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Machine Learning has been Great for Computer Architects!

● With the slowing of Moore’s Law and the end of Dennard Scaling, 
architects have turned to “accelerators” and purpose built processors 
as a way to continue to scale performance, energy efficiency, and 
cost. 

● For ML, relatively easy to achieve high efficiency (compared to 
general purpose code) - simpler control flow. 

● Embarrassing parallel (loads of data-level parallelism), lower precision 
requirements. 

● Highly impactful! 
● No end in sight!
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Work at Berkeley - Early 1990’s
● Community wide keen interest in parallel processing 

● How to we find parallelism in problems and 
exploit in hardware? 

● ICSI was successful at using ANN’s trained with back-
propagation for front-end signal processing of speech 
signals for speech recognition tasks.  MLPs not DNNs! 

● Training was taking months on CPUs.
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● Our pitch: connectionist models (neural networks) could be a general model 
for many computations and are naturally parallel. 

● Got funded from the ONR to design and build a “connectionist network 
supercomputer (CNS)”. 

● Quickly realized that training and inference is dominated by multiply/add 
operations and these vectorize => designed a vector processor.
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T0 Vector Microprocessor (1995)
● World’s first single chip vector processor 
● MIPS CPU + vector lanes 
● Three graduate students, 1 year 
● 15X the performance of workstation
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Libraries for 
Speech 
researchers 

System lived on for 
a decade!



Fast ML for Science @ ICCAD 2023

Lessons from the 90’s

1. NN training/inference dominated by multiply/add operations 
• Full precision rarely needed 
• Data-level parallelism (vectors/matrices)  

2. ANN’s good general computation model 
• Wide range of function approximation, regression, classification, etc., useful tool 

in optimization. 

3. Software is key to adoption
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Obviously lives on today with TPUs, etc.

GPUs with Cuda/openCL, now TensorFlow/PyTorch
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Learning Model Capabilities Scaled Directly with Hardware Advances

● Late 2000’s - renewed interest in NNs, now deep 
● Driven by availability of high-performance hardware (GPUs) 
● ML models and HW development fundamentally linked: 
● Success in LLMs tied directly to massive hardware compute 

capability (Even more important than algorithm details?) 

● How can we continue to scale HW performance (efficiency) 
to the benefit of ML? 
● Scalable HW architectures + HW/Algorithm co-design
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Example: LLMs 
GPT-4 trained on ~25,000 Nvidia A100 GPUs for 90-100 days, 
~1.8 trillion parameters across 120 layers (~13T tokens in training) 
[https://archive.md/2RG8X]

Cloud TPU v3 (45 TFLOP/s)

https://archive.md/2RG8X
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Increasing Number of Parallel Resources 
Many PEs with Network on Chip/Package (NoC/NoP)

Cerebras 
84 Interconnected Chips

Wafer-scale Chip NoC/NoP Chip 

Simba 
16PEs x 36 Chiplets

8Motivation 

https://people.eecs.berkeley.edu/~ysshao/assets/papers/shao2019-micro.pdf
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Scheduling a constant challenge:

Problem instances are huge (large 
amount of state, large number of 

operations) 

 

● Algorithm ● Hardware 

Relatively small amount of fast  
hardware resources (memory, 

computational units)

Scheduling

9

Particularly for multi-core architectures.  How to partition and schedule execution to 
efficiently use parallel resources.

Perhaps the most important part of support software. 
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CoSA: Scheduling by Constrained Optimization 
 for Spatial Accelerators [21’ISCA]

Mixed Integer Programming 
(MIP) for scheduling DNN on 
NoC accelerator with multi-
level memory hierarchies 

Hardware-Aware Scheduling and 
Scheduling-Informed Hardware Design

Scheduling Decisions: 
1. Loop tiling 
2. Loop permutation 
3. Spatial mapping

Objective is to minimize 
latency and energy



Three operation-level scheduling decisions  

● Output Schedule:  
DRAM [ Weights:147456 Inputs:115200 Outputs:100352 ] 
---------------------------------------------------- 
| for P in [0:4) 
|   for S in [0:3) 
|     for C in [0:16) (Spatial-X) 
InputBuffer [ Inputs:2016 ] 
--------------------------- 
|       for N in [0:1) 
|         for R in [0:3) (Spatial-X) 
WeightBuffer [ Weights:1024 ] 
----------------------------- 
|           for Q in [0:28) 
|             for P in [0:7) 
AccumulationBuffer [ Outputs:128 ] 
---------------------------------- 
|               for K in [0:128) 
|                 for C in [0:8) 
Registers [ Weights:1 ] 
----------------------- 
|                   for N in [0:1)
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● Inputs Constraints:  

Problem:               -----           7 nested loops 
R=3, S=3, P=28, Q=28, C=128, K=128, N=1 

Architecture:          -----          5 levels of memory  

Registers 
8x8 

entries: 1 
size: 64B 

64 MAC

WeightBuffer 
1x8 

entries: 4096 
size: 4KB 

AccumBuffer 
1x8 

entries: 128 
size: 384B 

InputBuffer 
1x1 

entries: 8192 
size: 8KB 

2. Spatial Mapping

Temporal Mapping

3. Tiling Factors

1. Loop Permutation



State-of-the-art DNN accelerator schedulers
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1. Expensive and time-
consuming  
2. Sample invalid space 
3. Hard to generalize

Unable to determine tiling 
factor sizes 

One-pass solution

2x speedup compared to the state-of-the-art 
work with 116x shorter time-to-solution
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Hardware-Friendly Algorithm Design
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• 3x3 Conv → Shift and 1x1 Conv

• Dataflow accelerator on embedded FPGA

equal top-1 accuracy, 11.6x higher frame-rate, 6.3x 
better power efficiency, on  ImageNet classification task

Synetgy: Image Classification without 3x3 
Convolution [FPGA’19] 

https://arxiv.org/pdf/1811.08634.pdf
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Hardware-Friendly Algorithm Design
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Deformable Conv samples 
inputs from variable offsets 
generated based on the input, 
and leads to the state-of-the-
art accuracy for object 
recognition tasks. 

• 9.76× speedup for the deformable 
conv on FPGA


• 20.9× smaller model but 10% higher 
accuracy than Tiny-YOLO

CoDeNet: Object Detection with Deformable 
Convolution Codesign [FPGA’21] 

(a) Regular        (b) Deformable      (c) Bound            d) Square.         (e) Round     

I. Algorithm Modifications

II. Hardware Optimizations

(2) Caching (3) Buffering (4) Parallel Ports

https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-10.pdf
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The Future
● Advances in ML will continue to be critically dependent on advances 

in Hardware Design. 
● To spur ML advances HW design must be agile: easy, fast, 

cheap 
● None of these true now! 
● Chip/accelerator design is slow, expensive (years, 

$10-100M) 
● Consequently, we use yesterday’s application benchmarks 

to design tomorrow’s HW! 
● There’s hope: HW design greatly benefits from ML 
● ML methods can help in architecture/logic synthesis, optimization, 

and verification of ML hardware circuits and systems
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Learning A Continuous and Reconstructible 
Latent Space for Hardware Accelerator Design (VAESA) 
2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

● HW design space exploration (DSE) exponentially large in design parameters & discontinuous 
● Design challenge: Design Simba-like (multicore) architectures for DNNs optimizing for latency and energy 

● parameters such as # of PEs, weight and input buffer sizes, … 3.6 x 1017 configurations! 
● We use a variational autoencoder (VAE) to learn a compressed and continuous representation (latent) of 

the design space - new designs can be generated from the latent space 
● Eases search (Bayesian optimization, and gradient-based search) 
● Demonstrated on AlexNet, ResNet-50, ResNeXt-50, Deep Bench, … 
● Significantly improves optimization results versus searches in original design space (5%) and 6.8X better 

sample efficiency
16
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The Future
● Emerging body of work: 

● Many solid results on ML for physical design problems (placement/
routing)  

● Some in logic and high-level synthesis 
● Most build estimators of power, cost, or performance to aid in search 
● Few positive results on “generative techniques” 

● ex: “Design an LDPC decoder with 1Gsps throughput and 
10mW for SK90FD” 

● LLMs probably not suitable 
● “Large Circuit-Models”? 

● Challenges: Training sets, and correctness 
guarantees, constraint satisfaction 
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Co-authors / Collaborators
● T0 Vector Microprocessor: Krste Asanovic, Brian Kingsbury, James Beck, 

David Johnson, Nelson Morgan 
● Synetgy: Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, 

Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers, Kurt 
Keutzer 

● Codenet: Qijing Huang, Dequan Wang, Zhen Dong, Yizhao Gao, Yaohui Cai, 
Tian Li, Bichen Wu, Kurt Keutzer 

● CoSA: Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind 
Kalaiah, James Demmel, Sophia Shao 

● VAESA: Qijing Huang, Charles Hong, Mahesh Subedar, Sophia Shao
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Thanks! 
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