Smart pixel sensors: towards on-sensor filtering of pixel clusters
with deep learning

Jieun Yoo', Jennet Dickinson?, Morris Swartz®, Giuseppe Di Guglielmo®*, Alice Bean®, Doug Berry?,
Manuel Blanco Valentin?, Karri DiPetrillo®, Farah Fahim?*, Lindsey Gray?, James Hirschauer?,
Shruti R. Kulkarni’, Ron Lipton?, Petar Maksimovic®, Corrinne Mills!, Mark S. Neubauer®, Benjamin

Parpillon®!, Gauri Pradhan?, Chinar Syal?, Nhan Tran?*, Dahai Wen?, Aaron Young’
! University of Illinois Chicago, 2 Fermi National Accelerator Laboratory, ®> Johns Hopkins University, * Northwestern
University, 3 University of Kansas, ® The University of Chicago, 7 Oak Ridge National Laboratory, ® University of Illinois
Urbana-Champaign

ABSTRACT

High granularity silicon pixel sensors are at the heart of energy
frontier particle physics collider experiments. At an collision rate
of 40 MHz, these detectors create massive amounts of data. Signal
processing that handles data incoming at those rate and intelligently
reduces the data within the pixelated region of the detector at rate
will enhance physics performance and enable physics analyses
that are not currently possible. Using the shape of charge clusters
deposited in an array of small pixels, the physical properties of the
traversing particle can be extracted with locally customized neural
networks. In this first work, we present a neural network that can
be embedded into the on-sensor readout and filter out hits from
low momentum tracks, reducing the detector’s data volume by 54.4-
75.4%. The network is designed and simulated as a custom readout
integrated circuit with 28 nm CMOS technology and is expected to

operate at less than 300 W with an area of less than 0.2 mm?.

1 INTRODUCTION

With billions of readout channels and event rates as high as 40 MHz,
pixel detectors in high-energy colliders generate petabytes of data
per second [1, 2].The particle properties extracted from pixel detec-
tor data play a crucial role in physics measurements, but despite its
importance to collider physics programs, pixel detector information
is difficult to read out. The large data volume calls for multiple meth-
ods of data reduction. Zero suppression is employed to read out
only active pixels, and the accumulated charge per pixel is digitized
and represented with only a few bits. Even with these techniques,
data rates at the current CMS and ATLAS experiments exceed band-
width constraints for read out at the collision frequency of 40 MHz.
Collisions of interest are selected using a hardware-based trigger
system, which uses information from the other (non-pixel) detec-
tor subsystems to select events at a rate of < 1 MHz. Events that
contain new physics only in the pixel data are not selected by the
low-level trigger and are lost forever.

In this paper, we seek to overcome the limitations of pixel readout
with local data reduction in dedicated circuits before transmitting
information off of the detector. While pixel readout has traditionally
been treated as a lossless compression task, we explore the paradigm
of lossy compression within a given event to enable lossless readout
over all possible collisions. To enable this strategy with optimal
performance and yet keep the algorithms reconfigurable, we ex-
plore the use of neural networks with reprogrammable weights. A

USA

machine learning approach is required due to the complicated pulse
shapes, a combination of drift and induced currents, generated by
the pixel detector. The contribution from those two components
is dependent on the sensor geometry where the charged particle
impacts the detector and the particle’s trajectory.

In this work, we develop, design, and study a neural network
that will filter out pixel clusters originating from low-momentum
charged particle tracks. We then optimize, design, and simulate that
neural network in an integrated circuit and study its performance,
power, area, and latency.

Related Work

Data compression of silicon tracking information, in both strip
and pixel detectors, is explored in Ref. [3-5]. These works contain
detailed studies of both lossless and lossy compression of the digital
information content of the pixel and strip tracker detectors. These
references provide a good baseline for understanding what data
compression factor is possible for current tracking systems. Our
work expands on these previous studies by: looking at analog and
timing information; considering future pixel dimensions, studying
the potential for cluster filtering by the track momentum; and
designing a first implementation of on-chip detector algorithms.
Ref. [6] explores the use of pixel cluster shapes offline (off-
detector) to extract direction information and reduce tracking com-
binatorics and complexity. The technique described in this study
can be used in the future to extract directional information from
charge clusters in a single pixel layer, providing similar benefits in
terms of reduced algorithm complexity for tracking downstream,
which is particularly important for online data processing systems.
Finally, our study relies on previous work for translating neural
network algorithms into circuits using the hls4ml [7, 8] workflow.
In particular, the first implementation using hls4ml to build a re-
configurable ASIC [9] for calorimeter on-detector data compression
provides a basis for much of the technology developed in this paper.

2 SENSOR GEOMETRY AND DATASET

Our studies are based on a simulated dataset of silicon pixel clusters
produced by charged particles (pions) [10], and in the rest of the
paper, the key kinematic property for particles is the transverse
momentum (pr), whose unit is electronvolt (eV).

Fig. 1.a sketches out characteristics of the pixel sensor. Within
the pixel sensor area, we define a cluster region of interest, shown

x (16 mm)

y (16 mm)

Yo| ==

Yo

| 0.1625 mm

1.06 mm

(@)

J- Yoo, J. Dickinson, M. Swartz, et al.

Charge [ke]
“»

L

y [pixels]

—

0 5 10 15 20 0 10 20
x [pixels] Charge [ke]

(b) (c)

Figure 1: (a) A schematic of the pixel sensor area and the specific region of interest (blue) of 21x13 pixels for a given cluster. The
magnetic field is parallel to the sensor x coordinate. (b) A diagram of three charged particles traversing our simulated silicon
sensor at the same y position. The sensor is viewed in the bending plane of the magnetic field. The solid track corresponds
to a charged particle with high pr, while the two dashed tracks correspond to low pr particles with opposite charge. (c) An
example of charge cluster and the corresponding x- and y-profile projections. The color scale represents the collected charge.

The cluster is locate in yo = 2.3 mm and has pr = 1.9 GeV.

in blue, which corresponds to 21x13 pixels in x and y, respectively.
This region is large enough to fully encompass a charge cluster
and serves as input to the ML algorithm used to extract cluster
features. The position (x, y) where the charged particle traverses
the sensor mid-plane is uniformly distributed across the central
3x3 pixel array. The shape of the charge deposited in the pixel array
is sensitive to this position and to the particle’s angle of incidence.
The incident angle in the x — z plane is denoted by «, and by f in
the y — z plane (see Fig. 1.b).

Due to the bending of charged particle tracks in the magnetic
field, the shape of the charge cluster also depends on the particle’s
pr, which is highly correlated with f. The shape of the cluster
also depends strongly on its azimuthal position with respect to the
center of the sensor, which is denoted by the coordinate yg.

For a given cluster, the sum over pixel columns projects the
cluster shape onto the x-axis: this distribution is referred to as the
x-profile. The sum over pixel rows, y-profile, which projects the
cluster shape onto the y-axis, is sensitive to incident angle and
therefore to the particle’s pr. Finally, Fig. 1.c shows an example of
cluster with the corresponding x- and y-profile projections.

3 NEURAL NETWORK DESIGN

In our exploration, we designed and compared three neural network
classifier to identify clusters initiated by high pr charged particles.
The high pr signal class contains tracks with pr > 200 MeV.

The simulated dataset of 800,000 clusters is used for training.
The simulated dataset is split into a training set (80%) and a test
set (20%) to be used for evaluation of the algorithm’s performance.
All models were implemented in TensorFlow (v2.10.9) [11] using
the Keras API [12]. Neural network trainings were run for 200

epochs where early stopping was used if the loss function showed
no improvement after 20 epochs. A batch size of 1024 was used in
all models. The Adam optimizer [13] with a learning rate of 0.001
was used in conjunction with the Keras Sparse Categorical Cross
entropy loss function in all models.

The models are trained with three output categories: positively
charged and pr < 200 MeV; negatively charged and pr < 200
MeV; and pr > 200 MeV (high pr), both positively and negatively
charged. A softmax activation was used in all models to gener-
ate classification probabilities between 0 and 1, and each cluster
is assigned the classification label corresponding to the highest
probability.

The charge cluster shape along the axis parallel to the magnetic
field direction (sensor x) is assumed to be largely uncorrelated with
track pr. The projection of the cluster shape onto the sensor y-axis
is therefore used as the training input to the classifier.

Three training setups and associated models are developed cor-
responding to input features of different complexity in order to
demonstrate how additional information improves pr discrimina-
tion:

Model 1 uses two input features the cluster y-size and po-
sition yo. y-size is the number of columns with nonzero
charge deposited after 4 nanoseconds. The model consists
of one dense layer with 128 neurons and 771 parameters.
This model provides a test of performance with minimal
information provided to the neural network.

Model 2 leverages position yo and y-profile information that
is the amount of charge collected in each row of pixels after
4nanoseconds. The total number of input features are 14:

Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning

Model Sig. efficiency Bkg. rejection
Model 1 84.8 % 26.6 %
Model 2 933 % 251 %
Model 3 97.6 % 21.7 %

Table 1: Comparison of model performance in terms of signal
efficiency and background rejection.

13 y-profile and one yo position. This model consists of one
dense layer with 128 neurons and 2307 parameters.

Model 3 leverages timing information associated with the y-
profile. This is the most complex model takes as input the
cluster y-profile distribution at eight time slices (13 x 8
features) and the yo position (1 feature). This model uses a
convolutional neural network (CNN) to pass a time-lapse
picture of the cluster charge to the network. The final model
contains 83,331 parameters.

Table 1 compares two figures of merit for each model. The signal
efficiency is the fraction of clusters with pr > 2 GeV that are
classified as high pr; the background rejection is the fraction of
clusters with pr < 2 GeV that are classified as low pr.

Model 1 (y-size and yo) has the simplest architecture and achieves
the highest data reduction rate. However, the information contained
in only two features is insufficient for achieving a high signal effi-
ciency, and this model selects less than 85% of tracks with p7 > 2
GeV. Model 2 (cluster y-profile) achieves an accuracy of 93.3% for
tracks with pr > 2 GeV, and remains sufficiently compact for imple-
mentation on-ASIC. The inclusion of timing information in Model
3 achieves an additional 4% gain in the signal efficiency and is
the most accurate overall. However, the extraction of time-sliced
charge information presents challenges to the chip architecture
that merit further study but remain outside the scope of this work.
Model 2 is therefore chosen as the baseline model for our hardware
implementation.

4 MODEL QUANTIZATION

For implementation on-ASIC, the neural network weights must
also be quantized to a precision of a few bits without significant
loss in performance. The QKeras library [14, 15] is used to perform
quantization-aware training, enabling an early evaluation of the
impact of low bit precision on the model’s performance. This al-
lows an initial assessment of the trade-offs between accuracy and
resource utilization before finalizing a design for the ASIC imple-
mentation. The quantized baseline model consists of a quantized
dense layer and a quantized representation of a ReLU activation
function. Additionally, a Batch Normalization (BN) layer that pro-
vides a regularization effect during training, akin to dropout, was
incorporated to prevent overfitting. A softmax activation gener-
ates classification probabilities between 0 and 1, and each cluster
is assigned the classification label corresponding to the highest
probability. The final quantized model has 2,563 parameters, uses
five-bit weights, 10-bit activations, and is illustrated in Fig. 2.

Table 2 compares the performance of the full precision model,
the model with quantized input features only, and the model with
quantized input features and weights.

Model Sig. efficiency Bkg. rejection
Full precision 933 % 251%
Quantized inputs 88.8 % 258 %
Quantized weights & inputs 87.3 % 282 %

Table 2: Comparison of the baseline model performance at
different stages of the quantization in terms of signal effi-
ciency and background rejection.

Following the selection of a baseline quantized model, an addi-
tional architechtural exploration was performed that fully accounts
for hardware constraints. During this stage, five major design deci-
sions were made in order to compress the model without significant
loss of performance. Fig. 2.b depicts the final model architecture,
with all updates to the design incorporated.

In summary: (I). We folded the BN layer into the Dense layer.
This optimization technique combines the BN parameters with
the Dense layer’s weights and biases, effectively reducing com-
putational costs during inference while maintaining the model’s
performance [16]. (II). We examined the trade-off between accuracy
and area by considering the reduction in the number of neurons
and bit precision. In our exploration, we sought to balance net-
work complexity and hardware area while striving to maintain the
accuracy of the original network outlined in Sec. ??. The optimal
model was found to reduce the number of neurons of the first dense
layer from 128 to 58. (III). We reduced the number of bits in the
weights and activations by 2 bits each. This produced a hardware
implementation with a third of the area originally necessary with
a drop in signal efficiency of only 3.5%. (IV). To further reduce
the computational complexity of the model without sacrificing the
overall predictive capability, we utilized an Argmax function as
the final layer instead of the conventional Softmax activation func-
tion. (V). We opted to remove the yy coordinate from the model
entirely. Rather than directly providing the network with the value
of this coordinate, we train the baseline network many times on
clusters in restricted ranges of yj: this is referred to as the region
specific implementation. The network architecture in each yo region
is identical, but the values of the reprogrammable network weights
can be tuned based on the ASIC’s yg position. The input y-profile
distribution is then expanded from 13 to 16 bins by padding with
zeros, so that the pixel array can be comprised of a round number.

The final optimized model has 1,163 trainable parameters, which
is a reduction of 55% with respect to the original model.

5 HARDWARE IMPLEMENTATION WITH HLS

To translate the algorithm from a quantized graph representation
into an optimal hardware implementation, we use the h1s4ml work-
flow. It is an open-source Python framework for co-design and
translating machine learning algorithms into hardware implemen-
tations [17]. hls4ml translates the quantized model into C++ code
for Siemens Catapult HLS [18]. The HLS tool generates a hardware
description at the register-transfer level (RTL) for the traditional
ASIC flow. We have opted to fully parallelize the hardware logic,
resulting in a combinational implementation of our models from
HLS. This choice is driven by the desire to minimize the latency of

QDense

a. | input(14) <6> kernel<5> (14x128) BatchNormalization
bias<5> (128)
Trainable parameters
1920 256
QDenseBatchnorm QActivation
b. | input(16)<6>

relu<g> (58)

Trainable parameters

kernel<4> (16x58)
bias<4> (58)
986

QActivation

relu<10> (128)

QDense

kernel<4> (58x3)
bias<4> (3)
177

J- Yoo, J. Dickinson, M. Swartz, et al.

QDense

Activation

kernel<5> (128x3)) S

bias<5> (3)

softmax (3)

387

Activation
output (1) <2>

argmax (1)

Figure 2: (a) Baseline quantized model consisting of 14 inputs (13 bins of y-profile plus yo), three outputs, and two hidden
layers containing 128 and three neurons each. For each layer, the dimension is reported in round brackets and the bit-width
of the fixed-point representation in angular brackets. (b) Final model architecture with reduced bit-precision and trainable
parameters. For each layer, we report the dimensions in round brackets and the bit-width of the fixed-point representation in

angular brackets.

the neural network. We integrated the resulting RTL design into
the system alongside registers and data movers.

5.1 Integrated sensing and edge computing

Finally, the ML algorithm must be integrated into readout inte-
grated circuit (ROIC). The physical layout of the super-pixel is
shown in Figure 3. The size of the digitally implemented super-
pixel is 889 um x 222 um. The green areas correspond to the analog
circuit islands, while the red contains the digital logic. Given our
design, the registers require a one-time setup and leakage at low
temperatures is deemed insignificant, thus the combinatorial logic
is projected to account for the majority of the power utilization.
The anticipated power consumption of the digital logic for 28nm
CMOS technology is roughly 300 pW, measured when toggling 50%
of the inputs every 25 ns (clock cycle).

Digital Momentum classifier

Signal processing clusters distributed in-between sensing regions

Figure 3: Physical layout of the 16 X 16 pixel array digital
implementation. The analog islands are in green and the
digital implementation of the neural network are in red.

6 CONCLUSIONS

This study makes a number of novel contributions. First, we intro-
duced a first public dataset which can be used for the benchmark
task of pixel on-sensor data reduction. We developed and compared
a number of neural-network-based approaches from simple cluster
size information to cluster distributions to time-evolved cluster dis-
tributions and present their performance for the clustering filtering
task. Finally, we optimizes the algorithm for circuit implementation
by exploring quantization of inputs and neural network parameters.

We synthesized and integrated the algorithm in a readout integrated

circuit. The design is expected to operate at less than 300 yW with

an area of less than 0.2 mm?.

REFERENCES

[1] The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:508003,
2008. Also published by CERN Geneva in 2010.

[2] The CMS experiment at the CERN LHC. The Compact Muon Solenoid experiment.
JINST, 3:508004, 2008. Also published by CERN Geneva in 2010.

[3] M Garcia-Sciveres and X Wang. Data compression considerations for detectors
with local intelligence. Journal of Instrumentation, 9(10):C10011, 10 2014.

[4] Maurice Garcia-Sciveres and Xinkang Wang. Data encoding efficiency in binary
strip detector readout. Journal of Instrumentation, 9(04):P04021, 2014.

[5] Maurice Garcia-Sciveres and Xinkang Wang. Data encoding efficiency in pixel
detector readout with charge information. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 815:18-22, 2016.

[6] Patrick J Fox, Shangqing Huang, Joshua Isaacson, Xiangyang Ju, and Benjamin
Nachman. Beyond 4d tracking: using cluster shapes for track seeding. Journal
of Instrumentation, 16(05):P05001, 2021.

[7] Javier Duarte et al. Fast inference of deep neural networks in FPGAs for particle
physics. JINST, 13(07):P07027, 2018.

[8] FastML Team. fastmachinelearning/hls4ml, 2023.

[9] Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin,

Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok,

Vladimir Loncar, et al. A reconfigurable neural network asic for detector

front-end data compression at the hl-lhc. IEEE Transactions on Nuclear Science,

68(8):2179-2186, 2021.

Morris Swartz and Jennet Dickinson. Smart pixel dataset, November 2022.

Martin Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

Francois Chollet et al. Keras, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2014.

[14] Claudionor N. Coelho, Aki Kuusela, Shan Li, Hao Zhuang, Jennifer Ngadiuba,

Thea Klaeboe Aarrestad, Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol, and

Sioni Summers. Automatic heterogeneous quantization of deep neural networks

for low-latency inference on the edge for particle detectors. Nature Machine

Intelligence, 3(8):675-686, 6 2021.

Erwei Wang, James J. Davis, Daniele Moro, Piotr Zielinski, Jia Jie Lim, Claudionor

Coelho, Satrajit Chatterjee, Peter Y. K. Cheung, and George A. Constantinides.

Enabling binary neural network training on the edge, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-

drew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and

training of neural networks for efficient integer-arithmetic-only inference. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 2704-2713, 2018.

FastML Team. fastmachinelearning/hls4ml, 2021.

Siemens. Catapult HLS. https://eda.sw.siemens.com/en-US/ic/ic-design/high-

level-synthesis-and- verification- platfor.

==
_ o

==
L)

[15

=
&

e
&2

https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platfor
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platfor

	Abstract
	1 Introduction
	2 Sensor geometry and dataset
	3 Neural network design
	4 Model quantization
	5 Hardware implementation with HLS
	5.1 Integrated sensing and edge computing

	6 Conclusions
	References

