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Abstract—Quantum state preparation, a crucial subroutine
in quantum computing, involves generating a target quantum
state from initialized qubits. Arbitrary state preparations can
be broadly categorized into arithmetic decomposition (AD) and
variational quantum state preparation (VQSP). AD employs a
predefined procedure to decompose the target state into a series
of gates, whereas VQSP iteratively tunes ansatz parameters to
approximate target state. VQSP is particularly apt for Noisy-
Intermediate Scale Quantum (NISQ) machines due to its shorter
circuits. We present ResilienQ, a novel VQSP methodology that
combines high robustness with high training efficiency. The core
idea involves utilizing measurement outcomes from real machines
to perform back-propagation through classical simulators, thus
incorporating real quantum noise into gradient calculations.
ResilienQ serves as a versatile, plug-and-play technique applicable
for training parameters from scratch or fine-tuning existing
parameters to enhance fidelity on target machines. It is adaptable
to various ansatzes at both gate and pulse levels and can
even benefit other variational algorithms, such as variational
unitary synthesis. Comprehensive evaluation of ResilienQ on state
preparation tasks for 4 distinct quantum algorithms using 10 real
quantum machines demonstrates a coherent error reduction of up
to 7.1 × and state fidelity improvement of up to 96% and 81% for
4-Q and 5-Q states, respectively. On average, ResilienQ improves
fidelity by 50% and 72% for 4-Q and 5-Q states compared to
baseline approaches.

I. INTRODUCTION

Quantum state preparation facilitates the preparation of the
system’s initial state. This process is essential for applications
such as codewords in quantum error correction [16], amplitude
encoding [30] in quantum machine learning, and initial
condition loading for solving Partial Differential Equations
(PDEs) using quantum machines [13], [24]. State preparation
in quantum computing is mainly achieved via arithmetic
decomposition (AD) or variational quantum state preparation
(VQSP). AD methods like Shannon decomposition [25] and
Mottonen decomposition [29] construct quantum circuits to
realize target states, each employing distinct strategies of
classical-to-quantum translation and hierarchical qubit rotations,
respectively. Conversely, VQSP [2], [6] minimizes the distance
between the target and final states by iteratively updating
variational circuit parameters in a variational circuit ansatz.

On real quantum machines, AD methods can be significantly
affected by quantum noise. Utilizing IBM Qiskit [1] compiler
for Shannon decomposition, we generate circuits that transform
the all-zero state into three distinct quantum states and compare
the average fidelity on noise-free simulators and real quantum
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Fig. 1. Proposed ResilienQ performs back-propagation training using results
from real quantum machines, achieving high robustness and training efficiency.
State preparation fidelity of each method is evaluated on real machines.

machines (Fig. 2). Although the compiler can achieve 100%
fidelity in noise-free simulations, real quantum machines
experience considerable fidelity degradation. This fidelity gap
intensifies with an increasing number of qubits, e.g., while
2-qubit (2-Q) states achieve 98% fidelity on real machines, 6-
qubit (6-Q) states have a mere 1% fidelity. Conversely, VQSP is
better suited for NISQ devices due to its flexibility in mitigating
coherent errors by adjusting circuit parameters and its reduced
2-qubit gate count and depth.

However, optimizing VQSP parameters for noise robustness
is challenging, as highlighted in Fig.1 for a 5-Q quantum state
on the IBM Toronto machine. While noise-free fidelities can
exceed 99%, real-machine performances suffer. First-column
methods, relying on noise-unaware simulators, are severely
impacted by real-device noise. Second-column approaches,
using noisy simulators such as QuantumNAT [38], onchip-
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Fig. 2. Prepared state fidelity on a noise-free simulator and real machine IBM
Hanoi. (i) Noise-free fidelity is very close to 100%. (ii) Noise significantly
reduces fidelity, especially for large qubit numbers.

sim [39], and VQP-sim [23], also yield low fidelity due
to device-simulator discrepancies. However, these simulators
achieve higher training efficiency through single backward
pass gradient computation. Real-machine-based methods in
the rightmost column, whether gradient-free like Bayesian
optimization or gradient-based following the PS rule, exhibit
low training efficiency. Specifically, gradient-free methods
lack precise gradient guidance, while the PS rule incurs
a computational cost of O(#params) for each update. The
natural goal of achieving both high robustness and training
efficiency calls for noise-aware back-propagation. However,
due to the No-Cloning Theorem [8], [41], back-propagation
on real quantum machines is infeasible, as intermediate results
(quantum states) cannot be stored for use in the backward pass.

To address this challenge, we introduce ResilienQ. The
core idea hinges on the fact that while real quantum machines
cannot provide intermediate results, they can supply final results
through measurements (tomography). Thus, we can use final
results from real quantum machines combined with intermediate
results from classical simulators to complete the backward
pass. In a single training step, the same set of parameters
is executed on both real quantum machines and simulators.
The loss function is computed between the tomography states
from a real machine and the target state. Subsequently, noise-
impacted gradients are back-propagated through the simulator
using the previously simulated intermediate results, ensuring
noise resilience in the trained parameters. Fig. 1 highlights
the superior accuracy of our method over alternatives. Our
results demonstrate that ResilienQ improves 4-Q state fidelity
by 50% and 5-Q state fidelity by 72% on average, reducing
coherent errors by up to 7.1× when compared to noise-unaware
baselines, and achieving high scalability. ResilienQ provides a
versatile approach for enhancing ansatz fidelity across platforms
like Xanadu [24] and QuantumNAS [37]. Unlike conventional
PS rules requiring specific gate structures [28], ResilienQ uses
a simulator for gradient computation, ensuring applicability
to any classically simulatable ansatz and improving both gate
and pulse ansatzes.

II. RELATED WORK

Quantum State Preparation. Grover and Rudolph initially
introduced the quantum state preparation problem for efficiently
generating integrable probability distribution functions [14].

Algorithm 1: ResilienQ Training with Noise-Aware
Gradient Back-Propagation
Input : Training objective L , quantum real machine

execution function f (·), classical simulation
function f ′(·), initial parameters θ 0 ∈ Rn,
initial learning rate η0, and total steps T .

η ← η0;
for t = 0,1, . · · · ,T −1 do

Execute circuit on real quantum machine
ρ = f (θ t);
Simulate circuit on classical simulator
ρ ′ = f ′(θ t);
Objective evaluation with noisy output: L (ρ);
Classical backpropagation to obtain noisy gradients
∇θ t L (ρ) = ∂L (ρ)

∂ρ

∂ρ ′

∂θ t ;
Parameter update:
θ t+1← θ t −η∇θ t L (ρ);

end
Output : Converged parameters θ T−1

Numerous state preparation techniques have been proposed
since, targeting specific states like Gaussian wave functions [3],
[19], [33], continuous functions [15], [32], and arbitrary func-
tions [26], [31], [36], [40], [43]. State preparation techniques
can be categorized into Arithmetic Decomposition (AD) and
Variational Quantum State Preparation (VQSP). AD utilizes
rule-based algorithms to generate a circuit mapping the |0⟩
state to the target state |ψ⟩ in one step, while VQSP iteratively
refines a circuit to minimize the difference between the
produced and target states. VQSP begins with designing a
parameterized circuit architecture (called ansatz). The circuit
realizes a parameterized unitary U(θ), preparing a state:
|ψ(θ)⟩=U(θ) |0 . . .0⟩, where and θ is a set of free parameters
that are trained in a hybrid quantum-classical optimization
procedure iteratively to minimize loss.
Pulse-Level Quantum Computing. Quantum Optimal Control
and variational pulse learning [5], [7], [11], [18], [23], [27],
[35] have gained interest recenlty. Quantum Optimal Control
iteratively adjusts pulse shapes to minimize unitary-target
discrepancies [5], [7], [35]. Variational pulse learning optimizes
pulse parameters, such as amplitude and frequency, in lieu of
rotation gate angles [18], [23], [27]. Unlike [11], which reduces
circuit depth via gate set compilation, we mitigate coherent
errors induced by direct pulse shape modifications.

III. NOISE-AWARE RESILIENQ METHODOLOGY
Noise-Aware Back-Propagation. Although variational circuits
generally have smaller depth and better fidelity (details at
Fig. 7), they necessitate iterative parameter training. As
discussed in Sec. I, noise-aware back-propagation is the optimal
candidate for achieving high robustness and training effi-
ciency. However, real quantum machines cannot perform back-
propagation due to quantum mechanics’ fundamental limits,
specifically the No-Cloning Theorem [8], [41], which prevents
storing intermediate results necessary for back-propagation.
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Fig. 3. ResilienQ with real noise-aware gradients improves parameter robustness.

Fortunately, the final results (density matrix) of quantum
circuits can be obtained through measurements, providing
abundant noise information. Inspired by [42], we employ a
differentiable classical simulator to acquire intermediate results
(quantum states) so that back-propagation can be performed
using the noisy final output and simulated intermediate results.
In Fig. 3 and Alg. 1, we outline the ResilienQ training protocol,
which combines quantum on-chip forward with classical
simulated backward propagation for noise-aware gradient-based
optimization. In each iteration, we first execute the quantum
circuits on the real quantum device and perform tomography to
obtain the density matrix ρ , which incorporates the effects of
real noises. Next, we simulate the quantum circuit on classical
computers to obtain a noiseless density matrix ρ ′. To adjust
parameters based on a specific machine’s noise, we replace the
noiseless density matrix ρ ′ with the noisy one ρ to evaluate
the loss function L (ρ).

During back-prop, we adopt straight-through estimator (STE)
that directly passes the noisy gradient ∂L (ρ)

∂ρ
to the theoretical

noise-free path, i.e., ∂L (ρ)
∂ρ
−→ ∂L (ρ)

∂ρ ′ . Then, this estimated noisy
gradient will be used to calculate derivatives for all parameters
∂L (ρ)

∂θ
= ∂L (ρ)

∂ρ ′
∂ρ ′

∂θ
. The fundamental reason why this gradient

replacement works is that the quantum noise information can be
effectively coupled in the back-propagation procedure, i.e., the
noisy upstream gradient ∂L (ρ)

∂ρ
, to make the training process

fully aware of real quantum noises. Note that this property
requires the objective L (·) to be a nonlinear function of the
noisy ρ . Otherwise, ∂L (ρ)

∂ρ
will only contain noise-free terms.

This methodology synergistically leverages the noise awareness
of real quantum machines and the differentiability of classical
simulators for parallel, highly efficient noise-aware training.

We will illustrate this hybrid training idea with a concrete
example. In our experiments, we choose the loss function to
be L =

√
tr((ρ− ρ̂)2), then ∇θ L = tr

(
(ρ−ρ̂)

L
∂ρ ′

∂θ

)
. After the

parameter update, the state becomes

ρt+1 = ρt −∑
θ

η

Lt
tr
(
(ρt − ρ̂)

∂ρ ′

∂θt

)
∂ρ

∂θt
+O(η2), (1)

then the loss function L 2
t+1−L 2

t becomes

−2∑
θ

η

Lt
tr
(
(ρt − ρ̂)

∂ρ ′

∂θt

)
tr
(
(ρt − ρ̂)

∂ρ

∂θt

)
+O(η2). (2)

As long as ∂ρ

∂θt
≈ ∂ρ ′

∂θt
and the learning rate η is small enough,

the two tr(·) operators will have the same sign with high
probability and Lt+1 < Lt .

We further compare hybrid training approximated gradients
with the real gradients estimated by parameter shift to show
experimental evidence of our method’s effectiveness. We build
a 3-Q ansatz with 2 RX gates on qubits 0 and 2 and an RY gate
on qubit 1, followed by three RZX gates connecting qubits 0 and
1, 1 and 2, 2 and 0. After each training step, we compare the
cosine similarity of gradients between the two methods and we
find that the similarities are always higher than 0.95. Therefore,
our method can provide accurate noise-aware gradients while
reducing the O(#parameters) circuit executions in parameter
shift to O(1) complexity per round.

The ResilienQ is a plug-and-play approach. We note that our
noise-aware gradients may not be necessary at the beginning of
the training when parameters are far from convergence. Thus,
in real experiments, we can combine this noise-aware training
with pure classical training by first training the parameters
to convergence in a simulator and then performing parameter
fine-tuning using noise-aware training to reduce the cost of
running on real machines. Furthermore, by replacing the loss
function, our method can be used for other variational quantum
algorithms to further boost performance.
Hardware Efficient and Pulse-Level Ansatz of ResilienQ.
As discussed in the previous subsection, ResilienQ requires
no assumption on the ansatz structure. It applies to all kinds
of quantum operations with analytical formulations, while the
parameter shift rule is only narrowly applicable to gates whose
unitary has a structured eigenvalue [28]. Therefore, to avoid
the additional overhead when compile the circuit to actual
hardware, we firstly propose to use hardware-efficient ansatz
which respects the hardware connectivity map as in Fig. 4(a)
and (b). The gates are also the native gates on hardware.

We further propose pulse-level ansatz. Pulse-level control
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introduces more parameters compared to gates, which enables
abundant opportunities for a more compact ansatz [11]. We
can generate two more parameterized basis gates, the RX(θ)
and RZX(θ) gates which are shown in Fig. 5, without any
calibration cost using pulse level control. To implement RX (θ )
from existing calibration data, we retrieve the pulse shape of the
pre-calibrated X gate and adjust the pulse amplitude by setting
the area under the curve proportional to θ . According to the
basic principle of quantum dynamics, it is an approximation of
RX (θ ). Similarly, we retrieve the pulse shape of the pre-
calibrated CR, and adjust the area under it to implement
RZX(θ) for any θ . Using a native pulse gate set has several
benefits. An arbitrary single qubit rotation will be decomposed
to up to 5 native gates for IBM’s default implementation
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Fig. 6. Visualization of several target states.

(RZ,SX,RZ,SX,RZ). However, with native pulse gates, we can
reduce this number to 3 (RZ,RX,RZ) [12]. With regards to
RZ gates, the entanglement operation between qubits can be
precisely controlled. Thus, the circuit requires shorter runtime
and has more parameters with better expressivity.

Changing the amplitude of the pre-calibrated pulse only
provides an approximation of rotation gates. Due to the
imperfection of classical control and the influence of higher
energy-level in superconducting quantum computers, the system
is not entirely linear [9]. For example, the amplitude of
SX might not be exactly half that of the X gate. In IBMQ
Jakarta, the pulse amplitude of SX and half the amplitude of
X has 0.9% difference introducing a detectable coherent error
when simply adjusting the pulse proportionally without fine-
tuning. Thankfully, our noise-aware training method in III can
automatically correct these coherent errors.

IV. EVALUATION

A. Evaluation Methodology

Benchmarks. Four categories of representative target states
with 4 and 5 qubits are utilized, encompassing arbitrary states,
partial differential equation (PDE) states, quantum machine
learning (QML) states, and quantum error correction (QEC)
codewords. Arbitrary states are generated following the uniform
(Haar) measure. PDE states are real-valued states encoded
into the amplitude of the basis states that are of interest to
studying solving PDE by a variational quantum algorithm,
such as the sine wave and the Gaussian distribution. The QML
state encodes a classical MNIST hand-writing digit image [21]
into the state vector via amplitude encoding [30], with the
image being down-sampled, flattened, and normalized as the
state. For the 5-qubit scenario, quantum error correction (QEC)
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Table 2-1

Qiskit Baseline + Readout Error 
Mitigation

+ Topology-Aware 
Ansatz

Geneva  
State0

0.04006325571 0.5483163521 0.7591644325

Geneva  
State 1

0.03807040285 0.593173879 0.7347230516

Hanoi  
State 0

0.04609702823 0.6499760191 0.7250727511
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State 1

0.03870911619 0.6801224087 0.7296539326
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State 2

0.02901582284 0.7028975043 0.7609152122
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State 3

0.04031242971 0.7313078718 0.7741608676
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0.03783793789 0.6810103653 0.7665510418
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Geneva  
State 1

0.03136476056 0.5956102178 0.7580593383

Hanoi  
State 0

0.0827839261 0.6996569829 0.7854214609
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State 1
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Hanoi  
State 1
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Fig. 7. ResilienQ using topology-aware ansatz with CNOT gates achieves the highest fidelity on various real machines for a number 4-Q target states when
compared with the Qiskit baseline. Evaluated on real machines.

Table 2

Noise-Unaware 
Gradient-Free

Noise-Unaware 
Param-Shift

Noise-Unaware 
Back-Prop

Noisy-Simulator 
Gradient-Free

Noisy-Simulator 
Param-Shift

Noisy-Simulator 
Back-Prop

Real Machine 
Gradient-Free

Real Machine 
Param-Shift

4-Qubit Arbitrary 
State 0

0.7685 0.72 0.7173 0.7516 0.7723 0.73 0.7866 0.7928 0.839
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0
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Fig. 8. ResilienQ compared with eight other variational state preparation methods. ResilienQ achieved the highest fidelity for all four tasks on real machines.

codewords for the 5-qubit error correction code are also tested
[20]. Fig. 6 shows the amplitude distributions of chosen states.

Hardware-Efficient and Pulse Ansatz design. The first
step of variational methods is ansatz design. Fig. 4 shows
the designs of our hardware-efficient ansatz. The basic unit
of the ansatz is a 2-Q block shown in Fig. 4(a), inspired
by [25]. In our experiments, we use the RZX gate as the
2-Q entangling gate on IBM machines that support pulse
controls and CNOT gate on other IBM quantum machines.
The blocks are only applied on neighboring qubits with direct
connections to avoid any additional compilation overhead
such as SWAP insertions. To generate RZX(θ) gates, we
use Qiskit’s RZXCalibrationBuilder and implement
our own RXCalibrationBuilder accordingly for RX(θ)
gates. In addition to these two additional transpiling arguments,
we also specify the virtual to physical qubit mapping, so our
topology-aware ansatzes will work as expected. All the other
options are set to Qiskit’s default.

Training and Tomography setups. We use Adam optimizer
with learning rate 5×10−3. The loss function is

√
tr((ρ− ρ̂)2),

where ρ is the target density matrix and ρ̂ is state generated
from the ansatz. We train the ansatz for a total of 550 steps. For
the first 500 steps, ρ̂ is obtained from a classical simulator, so
the training is noise unaware; for the last 50 steps, the training
is noise aware, and ρ̂ is obtained from the tomography results.
Unless otherwise stated, we use classical shadow tomography
with all the bases measured to improve the accuracy of
tomography. That is 34 bases for 4-Q states and 35 bases

TABLE I
RESILIENQ CAN OUT-PERFORM ARITHMETIC DECOMPOSITION.

Fidelity Arbitrary PDE QML Avg.

Mottonen [4], [29] 0.156 0.175 0.269 0.200
Mottonen+SABRE [4], [22], [29] 0.099 0.401 0.299 0.266

Qiskit [17] 0.176 0.277 0.481 0.311
Qiskit + SABRE [22] 0.262 0.266 0.626 0.385

Ours 0.777 0.713 0.718 0.736

for 5-Q states. For each basis, we repeat for 1024 shots. Due
to limited shots, the estimated fidelity has a standard deviation
of about 0.006 according to our simulations.

B. Experiment Results

Variational v.s. Arithmetic. As a baseline, we compare
ResilienQ to the initialize method provided by Qiskit [1],
which is the only integrated arbitrary state preparation
method in the Qiskit library. The initialize function
in Qiskit is implemented based on an analog of Quantum
Shannon Decomposition [34]. We transpile the state prepa-
ration circuits generated by both methods with the highest
optimization_level=3.

Fig. 7 shows the measured state preparation fidelity of
ResilienQ on 3 kinds of states and 6 quantum machines with no
pulse supports for 4 qubits and 5 qubits, respectively. Arithmetic
decomposition tests the Qiskit baseline; Noise-unaware VQSP
tests the classically trained VQSP, and ResilienQ is trained with
real machine noise. For the tested 4-Q states, ResilienQ can



Table 2

Arithemetic 
Decomposition 
(Qiskit)

Pulse-Level VQSP                           

Guadalupe 
State 0

0.0943073768 0.6953118695 0.7609730606

Guadalupe 
State 1

0.1284780746 0.6291042916 0.7153136827

Jakarta 
State 0

0.1199902749 0.8507731067 0.9348281882

Montreal 
State 0

0.3668202965 0.638088268 0.7492297563

Montreal 
State 1

0.2544739959 0.5567106603 0.7424539232

Guadalupe 
State 0

0.2599286208 0.7388620178 0.792949806

Guadalupe 
State 1

0.2667064597 0.7245626494 0.7580324087

Jakarta 
State 0

0.3475744264 0.892545697 0.9621422693

Montreal 
State 0

0.6389629494 0.7355678621 0.7780491128

Montreal 
State 1

0.4045921682 0.6369022927 0.7930375984

Guadalupe 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0.4785344343 0.7244008739 0.7942080201
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Jakarta 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0.3280366569 0.7774193517 0.8890743587
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Table 2-1

Arithemetic 
Decomposition 
(Qiskit)

Pulse-Level VQSP                           

Guadalupe 
State 0

0.04215389028 0.3987263673 0.5064281181

Guadalupe 
State 1

0.03685023085 0.4569180585 0.5320820654
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Fig. 9. On three machines, IBMQ Guadalupe, IBMQ Jakarta, and IBMQ Montreal, with pulse supports, ResilienQ using the topology-aware ansatz with RZX
gates achieves the highest fidelity for various 4-Q states when compared with the Qiskit baseline. Evaluated on real machines.
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Fig. 10. Training curves for the last 50 steps with the noise-aware loss for
hardware-efficient ansatz using native pulse and hardware-efficient ansatz using
the non-native CNOT gates. The first 500 steps are not included.

achieve 83% fidelity and a 50% improvement on average over
the Qiskit baseline. The improvement is even more significant
for 5 qubits. The Qiskit baseline averages at 5% fidelity while
ResilienQ achieved 77% fidelity – a 72% improvement over
the Qiskit baseline. These results demonstrate that, as we
speculated in previous sections, VQSP algorithms perform
much better than AD ones on NISQ. Moreover, ResilienQ can
further improve the fidelity achieved by conventional VQSP.
Additional arithmetic decomposition algorithm and error
mitigation. We perform additional baseline tests with the
Mottonen algorithm [29] implemented by PennyLane [4] as
an alternative baseline algorithm to the Qiskit baseline, as
well as SWAP-based BidiREctional (SABRE) heuristic search
algorithm [22] included by the Qiskit library used to optimize
the qubit mapping to reduce SWAP gate count. SABRE was
implemented on both the Qiskit baseline and the Mottonen
baseline. As shown in Table I, ResilienQ outperforms Mottonen
and Qiskit on average by 53.6% and 42.5% respectively. Even
after applying SABRE, ResilienQ still outperforms Mottonen
and Qiskit on average by 47.0% and 35.1%.
Comparison to other optimization methods. As introduced in
Fig. 1, we compare ResilienQ with all eight other optimization
methods. We choose the state-of-the-art optimizer, the Nelder-
Mead method provided by scipy with the default setting [10]
for gradient-free optimizations, and for parameter shift, we
choose the learning rate to be 5−3. As shown in Fig. 8,
ResilienQ achieves the highest fidelity for all four tasks tested
and outperforms the second-best variational approach by 6%
on average. This result shows that, with the highest training
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Fig. 11. The coherent and incoherent errors of four state preparation tasks.
Our noise-aware training method significantly reduces coherent errors.

efficiency and noise-robustness, ResilienQ is better than all
other variational state preparation.

Pulse ansatz. Fig. 9 shows the ResilienQ performance for 4-Q
states and 5-Q states on three machines with pulse supports
using RZX blocks. We use Qiskit as our baseline here as well.
ResilienQ on pulse level VQSP improves the average fidelity
by 8% and 10% for 4-Q and 5-Q, producing final fidelities of
79% and 61%, respectively. Furthermore, ResilienQ with pulse
outperforms the baseline by 42% and 57% for 4-Q and 5-Q,
respectively. An interesting phenomenon is that sometimes the
noise-free trained circuit compiled to non-native basis gates
performs better than that compiled to native pulse gates. This
might be caused by the additional coherent error introduced
by tuning pulses. Nevertheless, pulse ansatz enables better
optimization space so the final fidelity can be higher. Fig. 10
shows the fidelity of noise-aware training with gate ansatz
v.s. with pulse ansatz for two arbitrary states on the IBMQ
Montreal machine. We can clearly see that the fidelity of the
pulse ansatz surpasses the non-native gates in the middle of
training. This shows that by combining pulse ansatz and the
noise-aware gradients together, we can reduce both coherent
and incoherent errors.

Where does our advantage come from? The noise-aware
training part of our framework is targeted to eliminate coherent
errors by fine-tuning the parameters. To show this, we separate
the coherent error from the incoherent error in Fig. 11. For
the two states, our method can reduce the coherent errors by
at least 62% and up to 86%. For incoherent errors, ResilienQ
can reduce it by 7% to 39%.



V. CONCLUSION

We present ResilienQ, a noise-aware training framework
for robust quantum state preparation. It uniquely blends
real-machine noise and simulator data for noise-aware back-
propagation, enhancing both parameter robustness and training
efficiency. It also leverages hardware-efficient and pulse-level
ansatz for higher reliability. Evaluated on 10 real quantum
platforms, ResilienQ reduces coherent errors by over 7.1× and
improves fidelity by 50% and 72% over baselines, paving the
way towards robust state preparation.
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