
FKeras: A Sensitivity Analysis Tool for Edge Neural Networks
Olivia Weng
Andres Meza
oweng@ucsd.edu
anmeza@ucsd.edu

University of California San Diego
USA

Quinlan Bock
Benjamin Hawks

Fermi National Accelerator Laboratory
USA

Javier Campos
Nhan Tran

Fermi National Accelerator Laboratory
USA

Javier Mauricio Duarte
Ryan Kastner

University of California San Diego
USA

ABSTRACT
Edge computation often requires robustness to faults, e.g., to reduce
the effects of transient errors and to function correctly in high radia-
tion environments. In these cases, the edge device must be designed
with fault tolerance as a primary objective. FKeras is a tool that
helps design fault-tolerant edge neural networks. FKeras provides
metrics that give a bit-level ranking of neural network weights
with respect to their sensitivity to faults. FKeras includes these
sensitivity metrics to guide efficient faulty injection campaigns to
help evaluate the robustness of a neural network architecture. We
show how to use FKeras in the co-design of edge NNs trained on
the high-granularity endcap calorimeter dataset, which represents
high energy physics data, as well as the CIFAR-10 dataset. We use
FKeras to analyze network’s fault tolerance to consider alongside
its accuracy, performance, and resource consumption. The results
show that the different architectures have vastly differing resilience
to faults.

1 INTRODUCTION
Machine learning (ML) is increasingly used in safety-critical applica-
tions, including autonomous vehicles [6, 9, 39], healthcare [2, 3, 38],
and scientific experiments [11, 17, 24]. In these domains, the ML
computation must act reliably in the face of errors. Soft errors are a
common source of unreliability [7, 28], which are difficult to avoid
and often require mitigation. For example, a particle strike can
cause a bit flip in neural network (NN) weights, which can lead to
incorrect results.

Consider the CERN Large Hadron Collider (LHC) CompactMuon
Solenoid (CMS) experiment [12], which runs particle collision ex-
periments that generate data rates of ∼40 TB/s. With such a high
rate, it is infeasible to not only store petabytes of data per minute
but also to determine which data is relevant and worth further in-
vestigation. To reduce data rates, LHC physicists plan to deploy tens
of thousands of encap concentrator (ECON-T) ASICs [18], each run-
ning a neural network (NN) encoder, to compress experimental data
from the high-granularity endcap calorimeter (HGCAL) [16] into a
smaller format for easy filtering in the trigger system. The ECON-T
autoencoder hardware must accept new input data at 40MHz and
complete processing in 50 ns [18]. The core computation of the
ECON-T is a two-layer neural network—a 2D convolution followed

by a dense layer. The NN weights are quantized to 6-bit fixed-point
data with 1 integer bit.

The ECON-Ts operate in a high-radiation environment due to
their close proximity to particle collisions. High radiation causes
transient hardware errors, which can lead to incorrect application
output (silent data corruptions) if the hardware is not designed
robustly. The ECON-Ts filter terabytes per second of data for high-
energy physics studies, and faulty execution is unacceptable. Only
the NN weight parameters are vulnerable to faults because the
activations are not stored in memory for longer than a cycle.

The ECON-T uses triple modular redundancy (TMR) to protect
the NN weights against faults [18]. TMR is effective but incurs a
200% overhead [5, 40]. Many interesting design tradeoffs emerge
when considering fault tolerance: Can one TMR a subset of the
parameters to optimize the NN architecture in another manner?
Which computation and data are the most important to protect
against faults? How does quantization affect the NN’s fault re-
silience? How do different NN architectures compare with respect
to accuracy, performance, and fault tolerance?

FKeras is a tool that allows users to assess the sensitivity of NN
weights to faults.1 FKeras includes fast and efficient metrics that
provide a bit-level sensitivity ranking of the weights. FKeras facili-
tates the addition of fault tolerance into the codesign problem by
allowing the designer to consider how different quantized networks
handle faults. FKeras provides a way to evaluate the fault tolerance
alongside performance, resource usage, and power consumption,
which can result in hardware accelerators that are smaller, more
performant, and more resilient.

The primary goal of FKeras is to facilitate fault analysis with
hls4ml [23]. hls4ml targets edge ML applications with low laten-
cies, high throughput, minimal power budgets, and low resource
usage [24]. FKeras extends the hls4ml workflow to assess the sen-
sitivity of NN weights to faults, perform efficient fault injection
(FI) campaigns, and facilitate design space exploration that consid-
ers fault tolerance alongside accuracy, performance, and resource
usage.

hls4ml designs that target FPGAs must satisfy unique require-
ments compared to other architectures like GPUs and TPUs [29].
First, hls4ml implementations are highly quantized, often using

1https://github.com/KastnerRG/fkeras

https://github.com/KastnerRG/fkeras

Weng et al.

unique arbitrary precision fixed-point data types in each NN op-
eration. Second, hls4ml implementations hold most of their data
on-chip, including inputs, outputs, weights, and internal state. Third,
they often operate in high-radiation or safety-critical environments.
For example, the radiation of the ECON-T in the LHC is approxi-
mately 1000× that of the radiation in space. Thus, understanding
the potential effects of faults is crucial.

hls4ml accelerators are often heavily quantized to meet stringent
performance, power, and area requirements. Quantization reduces
the computational and storage costs and potentially modifies the
sensitivity of computations to faults. QKeras [15] is a tool developed
by Google and the hls4ml community to handle custom hardware
data types in hls4ml. QKeras provides drop-in replacements for
NN operations, e.g., from Dense to QDense. FKeras is modeled af-
ter QKeras, providing similar replacements for NN operators (e.g.,
FQDense). FKeras allows designers to consider fault tolerance in
the context of fixed-point computations.

FKeras includes several bit-level sensitivity metrics, including
most significant bits first, the gradient, and the Hessian. The Hes-
sian (second-order partial derivatives) captures the curvature of a
NN’s loss landscape, providing insight into how the NN will react
to perturbations to the weights. The Hessian has been shown to
capture NN sensitivity and is useful at quickly quantizing a NN to
mixed precision bitwidths [19, 20, 42–44]. FKeras efficiently calcu-
lates the Hessian, which gives a highly competitive ranking in all
our considered networks.

Our findings show that individual bits matter—some bits are
more important than other bits. Within a weight, the importance
tends to be monotonic [13], i.e., a more significant bit is at least as
sensitive as a less significant bit, though there are exceptions. We
can compare the relative effect of the bits across the weights using
the Hessian or gradient.

FKeras can guide FI campaigns to inject faults on the most sen-
sitive parameters first. The sensitivity of the weights is variable;
many do not lead to faulty behaviors. Thus, a campaign should
focus on injecting faults into weights that are the most vulnerable
to faults. We can use the Hessian sensitivity metric to determine
the most sensitive weights and flip those first. ?? shows that the
Hessian sensitivity metric performs substantially better at guiding
the FI towards faulty behaviors than randomly injecting faults as
many FI tools and studies do [21, 32, 36].

We demonstrate the value of FKeras in considering fault anal-
ysis in the design space exploration process for a neural network.
We perform a design space exploration on three different NN ar-
chitectures for the ECON-T autoencoder. We use FKeras to assess
the resilience of these different architectures to faults alongside
accuracy, performance, and resource usage. We also analyze the
resilience of an edge convolutional neural network (CNN) trained
on CIFAR-10 [30] Our results show that different-sized networks
have vastly different levels of fault tolerance, e.g., a smaller, less ac-
curate network has more sensitive bits than a larger, more accurate
network. Additionally, we show that the more significant bits are
typically more sensitive than a less significant bit within a weight
(confirming previous results [13]). This monotonicity generally
holds within the same weight, but also across weights.

FKeras is a tool that helps design fault-tolerant neural networks
in hls4ml. The primary contributions of FKeras are:

• Providing bit-level weight sensitivity metrics.
• Guiding fault injection campaigns to consider the most

sensitive bits first.
The remainder of the paper is organized as follows. Sec. 2 intro-

duces FKeras. Sec. 3 describes the experimental setup and assesses
the fault tolerance of four different networks using FKeras. Sec. 4
concludes the paper.

2 FKERAS
NNs are often over-parameterized, and not all weights are equally
important [26, 27], which indicates that some weights are more sen-
sitive to faults than others. FKeras is a codesign tool for designing
fault-tolerant neural networks in hls4ml. It provides a sensitivity
score that ranks the NN parameters based on their sensitivity to
faults and supports modeling single- and multiple-bit fault injection
campaigns on NN weights. FKeras can use the sensitivity score
to speed up fault injection campaigns by quickly and accurately
identifying the most important NN parameters. FKeras is also valu-
able for NN co-design problems for applications that require fault
tolerance.

2.1 NN Sensitivity Scores
To analyze NN sensitivity, we want to understand how a NN per-
forms under faulty conditions, e.g., bit flips in the weights. Previ-
ously, researchers have used the gradient as a metric to capture a
NN’s resilience to faults [14, 33]. A NN’s gradient with respect to
the parameters is a vector of size 𝑛, defined as

𝜕𝐿

𝜕𝜃
∈ R𝑛 (1)

where 𝐿 is the NN’s loss function and 𝜃 represents the 𝑛 parameters
of the NN. The gradient provides information about the steepness
of the loss function.

The Hessian matrix 𝐻 describes the steepness and curvature,
providing additional insight into the NN behavior. It is an 𝑛×𝑛
matrix of the second-order partial derivatives of the loss 𝐿:

𝐻 =
𝜕2𝐿

𝜕𝜃2
∈ R𝑛×𝑛 (2)

The Hessian captures the local curvature of the loss function, as it
shows the rate at which the gradient changes. The local curvature
of the loss reflects the sensitivity of a NN’s parameters [20, 44].
A steep curvature around a given parameter indicates that it is
highly susceptible to noise. Perturbing this parameter even slightly
will result in significant changes to the loss, implying that the
model will behave worse and lead to incorrect output. Conversely,
a relatively flat curvature around a given parameter indicates that
it is insensitive to noise. Small perturbations to it will result in
minimal changes to the loss, i.e., the model’s behavior remains
about the same. Since the Hessian models parameter sensitivity,
researchers have relied on it to successfully quantize NNs to mixed
precision [10, 20].

Despite how valuable the Hessian is, it is not commonly used be-
cause of the misconception that computing Hessian information for
a large NN is infeasible, given that it requires O(𝑛2) memory [44].
However, extracting theHessian eigenvalues and eigenvectors takes

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks

O(𝑛) memory in O(𝑛) time using techniques from randomized nu-
merical linear algebra (RandNLA) [4, 22, 35, 41]. The eigenvectors
and eigenvalues capture the relevant Hessian information.

FKeras provides a Hessian-based sensitivity score for each bit
of every NN weight. The sensitivity score provides a quick and
accurate method to assess the fault tolerance of an NN. This allows
us to speed up fault injection campaigns and perform codesign
considering fault-tolerance as a constraint.

FKeras uses the power iteration method to compute the top 𝑘
eigenvalues and eigenvectors of the Hessian in O(𝑛) time, where
𝑛 is the number of parameters [44]. Based on these 𝑘 eigenvalues,
we compute a parameter score:

𝑘∑︁
𝑖=1

𝜆𝑖 (𝑣𝑖 · 𝑝)𝑣𝑖 ∈ R𝑛 (3)

where 𝜆𝑖 is the 𝑖th eigenvalue, 𝑣𝑖 is the 𝑖th eigenvector, and 𝑝 is a
vector representing the model parameters (of which there are 𝑛).
The parameter 𝑖 sensitivity score aims to identify which parameters
contribute most significantly to the Hessian by weighting it by the
eigenvalue along the most sensitive direction (eigenvector).

We sort the parameters’ most significant bits (MSBs) by the
parameter sensitivity score to get a bit-wise ranking. Then, we
do the same for the parameters’ 𝑖th MSB until we reach the least
significant bit (LSB). We sort from MSB to LSB, where we consider
MSBs to be the most sensitive bits because they cause the most
significant perturbation in the weights of the NN when flipped
(based on a twos-complement representation).

FKeras also provides a sensitivity score based on the gradient.
This works in a similar manner as the Hessian, but instead uses the
gradient value from Equation 1 and sorts the bits from MSB to LSB
in a similar manner as the Hessian.

FKeras can compute the Hessian trace in 𝑂 (𝑛) time, where 𝑛
is the number of parameters, using the Hutchinson method [44].
FKeras provides the trace per layer so the user can compare the
layer sensitivity. A higher trace implies that a layer is more sensitive
to faults and other weight perturbations.

2.2 Fault Model
Different environments have different fault rates. For example, at
the LHC, high energy physicists expect a fault to occur in their
NN hardware every 15 seconds whereas in data centers, system
administrators only expect faults to occur at most once per year.
Thus, we want to model these fault rates using a fault model, which
describes how often a bit flip occurs.

A designer can use FKeras to perform experiments on two kinds
of fault models: the single-bit flip model and the multi-bit flip model.
We briefly describe the single-bit flip model in the remainder of this
section. Information on the multi-bit flip model is available in [1].

2.2.1 Single-Bit Flip Model. A common fault model is the single-bit
flip model [25, 32, 34], which represents the case when only one
bit flips at a time. The single-bit flip fault model can be applied to
NN weights, activations, or both. We limit our scope to only the
weights of a NN, as motivated by the spatial dataflow architecture
common to many edge NN hardware implementations.

3 EXPERIMENTAL EVALUATION
This section describes the experimental setup and results.

3.1 Experimental Setup
We demonstrate how FKeras can efficiently analyze a NN’s fault
sensitivity by performing experiments on CIFAR-10 [31] and an
HGCal dataset. CIFAR-10 is a popular image classification dataset.
TheHGCal dataset contains vectors of high-energy particle collision
sensor data. We use FKeras to understand the fault tolerance of four
different models: (1) an edge CNN trained on CIFAR-10, specifically
hls4ml’s submission to the MLPerf Tiny Inference Benchmark [8],
(2) a medium ECON-T NN, (3) a large ECON-T NN, and (4) a small
ECON-T NN.

The three Pareto-optimal ECON-T models (Small, Medium, and
Large) represent tradeoffs between model accuracy and size. All
ECON-T models were trained on the HGCal dataset. We evaluate
model performance using Earth mover’s distance (EMD), a distance
measure between two probability distributions [37]. In our case, the
EMD measures the distance between the encoder’s input energy
readings and the decoder’s outputs, respectively. Lower EMD is
better and an EMD of 0 indicates the autoencoder is lossless. The
three models were found using a Bayesian optimization neural
architecture search.

ECON-T Medium is the model described in the paper by Di
Guglielmo et al [18] - a 2D convolution layer followed by a dense
layer using a 6-bit arbitrary precision fixed point data type. It bal-
ances between accuracy and model complexity. ECON-T Medium
has 2 120 weights (180 for the convolution and 1 940 for the dense
layer) for a total of 12 720 weight bits.

ECON-T Large has the same two-layer structure but larger con-
volution and dense layers. ECON-T Large uses a 5-bit arbitrary
precision fixed point data type in the convolution layer and a 7-bit
arbitrary precision fixed point data type in the dense layer. ECON-T
Large has 800 weights in the convolution layer, 8 192 weights in
the dense layer for 61 344 total weight bits.

ECON-T Small has two dense layers both using an 8-bit arbitrary
precision fixed point data type. It has 1 280 weights and 10 240 total
weight bits. The first dense layer is 64×16 and the second is 16×16.
There are 10 240 total weight bits.

The final benchmark is the hls4ml CIFAR-10 submission to the
MLPerf Tiny Inference benchmark [8]. It uses a two-stack model
with no skip connections (five convolutional layers with 32, 4, 32,
32 and 4 filters, kernel size of 1, 4, 4, 4, and 4, and strides of 1, 1, 1,
4, 1, respectively). It achieves an accuracy of 83.1%.

We used FKeras to perform the single-bit flip fault injection
campaigns. We first generate oracles for the single-bit fault models
by exhaustively performing single-bit flips on the weights and
determining their effect. We create the single-bit flip oracle for
CIFAR-10 by flipping a parameter bit and evaluating the model on
8 313 test images. This is a subset of the 10 000 images provided
by the test dataset. This subset only includes the images that the
CNN correctly classifies under non-faulty conditions. If flipping a
bit causes the model to mispredict an image, we classify that bit
as sensitive. To generate the single-bit flip oracle for the HGCal
dataset, we flip a bit and evaluate the model on 20 000 validation

Weng et al.

Kernel: 16x512

Bias: 512

Total Weights: 8,192

Quantization
 Total:
 Integer:
 Keep Negative: True

Layer Weight Bits: 57,344

DENSE
Kernel: 5x5x1x32

Bias: 32

Total Weights: 800

Quantization
 Total:
 Integer:
 Keep Negative: True

Layer Weight Bits: 4,000

CONV-2D

Large Pareto (Total Weight Bits: 61,344)

Kernel: 16x128

Bias: 128

Total Weights: 2,048

Quantization
 Total:
 Integer:
 Keep Negative: True

Layer Weight Bits: 12,288

DENSE
Kernel: 3x3x1x8

Bias: 8

Total Weights: 72

Quantization
 Total:
 Integer:
 Keep Negative: True

Layer Weight Bits: 432

CONV-2D

Medium Pareto (Total Weight Bits: 12,720)

Kernel: 16x16

Bias: 16

Total Weights: 256

Quantization
 Total:
 Integer:
 Keep Negative: True

Layer Weight Bits: 2,048

DENSE
Kernel: 64x16

Bias: 16

Total Weights: 1,024

Quantization
 Total:
 Integer:
 Keep Negative: True

Layer Weight Bits: 8,192

DENSE

Small Pareto (Total Weight Bits: 10,240)

Figure 1: A layer-by-layer overview of the three ECON-T
models.

inputs. We classify a bit as sensitive if flipping it causes the model
error to exceed the average non-faulty model error.

3.2 Single Bit Flip Results
3.2.1 ECON-T Medium Model Resilience. We perform the first set
of experiments on the ECON-T Medium Pareto autoencoder. Fig. 2
shows the fault sensitivity of the encoder’s parameter bits. The first
180 weights correspond to the encoder’s convolutional layer, and
the remaining weights correspond to the encoder’s linear layer. The
bit index is the index of the bit that was flipped, where bit 0 is the
sign bit, bit 1 is the integer bit, and bits 2–5 are the fractional bits.
As expected, the sign bit and integer bit create the largest changes
in the magnitude of the parameters, so those bit flips lead to higher
EMDs. The non-faulty model has a non-zero EMD whose value is
1.10. Overall, 63.5% of the bits exceed the baseline EMD.

Not surprisingly, the largest EMD values, corresponding to most
faults, occur when faults are induced on the most significant bits.
The MSB (Bit 0) visually has higher EMD values than the other bits.
The LSB (Bit 5) barely has any visibly discernible change from the
baseline EMD value. This is not surprising, and this monotonicity
has been used previously to guide fault injection campaigns [13].

The first 180 weights correspond to the convolutional layer;
the remaining 1940 weights are for the dense layer. Faults in the
convolutional weights generally lead to more errors than faults in
the dense layer. This is especially visible in the MSB. There are a
lot of weights in the dense layer where a fault does not induce any
additional error, and some in the convolutional layer. The variability
of the EMD across bits of the same significance can vary greatly.

For example, many of the dense layer Bit 0 weights have high EMD,
but many have low EMD.

3.2.2 Sensitivity Metric Comparison. Our next set of experiments
aims to understand how different metrics perform at identifying the
bits most sensitive to single-bit faults.We use four differentmodels—
three different ECON-T autoencoder models and a CIFAR-10 edge
CNN, specifically hls4ml’s submission to the MLPerf Tiny Inference
Benchmark [8]. We compare the abilities of four metrics to rank the
weights: random, MSB to LSB, Hessian, and gradient. Random picks
a bit at random. MSB to LSB selects the most significant bits first,
followed by the second most significant bit, all the way to the least
significant bits. The bits are selected in the weight index provided
by Keras after flattening a layer’s weight matrix, e.g., the ECON-T
Medium NN has the weight ordering shown in Figure 2. Hessian
uses the Hessian-based sensitivity score as computed in Equation 3.
Gradient uses the parameter’s gradient value from Equation 1 and
sorts the bits from MSB to LSB in a similar manner to Hessian (see
Section 2.1).

Next, we consider the relative magnitude of the error and not
just the relative ranking. Fig. 3 shows the results of an experiment
that plots the cumulative error when ranking the sensitivity of the
weight bits. A larger error indicates that flipping that particular
bit increases the error of the overall model. The error measure
depends on the model. The three ECON-T autoencoder NNs use
EMD for error. Recall that EMD is a measure of error where larger
indicates worse autoencoder performance. The CIFAR-10 CNN uses
the number of mispredictions for the error where larger indicates
more error.

Consider first Fig. 3a that plots the cumulative ΔEMD versus the
number of bits flipped for the four metrics and an oracle on the
ECON-T Medium Pareto NN. The oracle is the optimal or best-case
ranking calculated from the brute-force single-fault experiments
(e.g., from Fig. 2 for ECON-T medium). The oracle ranks the bits
with the largest mean ΔEMD first. The cumulative EMD provides
the difference between the faulty model EMD and the EMD of a
model with no faults. The EMD for the non-faulty model is 1.100.
The cumulative ΔEMD for the oracle results quickly approaches the
maximum cumulative ΔEMD of 57.37. Only 63.5% (8 080/12 720) of
the bits are sensitive, i.e., they have a nonzeroΔEMD. The remaining
36.5% do not affect the autoencoder EMD.

The random metric is the worst of the metrics showing that
chance alone provides roughly an equal chance of guessing the bits
that contribute most to the EMD.MSB to LSB performs significantly
better than random. This shows that the bit order matters. The most
significant bit has the lion share of the cumulative ΔEMD (40.91 of
the 57.37). The impact on ΔEMD falls quickly; weights from last
few significant have little effect on the EMD. Hessian and gradient
both perform better. Hessian does perform better at ordering the
MSB weights with Hessian being slightly better as indicated by the
separation between the two lines. In particular, Hessian is more
accurate for the first 2 120 bits (corresponding to the weights of
the most significant bit). The subsequent bits are approximately
equal between Hessian and Gradient. These bits contribute less to
the overall EMD and thus are overall less sensitive.

It is interesting to compare the difference between the random
and oracle on the three ECON-T NNs. ECON-T Small NN (Fig. 3c)

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks
0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

46
2

48
4

50
6

52
8

55
0

57
2

59
4

61
6

63
8

66
0

68
2

70
4

72
6

74
8

77
0

79
2

81
4

83
6

85
8

88
0

90
2

92
4

94
6

96
8

99
0

10
12

10
34

10
56

10
78

11
00

11
22

11
44

11
66

11
88

12
10

12
32

12
54

12
76

12
98

13
20

13
42

13
64

13
86

14
08

14
30

14
52

14
74

14
96

15
18

15
40

15
62

15
84

16
06

16
28

16
50

16
72

16
94

17
16

17
38

17
60

17
82

18
04

18
26

18
48

18
70

18
92

19
14

19
36

19
58

19
80

20
02

20
24

20
46

20
68

20
90

21
12

Weight Index

0

1

2

3

4

5

Bi
t

In
de

x

Mean EMD for All Faulty Models

1.10

1.15

1.20

1.25

1.30

1.35

Figure 2: The average EMD for the ECON-T medium Pareto NN under a single-bit fault model. The 𝑥-axis corresponds to the
NN weight. The 𝑦-axis represents the bit index of the weight where 0 is the MSB and 5 is the LSB.

0 2000 4000 6000 8000 10000 12000
Number of Bits Flipped

0

10

20

30

40

50

60

Cu
m

ul
at

iv
e

De
lta

 E
M

D

Random
MSB to LSB
Hessian
Gradient
Oracle

(a) ECON-T Medium Pareto

0 10000 20000 30000 40000 50000 60000
Number of Bits Flipped

0

20

40

60

80

Cu
m

ul
at

iv
e

De
lta

 E
M

D
Random
MSB to LSB
Hessian
Gradient
Oracle

(b) ECON-T Large Pareto

0 2000 4000 6000 8000 10000
Number of Bits Flipped

0

100

200

300

400

500

Cu
m

ul
at

iv
e

De
lta

 E
M

D

Random
MSB to LSB
Hessian
Gradient
Oracle

(c) ECON-T Small Pareto

0 100000 200000 300000 400000
Number of Bits Flipped

0

1

2

3

Cu
m

ul
at

iv
e

M
isp

re
di

ct
s

1e7

Random
MSB to LSB
Hessian
Gradient
Oracle

(d) CIFAR-10

Figure 3: The magnitude of the error vs. the number of bits flipped for the four NN models. The three ECON-T models use
cumulative ΔEMD as the error measure and the CIFAR-10 CNN uses the cumulative number of mispredicts. In both cases,
larger indicates more errors. Each model plots five ranking metrics which attempt to order the NN weight bits from those to
contribute most to error to those that contribute little or nothing to the error.

has a much smaller spread due to the fact that the model is smaller
and all of the weights are more sensitive. Conversely, the spread in
the large ECON-T NN (Fig. 3b) is the largest of the three. The large
model has a small percentage of sensitive weights as indicated by

the steep initial slop of the Oracle. In other words, the vast majority
of the weights are insenstive to faults, which is not surprising given
that the model has many more weight bits. The ECON-T large NN

Weng et al.

has 61 344weight bits compared to ECON-T medium (12 720weight
bits) and the ECON-T small (10 240 weight bits).

CIFAR-10 is a different classification problem with a different
error measure. Thus, the results are not as easily comparable as
the three ECON-T NNs. Overall, CIFAR-10 is the largest model
with 459 520 weight bits. The fairly steep initial slope of the Oracle
indicates that most of the sensitivity resides in a small number
of bits. However, there is a relatively long tail, e.g., more similar
to ECON-T medium Pareto NN. The relatively large separation
between the Random and Oracle indicates that the bit sensitivity is
not easy to predict. Hessian generally performs best in determining
the most sensitive bits.

ECON-T Small Pareto
ECON-T Medium Pareto
ECON-T Large Pareto

ECON-T Small Pareto
ECON-T Medium Pareto
ECON-T Large Pareto

a

b

Figure 4: Part a) As model size increases, the percentage
of sensitive bits in the model decreases. Part b) As 𝐸𝑀𝐷

increases, the percentage of sensitive bits in the model in-
creases.

Next, we summarize the relationship between model size and
the sensitivity of its weights. Fig. 4 a) plots the number of sensitive
bits versus the total number of bits for the three ECON-T NNs. All
of the bits in the ECON-T Small Pareto model are sensitive. As the
model size increases, the number of sensitive bits decreases. The
ECON-T Large Pareto model has only 6.55% of its bits sensitive to
single-bit faults. Fig. 4 b) show the same three ECON-T models with
respect to the EMD (error) of the non-faulty model. The ECON-T
Large Pareto model has the smallest EMD (0.807), which is expected

given that it is more complex. Reducing the model size increases
the EMD (decreasing its performance).

MSB MSB-1 MSB-2 MSB-3 MSB-4 MSB-5 MSB-6 MSB-7
Weight Bit Index

0

2000

4000

6000

8000

Co
un

t

Small Pareto
Medium Pareto
Large Pareto

Figure 5: Distribution of the sensitive bits related to bit posi-
tion for the three ECON-T NNs.

Fig. 5 breaks out the number of sensitive bits according to their
relative bit position in the weight from the MSB to the LSB. All
models are quantized to a fixed-point representation such that
MSB is a sign bit followed by 1–3 integer bits and some fractional
bits remaining. Note that each model has a different quantization,
with ECON-T Small Pareto having 8-bit weights, ECON-T Medium
Pareto having 6-bit weights, and ECON-T Large Pareto having both
5-bit and 7-bit weights. In the ECON-T Small Pareto NN, all the bits
are sensitive; thus the sensitive bits are equally distributed across all
bit indices. 63.5% of the bits are sensitive in the ECON-T Medium
Pareto NN. The sensitive bits are relatively equally distributed
across each bit index though more reside in the MSB and MSB-1 bit
indices. In the ECON-T Large Pareto NN, only a tiny fraction (6.5%)
of the bits are sensitive. The sensitive bits are clustered in the first
3 MSBs out of (at most) 7 bits.

4 CONCLUSION
We develop FKeras as a tool to assess the fault tolerance of neural
networks within the hls4ml framework. FKeras provides several
bit-level metrics that can quickly identify NN weight bits that are
most sensitive to faults. We use FKeras to study four different NN
models—three Pareto-optimal models for an autoencoder hardware
in the CERN Large Hadron Collider and an edge NN that performs
CIFAR-10 image classification. We show that the sensitivity of the
bits varies greatly across weights and that the Hessian provides a
good weight sensitivity ranking. Additionally, our results indicate
that the sensitivity of different bits within a weight can vary dra-
matically. In the models we studied, the most significant bits are
generally the most sensitive and faults in the least significant bits
generally induce little to no errors in the overall model. FKeras
provided valuable insights for designing fault-tolerant, quantized
hardware models with hls4ml.

FKeras: A Sensitivity Analysis Tool for Edge Neural Networks

REFERENCES
[1] 2023. FKeras. https://github.com/KastnerRG/fkeras.
[2] Qeethara Kadhim Al-Shayea. 2011. Artificial neural networks in medical diagno-

sis. International Journal of Computer Science Issues 8, 2 (2011), 150–154.
[3] SyedMuhammadAnwar, MuhammadMajid, AdnanQayyum,MuhammadAwais,

Majdi Alnowami, and Muhammad Khurram Khan. 2018. Medical image analysis
using convolutional neural networks: a review. Journal of medical systems 42
(2018), 1–13.

[4] Haim Avron and Sivan Toledo. 2011. Randomized algorithms for estimating the
trace of an implicit symmetric positive semi-definite matrix. Journal of the ACM
(JACM) 58, 2 (2011), 1–34.

[5] Timoteo García Bertoa et al. 2023. Fault Tolerant Neural Network Accelerators
with Selective TMR. IEEE Des. Test 40, 2 (2023), 67. https://doi.org/10.1109/
MDAT.2022.3174181

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[7] Shekhar Borkar. 2005. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. Ieee Micro 25, 6 (2005),
10–16.

[8] Hendrik Borras, Giuseppe Di Guglielmo, Javier Duarte, Nicolò Ghielmetti, Ben
Hawks, Scott Hauck, Shih-Chieh Hsu, Ryan Kastner, Jason Liang, Andres Meza,
et al. 2022. Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark.
arXiv preprint arXiv:2206.11791 (2022).

[9] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. 2017. Making the
case for safety of machine learning in highly automated driving. In Computer
Safety, Reliability, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS,
SASSUR, TELERISE, and TIPS, Trento, Italy, September 12, 2017, Proceedings 36.
Springer, 5–16.

[10] Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W Mahoney,
Jovan Mitrevski, and Nhan Tran. 2023. End-to-end codesign of Hessian-aware
quantized neural networks for FPGAs and ASICs. arXiv preprint arXiv:2304.06745
(2023).

[11] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld,
Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. 2019. Machine
learning and the physical sciences. Reviews of Modern Physics 91, 4 (2019),
045002.

[12] S Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan, W Adam, T Bauer,
T Bergauer, H Bergauer, M Dragicevic, J Eroe, et al. 2008. The CMS experiment
at the CERN LHC. Journal of instrumentation 3 (2008).

[13] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2019.
Binfi: An efficient fault injector for safety-critical machine learning systems. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–23.

[14] Wonseok Choi, Dongyeob Shin, Jongsun Park, and Swaroop Ghosh. 2019. Sensi-
tivity based error resilient techniques for energy efficient deep neural network
accelerators. In Proceedings of the 56th Annual Design Automation Conference
2019. 1–6.

[15] Claudionor N. Coelho, Aki Kuusela, Shan Li, Hao Zhuang, Thea Aarrestad,
Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Adrian Alan Pol, and
Sioni Summers. 2021. Automatic heterogeneous quantization of deep neural
networks for low-latency inference on the edge for particle detectors. Nature
Mach. Intell. 3 (2021), 675–686. https://doi.org/10.1038/s42256-021-00356-5
arXiv:2006.10159 [physics.ins-det]

[16] CMS collaboration et al. 2017. The phase-2 upgrade of the CMS endcap calorime-
ter. CMS Technical Design Report CERN-LHCC-2017-023. CMS-TDR-019, CERN
(2017).

[17] Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe
Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S
Neubauer, et al. 2022. Applications and techniques for fast machine learning in
science. Frontiers in big Data 5 (2022), 787421.

[18] Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin,
Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok,
Vladimir Loncar, et al. 2021. A reconfigurable neural network ASIC for detector
front-end data compression at the HL-LHC. IEEE Transactions on Nuclear Science
68, 8 (2021), 2179–2186.

[19] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. 2020. Hawq-v2: Hessian aware trace-weighted quantization
of neural networks. Advances in neural information processing systems 33 (2020),
18518–18529.

[20] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
2019. Hawq: Hessian aware quantization of neural networks with mixed-
precision. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 293–302.

[21] Fernando Fernandes dos Santos, Caio Lunardi, Daniel Oliveira, Fabiano Libano,
and Paolo Rech. 2019. Reliability evaluation of mixed-precision architectures. In

2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 238–249.

[22] Petros Drineas andMichaelWMahoney. 2018. Lectures on randomized numerical
linear algebra. The Mathematics of Data 25, 1 (2018).

[23] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Ben-
jamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran, et al.
2018. Fast inference of deep neural networks in FPGAs for particle physics.
Journal of Instrumentation 13, 07 (2018), P07027.

[24] Javier Duarte, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi, Shvetank
Prakash, and Vijay Janapa Reddi. 2022. FastML Science Benchmarks: Accelerating
Real-Time Scientific Edge Machine Learning. arXiv preprint arXiv:2207.07958
(2022).

[25] Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph Doehring,
Martin Kumm, Peter Zipf, and Kees Vissers. 2019. Efficient error-tolerant quan-
tized neural network accelerators. In 2019 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 1–6.

[26] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney,
and Kurt Keutzer. 2021. A survey of quantization methods for efficient neural
network inference. arXiv preprint arXiv:2103.13630 (2021).

[27] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[28] IEEE 2008. Intermittent faults and effects on reliability of integrated circuits. IEEE.
[29] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1–12.

[30] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Tech Report (2009).

[31] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. (2009).

[32] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W Keckler. 2017. Understanding error
propagation in deep learning neural network (DNN) accelerators and applications.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[33] Abdulrahman Mahmoud et al. 2020. HarDNN: Feature map vulnerability eval-
uation in CNNs. In 1st Workshop on Secure and Resilient Autonomy (SARA) at
MLSys 2020. arXiv:2002.09786 [cs.LG]

[34] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W Fletcher,
Sarita V Adve, Charbel Sakr, Naresh R Shanbhag, Pavlo Molchanov, Michael B
Sullivan, Timothy Tsai, and Stephen W Keckler. 2021. Optimizing Selective
Protection for CNN Resilience.. In ISSRE. 127–138.

[35] Michael W Mahoney et al. 2011. Randomized algorithms for matrices and data.
Foundations and Trends® in Machine Learning 3, 2 (2011), 123–224.

[36] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu Lee,
Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. Ares: A framework
for quantifying the resilience of deep neural networks. In Proceedings of the 55th
Annual Design Automation Conference. 1–6.

[37] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The Earth Mover’s
Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 40 (2000), 99.
https://doi.org/10.1023/A:1026543900054

[38] Nida Shahid, Tim Rappon, and Whitney Berta. 2019. Applications of artificial
neural networks in health care organizational decision-making: A scoping review.
PloS one 14, 2 (2019), e0212356.

[39] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303–314.

[40] Cesar Torres-Huitzil and Bernard Girau. 2017. Fault and error tolerance in neural
networks: A review. IEEE Access 5 (2017), 17322–17341.

[41] Shashanka Ubaru, Jie Chen, and Yousef Saad. 2017. Fast estimation of tr(f(A)) via
stochastic Lanczos quadrature. SIAM J. Matrix Anal. Appl. 38, 4 (2017), 1075–1099.

[42] Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez,
Kannan Ramchandran, and Michael W Mahoney. 2021. Taxonomizing local
versus global structure in neural network loss landscapes. Advances in Neural
Information Processing Systems 34 (2021), 18722–18733.

[43] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan,
Leyuan Wang, Qijing Huang, Yida Wang, Michael Mahoney, et al. 2021. Hawq-
v3: Dyadic neural network quantization. In International Conference on Machine
Learning. PMLR, 11875–11886.

[44] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. 2020. Pyhes-
sian: Neural networks through the lens of the hessian. In 2020 IEEE international
conference on big data (Big data). IEEE, 581–590.

https://github.com/KastnerRG/fkeras
https://doi.org/10.1109/MDAT.2022.3174181
https://doi.org/10.1109/MDAT.2022.3174181
https://doi.org/10.1038/s42256-021-00356-5
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2002.09786
https://doi.org/10.1023/A:1026543900054

	Abstract
	1 Introduction
	2 FKeras
	2.1 NN Sensitivity Scores
	2.2 Fault Model

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Single Bit Flip Results

	4 Conclusion
	References

