)

InputBuffer [Inputs:2016]

| for N in [0:1)
| forRin[0:3) (Spatial-X),— 2. Spatial Mapping
WeightBuffer [Weights:1024] I

Temporal Mapping

| for Q in [0:28)
| forPin[0:Z) -
AccumulationBuffer [Outputs:128]

| for K in [0:128)

| for C in [0:8) —
Registers [Weights:1]

| for Nin [0:1)

State-of-the-art DNN accelerator schedulers

Scheduler Search Algorithm

Brute-force Approaches:

Timeloop [57] Brute-force & Random
dMazeRunner [28] Brute-force
Triton [751 _ Brute-force over powers of two 1. Expensive and time-
Interstellar [81] Brute-force .
Marvel [17] Decoupled Brute-force consuming

2. Sample invalid space

Feedback-based Approaches: .
bp 3. Hard to generalize

AutoTVM [19] ML-based Iteration
Halide [65] Beamsearch [4], OpenTuner [9], [52]
FlexFlow [42] MCMC
Gamma [45] Genetic Algorithm
Constrained Optimization Approaches: Unable to determine tiIing
Polly+Pluto [15], [16], [35] ° factor sizes
Tensor Comprehension [77] Polyhedral Transformations

Tiramisu [11]

CoSA Mixed Integer Programming (MIP))

2x speedup compared to the state-of-the-art
work with 116x shorter time-to-solution

Hardware-Friendly Algorithm Design

[EPGA’19]

1x1
Conv
Output

Input tensor Output tensor

Input tensor After Shift Output tensor

Shift moves a neighboring + 1x1 Conv aggregates
pixel to the center position spatial info along the
channel dimension

Full 3x3 Conv Aggregates
neighboring pixels and
mixes channel info

* 3x3 Conv — Shift and 1x1 Conv
e Dataflow accelerator on embedded FPGA

equal top-1 accuracy, 11.6x higher frame-rate, 6.3x
better power efficiency, on ImageNet classification task

13

https://arxiv.org/pdf/1811.08634.pdf

Hardware-Friendly Algorithm Design

[FPGA’21]
I. Algorithm Modifications

.- ‘ ¢ l ® ¢ ° [] .‘ L]
,,,,,,,, e '. °.. PLER SR
(@) Regular (b) Deformable (c) Bound d) Square.

Il. Hardware Optimizations

£ @) Line Buffer .

8 o | e | @ Multi-Ports
@UC > 2 | i

cg) Input | H S—

£ <x et L
@ DDR § : 3 Weight Buffer | Conv

> §oteeees >| ei uffer i

Controller 8 9 Engine

<

o

Programmable Logic

(2) Caching (3) Buffering (4) Parallel Ports

Deformable Conv samples

' """ Fiorh- inputs from variable offsets
[$reieiete] generated based on the input,
IR and leads to the state-of-the-
| ' art accuracy for object

(e) Round recognition tasks.

* 9.76x speedup for the deformable
conv on FPGA

e 20.9x smaller model but 10% higher
accuracy than Tiny-YOLO

14

https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-10.pdf

The Future

e Advances in ML will continue to be critically dependent on advances
in Hardware Design.
e To spur ML advances HW design must be agile: easy, fast,
cheap
e None of these true now!
e Chip/accelerator design is slow, expensive (years,
$10-100M)
e Consequently, we use yesterday’s application benchmarks
to design tomorrow’s HW!
There’s hope: HW design greatly benefits from ML HW
ML methods can help in architecture/logic synthesis, optimization,
and verification of ML hardware circuits and systems

Fast ML for Science @ ICCAD 2023

ML

Learning A Continuous and Reconstructible

Latent Space for Hardware Accelerator Design (VAESA)
2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Bayesian Optimization ' Feedback from
— i HW Simulation

Loss Function
Input L — Ly + Lpnedictons

Statistical Performance 3
Model i

Latency &
Energy

aaaaaaaaaaaaaa
@ ﬁ Predictor

-~
DNN Layer

AN yi\
==u 1]
|| Hw Config

Latent Space

| Scheduler |
(CoSA)

HW Evaluator
imeloop

I Ia—_» Decoder
H Latent Space

HW design space exploration (DSE) exponentially large in design parameters & discontinuous

Design challenge: Design Simba-like (multicore) architectures for DNNs optimizing for latency and energy
e parameters such as # of PEs, weight and input buffer sizes, ... 3.6 x 1017 configurations!

e \We use a variational autoencoder (VAE) to learn a compressed and continuous representation (latent) of

the design space - new designs can be generated from the latent space

Eases search (Bayesian optimization, and gradient-based search)

Demonstrated on AlexNet, ResNet-50, ResNeXt-50, Deep Bench, ...

Significantly improves optimization results versus searches in original design space (5%) and 6.8X better

sample efficiency

The Future

HW

e Emerging body of work:

Many solid results on ML for physical design problems (placement/
routing)
Some in logic and high-level synthesis
Most build estimators of power, cost, or performance to aid in search
Few positive results on “generative techniques”

e ex: “Design an LDPC decoder with 1Gsps throughput and

10mW for SKOOFD”
e LLMs probably not suitable
e “Large Circuit-Models™?
e Challenges: Training sets, and correctness
guarantees, constraint satisfaction

Fast ML for Science @ ICCAD 2023

ML

Co-authors / Collaborators

e T0 Vector Microprocessor: Krste Asanovic, Brian Kingsbury, James Beck,
David Johnson, Nelson Morgan

e Synetqy: Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma,
Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers, Kurt
Keutzer

e Codenet: Qjjing Huang, Dequan Wang, Zhen Dong, Yizhao Gao, Yaohui Cai,
Tian Li, Bichen Wu, Kurt Keutzer

e CoSA: Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind
Kalaiah, James Demmel, Sophia Shao

e VAESA: Qjjing Huang, Charles Hong, Mahesh Subedar, Sophia Shao

Fast ML for Science @ ICCAD 2023

Thanks!

