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ABSTRACT
The application of artificial intelligence (AI) to scientific domains has
witnessed significant growth, notably in the realm of solving partial
differential equations (PDEs). Customized neural network models,
including convolutional neural networks (CNNs), physics-informed
neural networks (PINN), DeepONet, and Fourier neural operator
(FNO), have emerged as promising tools for addressing complex
scientific computing tasks. Despite their increasing prevalence, the
robustness of these models against non-ideal noises and errors in
training data remains a relatively unexplored area of inquiry. Such
robustness is worth investigating as it ultimately impacts the conver-
gence, training cost, and generalization of the model. In this paper,
for the first time, we comprehensively investigate the data robust-
ness of NN-based solvers on different benchmarks. Specifically, we
target a state-of-the-art data-driven model, Fourier neural opera-
tor, and evaluate its robustness on Burgers’ equation, Darcy flow,
Navier-Stokes equation, and frequency-domain Maxwell equations,
considering training data errors due to non-ideal simulation and
data storage process, e.g., random Gaussian noises, low-resolution
data downsampling errors, and numerical quantization errors. We
believe this comprehensive benchmarkingwill contribute to a deeper
understanding of the learning dynamics and robustness of AI-driven
approaches in PDE solving.

1 INTRODUCTION
Recent research has shown a growing interest in applying artificial
intelligence (AI) to scientific domains [2, 4, 5, 7, 8, 10, 12, 13]. This
interest has led to the development of tailored machine learning
models for mapping within function spaces, specifically for solving
partial differential equations (PDEs) in scientific computing tasks
such as global weather prediction [9], turbulent flow modeling, and
optical device simulation [1, 2, 6, 11].

In comparison to conventional finite element-based numerical
solvers, customized neural networks, including convolutional neural
networks (CNNs), physics-informed neural networks (PINN) [10],
DeepONet [7, 8], and Fourier neural operator (FNO) [4, 5, 12, 13],
exhibit substantial speed improvements and competitive solution
quality. However, these data-driven or physics-informed neural net-
work models often require a substantial volume of high-quality
training data.

Obtaining such high-quality training data, particularly for data-
driven models with supervised learning, entails significant costs
associated with simulating high-resolution and high-fidelity ground-
truth PDE solutions. The resilience of these models against non-ideal
noises or errors in training data remains an under-explored area of
investigation. Given the importance of high-quality simulation data
to neural PDE solvers, the data robustness is worth investigating as
it directly impacts the training set acquisition cost, model training
cost, training convergence, and model generalization.
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Figure 1: Overview of the robustness investigation for neural
PDE solver with noisy training data.

For the first time, this paper aims to benchmark the data ro-
bustness of NN-based solvers. Among all neural PDE solvers, we
target the state-of-the-art data-driven neural operator, Fourier neu-
ral operator (FNO), as a case study and evaluate its data robust-
ness on Burgers’ equation, Darcy flow, Navier-Stokes equation, and
frequency-domain Maxwell equations, considering training data
errors including random Gaussian noises, simulation data down-
sampling errors, and numerical quantization errors. We visualize
and quantitatively demonstrate the relative errors when perturbing
the training data quality with noise injection. To investigate the
impacts on the model robustness, we monitor the training dynamics
by comparing the noise-free model gradients with the degraded
ones calculated on noisy training data, which serve as a good indi-
cator of the impacts on the final model performance. Furthermore,
we compare the training error and inference error to finally eval-
uate the model generalization across different benchmarks under
various noise injection intensities. We draw the conclusion that high-
resolution data with low-frequency field/flow patterns demonstrate
better tolerance to our injected data errors, especially the down-
sampling error. Regularization techniques, e.g., dropout and data
augmentation, improve the smoothness of the loss landscape, thus
enhancing the resilience of neural PDE solvers against non-ideal
training data errors. We believe this comprehensive benchmarking
will contribute to a deeper understanding of the learning dynamics
and robustness of AI-driven approaches in PDE solving and provide
insights for future data-efficient and reliable neural-network-based
PDE solvers.



Maxwell

0.2 0.15 0.11 0.07 0.05 0

Darcy

Navier-

Stokes

Burgers

Noise std.

IdealNoisy

0.09 0.03

Figure 2: Visualization of the effect of Gaussian errors on the target PDE solutions𝑈 with different noise intensities.
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Figure 3: (a)(c)(e)(g) Training input data and target NMAEwith different Gaussian noise intensities. (b)(d)(f)(h) Gradient alignment
(angular similarity) when training FNO on clean and noisy data with different noise intensities.

2 ROBUSTNESS BENCHMARKING
We evaluate the impact of random Gaussian noises, data downsam-
pling errors, and quantization errors on the training performance
and generalization to test dataset. We focus on the Fourier neural
operator (FNO) model with 4 different representative PDE solving
tasks, including frequency-domain Maxwell equations, Darcy flow,
Burgers equation, and Navier-Stokes equations. Note that the errors
𝜖 are assumed to be pre-injected onto the training input 𝐴← 𝐴 + 𝜖
and target field/flow𝑈 ← 𝑈 +𝜖 in a static fashion to mimic the non-
ideality when obtaining the noisy training dataset D̃𝑡𝑟𝑛 = {𝐴,𝑈 }
from the clean dataset D𝑡𝑟𝑛 = {𝐴,𝑈 }, not dynamically injected
during each learning step. This helps to benchmark the robustness
of the neural PDE solvers against low-quality training examples
and their ability to generalize the learned mapping to noise-free
high-quality queries during inference D𝑡𝑒𝑠𝑡 .

2.1 Robustness to Random Noises
We first explore the impact of random Gaussian noise on the train-
ing input data and target field/flow, which emulates uniform high-
frequency errors existing in the training examples. On normal-
ized target field/flow, we randomly inject static Gaussian noises
to the examples before training to create a noisy training set, i.e.,
𝜖 ∼ N(0, 𝜎2).
Training Data Error. We sweep the Gaussian noise standard deriva-
tion from 0.03 to 0.2 and visualize the resultant training target
field/flow in Fig. 2. We can see the overall global pattern of the
field or flow does not change significantly, while the noises only
corrupt the local fine-grained features. In Fig. 3, we quantitatively
show the normalized mean-absolute error (NMAE) as the relative
discrepancy compared to the noise-free data, i.e., ∥𝐴−𝐴∥1/∥𝐴∥1 for
input data and ∥𝑈 −𝑈 ∥1/∥𝑈 ∥1 for target field/flow with different
noise intensities. In general, the Gaussian noises will lead to 2%-30%
errors. It shows a much higher relative error on the electromagnetic
field in the frequency-domain Maxwell equations since there are
quite some regions with very low light intensities.
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Figure 4: Train and test NMAE of FNO on Maxwell, Darcy, Burgers, and Navier-Stokes simulation tasks with various Gaussian
noise std.

Training Dynamics. To deeply investigate how these random noises
affect the training performance of the neural PDE solver, we compare
the alignment of the gradient when training the same model with
noise-free and noisy training examples. We use angular similarity
as the metric for the gradient alignment, i.e.,

Similarity = 1− arccos
( ∇𝜃L(D𝑡𝑟𝑛) · ∇𝜃L(D̃𝑡𝑟𝑛)
∥∇𝜃L(D𝑡𝑟𝑛)∥ · ∥∇𝜃L(D̃𝑡𝑟𝑛)∥

)
/𝜋. (1)

In Fig. 3, we show the gradient alignment for each epoch averaged
across all steps in one epoch. With larger noises, we observe more
gradient misalignment across all benchmarks. As training proceeds,
the gradient discrepancy becomes larger, which represents that the
noisy training data can guide the model to learn the mapping at
the beginning but still has different minima in the loss landscape in
the later optimization stage compared to its noise-free counterpart,
which is the fundamental reason for the reduced inference accuracy
for the neural PDE solvers. An interesting observation is when com-
paring Darcy flow and Burgers equations. Training data of Burgers
equation have larger NMAE both for inputs and target fields than
that of Darcy flow. However, the noisy gradient shows high align-
ment with the noise-free ones with >0.9 angular similarity, while
the alignment metric in Darcy flow drops to 0.8. One of the reasons
is that the inputs/solutions of Burgers equation are 1-D length-8K
vectors shown in Fig. 2, which is much easier to learn than the Darcy
flow. Therefore, the random high-frequency Gaussian noise will not
corrupt the information too much, which is still enough to train the
NNs toward the smooth minima in the loss landscape. In contrast,
more complicated fields, especially Maxwell equations, suffer from
low gradient alignment since the high-frequency periodic wave
pattern is more sensitive to Gaussian noises.
Model Robustness and Generalization. Besides the training dynam-
ics investigation, we demonstrate the inference performance of the
trained Neural PDE solver to evaluate its generalization and ro-
bustness to training data noises. Figure 4 shows the training and
test errors on 4 benchmarks with different Gaussian noise intensi-
ties. On Darcy, Burgers, and Navier-Stokes equations, the NMAE
increases simultaneously on the noisy training set and clean test
set, where the prediction performance on Burgers equation suffers
from significant degradation with even small noises. It is worth
noting that we observe almost the same inference performance on
the Maxwell equations, even with degraded training performance.
This can be attributed to the regularization techniques applied to
the Maxwell training process to avoid overfitting. Due to the appli-
cation of superposition-based Mixup for data augmentation [2] and
dropout layers before the final prediction head, the FNO model for
Maxwell equations has better generalization and shows significantly

higher tolerance to random Gaussian noises on the training data
even when with large gradient misalignment we observe in Fig. 3(b).

2.2 Robustness to Data Downsampling Error
Another possible error source is the simulation data downsam-
pling error. Typically, the raw simulation data is high-resolution,
which takes hundreds of GB spaces to store the data, which be-
comes intractable when we require more data with higher dimen-
sions. Therefore, the simulated training data will be downsampled
to smaller sizes that can be efficiently fed into the neural network
for mini-batch-based training flow. This downsampling process will
inevitably introduce errors to the training examples.
Training Data Error. Different from the element-wise Gaussian noises,
the downsampling errors are structural and related to the local pat-
terns. As shown in Fig. 5, we adopt bicubic interpolation to 2D
images and linear interpolation to 1D sequences by different scaling
factors shown on the top of the figure and scale it back to its original
resolution before feeding into the NNs to emulate the downsam-
pling error, i.e.,𝑈 = Interp1/𝑠

(
Interp𝑠 (𝑈 )

)
. In Fig. 6, for Burgers

with an 8K vector length and smooth patterns, the downsampling
introduces negligible errors (∼0 NMAE). For Navier-Stokes equa-
tions, the flow is of high resolution and shows good pixel-wise local
smoothness such that a 3× downsampling only leads to 4-8% relative
errors on input data and target flows.

However, for benchmarks like the 16×16 Darcy flow that already
has a relatively low resolution, further downsampling will signifi-
cantly increase the errors, e.g., 10-30%. Besides the case, another kind
of benchmark with high-frequency local features, e.g., oscillating
light wave in Maxwell equations, downsampling can be detrimental,
leading to almost 80% relative absolute error on the target opti-
cal fields. Typically, the pixel size is no shorter than 1/15 of the
wavelength in optical simulation [3]. An overly small downsam-
pling factor ruins the validity of Maxwell equations and all interfer-
ence patterns. In conclusion, for mid-resolution and high-frequency
flows/fields, downsampling errors will considerably deteriorate the
training data quality.
Training Dynamics. Figure 6 visualizes the training dynamics for
the first 10 epochs with different scaling factors. In general, the
gradient alignment shows the similar trends as the Gaussian noise
cases, more misalignments as training proceeds. For Burgers and
Navier-Stokes equations, the gradients are well-aligned. ForMaxwell
equations, due to the large downsampling errors, we observe large
angles between the noisy gradients and the noise-free ones. With 3×
downsampling, the gradients are almost orthogonal to each other
with a 90-degree angle. Unlike the pixel-wise Gaussian noises with
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Figure 5: Visualization of the effect of downsampling on the target PDE solutions𝑈 with different scale factors.
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Figure 6: (a)(c)(e)(g)Training input data and target NMAE with different downsampling scale factors. (b)(d)(f)(h) Gradient
alignment (angular similarity) when training FNO on clean and noisy data with different downsampling scale factors. Darcy
flow data is 16×16 in size, so we only investigate up to 2× downsampling.

0.1

0.3

0.5

0.7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

A
E

Scale Factor

Train error

Test error

0.00

0.05

0.10

0.15

0.20

0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

A
E

Scale Factor

1.6E-3

1.7E-3

1.8E-3

1.9E-3

2.0E-3

2.1E-3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

A
E

Scale Factor

0.14

0.15

0.15

0.16

0.16

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

A
E

Scale Factor

Maxwell Darcy Burgers Navier-Stokes

(a) (b) (c) (d)

Figure 7: Train and test NMAE of FNOonMaxwell, Darcy, Burgers, andNavier-Stokes simulation taskswith various downsampling
scale factors.

uniform intensity, this structured downsampling error misled the
model towards a far-away solution space with a high bias compared
to the noise-free counterpart.
Model Robustness and Generalization. We observe almost the same
test performance on Burgers due to its negligible downsampling
error. On Maxwell equations, due to the large gradient misalign-
ment, we observe worse inference performance with smaller scaling

factors. Even dropout and data augmentation cannot help regain
the robustness. Unlike the pixel-wise Gaussian perturbations that
only lead to higher variance without a systematic bias and thus
can be tolerated by a locally smooth loss landscape, the regional
correlated errors from downsampling cause a systematic bias on
the data distribution and thus cannot be fully countered by regular-
ization techniques. A counterintuitive experimental result happens



Maxwell

int4 int5 int6 int8 int16 bfp16 fp32

Darcy

Navier-

Stokes

Burgers

Bitwidth

IdealNoisy

int7 fp16

Figure 8: Visualization of the effect of quantization on the target PDE solutions𝑈 with different bitwidths.
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Figure 9: (a)(c)(e)(g) Training input data and target NMAE with different bitwidths. (b)(d)(f)(h) Gradient misalignment (angular
similarity) when training FNO on clean and noisy data with different bitwidths.
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Figure 10: Train and test NMAE of FNO onMaxwell, Darcy, Burgers, and Navier-Stokes simulation tasks with various quantization
bitwidth.

on Navier-Stokes equations. The small (4-8%) downsampling error
consistently improves the PDE solution prediction quality, as shown
in Fig. 7(d). This is not a regularization mechanism, as the training
performance also gets improved. The smoothing effects of bicubic
interpolation help the model to better converge.

To summarize, downsampling errors are detrimental to high-
frequency patterns. The local smoothing effects from downsampling

might help the NN PDE solver better converge and thus improve
both training performance and generalization on the test dataset.

2.3 Robustness to Numerical Quantization Error
Quantization is a common error that happens in high-precision,
high-dynamic range simulation tasks. Typically, double precision or
complex-128 is used as the default bitwidth for numerical simulation,



which casts significant storage and processing cost. In this section,
we explore how quantization affects the simulation data quality and
the training/inference performance on 4 benchmarks.
Training Data Error. In Fig. 8, we can see how discretization im-
pacts the solution quality. We evaluate representative floating point
representations, including FP16 and BFP16, widely used in efficient
NN training/inference, and integer representations with various
bitwidths. For integer quantization, we adopt a min-max quantizer
to uniformly discretize tensors 𝑈 within (𝑈𝑚𝑖𝑛 , 𝑈𝑚𝑎𝑥 ). Visually,
low-bit quantization has only subtle impacts on global patterns. For
pixel-wise features, quantization perturbs the field value but main-
tains the relative magnitude. There are no significant differences
across four benchmarks, all leading to 4-8% relative absolute errors
compared to float32.
Training Dynamics. From the gradient alignment analysis in Fig. 9,
only Maxwell equation benchmark shows high sensitivity to quanti-
zation errors, while other benchmarks all maintain high gradient
alignment. It is worth noting that Maxwell equations have complex-
valued scalar fields in the frequency domain. Quantizing real and
imaginary parts separately, though maintaining relative magnitude
patterns, can lead to significant phase rotation since a small real
component or imaginary component does not mean small intensity,
which partially explains the large angles between the noise-free and
noisy parameter gradients. Besides, due to a larger range and fewer
fraction bits, BFloat16 shows worse gradient fidelity than Float16
as it introduces more errors to small field values, which are also
important to the overall phase information.
Model Robustness and Generalization. As shown in Fig. 10, we ob-
serve significant impacts on the training error on Maxwell equations
with 4-bit quantization. Besides the gradient misalignment, another
important reason is the intrinsic sensitivity of Maxwell equation
solutions to the input variables, i.e., material permittivity 𝜖 . A subtle
change on the 𝜖 will lead to a significant change in the resultant
fields. Therefore, the large quantization error on the input variable 𝜖
makes it difficult to learn. While on inference, the model still main-
tains high prediction fidelity, which shows that the model has good
robustness to training quantization error. The regularization and
data augmentation techniques applied to Maxwell equation cases
improve the model’s generalization, such that models trained on
low-bit data still perform well on high-precision test data. In general,
across different benchmarks, quantization with higher than 6-bit has
almost negligible impacts on the training/inference performance,
which justifies 8-bit data storage to save memory and disk space in
training example collection.

3 CONCLUSION
In this paper, we conduct a comprehensive evaluation of the robust-
ness of several PDE-learning models, including FNO and DeepOnet,
when applied to Burgers’ equation, Darcy flow, Navier-Stokes equa-
tions, and Maxwell’s equations. Our evaluation takes into account
training data errors arising from non-ideal simulations and data
storage processes, such as random Gaussian noises, low-resolution
simulation errors, and numerical quantization errors. We aspire for
our benchmarking efforts to illuminate the critical concern of model
robustness and provide key insights for future data-efficient and
high-reliability neural network-based PDE solvers in the realm of
AI for scientific applications.
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