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ABSTRACT
Macro placement is a critical phase in chip design, which becomes
more intricate when involving general rectilinearmacros and layout
areas. Furthermore, macro placement that incorporates human-like
constraints, such as design hierarchy and peripheral bias, has the
potential to significantly reduce the amount of additional manual
labor required from designers. This study proposes a methodology
that leverages an approach suggested by Google’s Circuit Train-
ing (G-CT) to provide a learning-based macro placer that not only
supports placing rectilinear cases, but also adheres to crucial human-
like design principles. Our experimental results demonstrate the
effectiveness of our framework in achieving power-performance-
area (PPA) metrics and in obtaining placements of high quality,
comparable to those produced with human intervention. Addition-
ally, our methodology shows potential as a generalized model to
address diverse macro shapes and layout areas.

CCS CONCEPTS
• Hardware→ Placement; Physical design (EDA).
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1 INTRODUCTION
Placement of macros is a vital and time-consuming process in chip
design and substantially affects the power, performance, and area
(PPA) metrics. The increasing demand for customized ASIC chip
designs has complicated this task, especially for rectilinear, i.e.,
non-rectangular, chip layouts and macro shapes. Moreover, devel-
opment of macro placement algorithms that allow various design
constraints, including human-like rules, is challenging and time-
consuming.

Classical methods, such as partitioning-basedmethods and heuris-
tic methods, were widely adopted in macro placers due to their
straightforwardness and stability. However, they become time-
consuming when dealing with advanced technology nodes and
large-scale netlists. Modern macro placers using analytical meth-
ods have shown efficiency in representing highly complex objective
functions and handling large-scale netlists. However, they lack in-
sights for dealing with the ever-growing diversity of chip designs,
continually restarting the process rather than building on prior
lessons. Learning-based methods can advance this process because
the model learned from past designs so it can predict better place-
ments for unseen designs. Specially, a recent reinforcement learning
(RL)-based macro placer proposed by Google [21] has shown po-
tential as a generalized placer to rapidly predict high-quality macro
placements for new, unseen designs.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Our methodology, leveraged circuit training (A-CT)-based macro
placement, represents an advance to the learning-based approach,
but still enjoys advantages from both conventional approaches. Par-
ticularly, our placer uses a clustered netlist generated by a grouping
engine that uses partitioning-basedmethods to reduce a large netlist
and to maintain some of design hierarchy inherent in the netlist.
The placer uses RL to train a deep neural network (the agent) to
predict placements for unseen designs and to provide flexibility
in dealing with rectilinear layout areas and macros. The placer
output is strengthened by a simulated annealing (SA)-based place-
ment engine, which aims for refinements to achieve human-like
placement quality by satisfying additional constraints. Finally, our
RL-based placement engine trains the agent to maximize the total
discounted reward function, which serves as a multiple objective
function that integrates various analytical metrics in chip design.
Our key contributions are as follows.

• We propose enhancements to CT-based macro placement
including a core RL-based engine that is supported by con-
ventional methods for grouping the netlist, and fine-tuning
placement to account for human-like constraints (such as
placing macros based on design hierarchy guided from the
netlist, placing macros at the periphery, and pin accessibility
constraints).

• We present methods to unify macro placement using macros
and layout areas for general rectilinear shapes. To the best of
our knowledge, this is the first work dealing with rectilinear
layout areas and macro shapes using RL.

• We propose an enhanced RL model and demonstrate that
our RL-based placer can use fewer resources than previously
reported and still achieve competitive PPAmetrics both from
proxies and standard commercial tools.

2 PRELIMINARY
2.1 Review of Previous Work
Non-rectangular macro and areas placement.Macros can have
arbitrary shapes, and many studies [6, 16, 20, 22] have proposed al-
gorithms to place rectilinearmacros, a special kind of non-rectangular
macros with only 90 degrees angles. Given the increasing interest
and investment in quantum computing, non-rectangular macro
placement is likely to continue to be an important area of research
in chip layout[4].
Methods for macro placement.Macro placement methods are
classified into three categories: partitioning-based methods, heuris-
tic methods, and analytical methods. Partitioning-based methods
[5, 23] use a divide-and-conquer strategy to recursively divide the
chip areas and netlist into smaller sub-regions and sub-netlists and
then assign each sub-netlist to a sub-region via min-cut objective
functions. Partitioning-based methods are scalable, but the min-cut
objective function has the drawback that it does not take explic-
itly into account common performance metrics such as wirelength,
density, and congestion. Heuristic methods [8, 28] can consider per-
formance metrics in their optimization functions and potentially
reach a good placement. However, they are time-consuming and
struggle to deal with very large circuit netlists. Analytical meth-
ods [7, 9, 19] model the placement problem using mathematical
techniques and use optimization methods to improve an objective

function. Modern analytical methods can be efficient and scalable
via parallelization on multi-threaded CPUs [9], and by utilizing
multiple GPUs [18]. In addition to these three classical categories,
learning-based methods [11, 17, 21, 24, 26] have been an active topic
in academic research in recent years because of their potential to
create a generalized placement model “averaged” from many de-
signs. The Google method[21] trains a graph neural network (GNN)
agent using an RL algorithm to place macros, and the trained agent
has been shown to adapt well to unseen designs.
Human-like constraints. Physical designers consider various
design features to produce high-quality placements. Some placers
[12, 13, 27] locate macros following the design hierarchy derived
from the RTL model or directly from the cell-level netlist. Other
placers locate macros near the periphery of the area to minimize the
effects of wire resistance on performance [12, 13]. Pin constraint
awareness [13] is also critical in macro placement to ensure that
macros are placed in locations that meet their pin connectivity
requirements.

2.2 Problem Formulation
We formulate the macro placement problem as a sequential Markov
decision process (MDP) in which an RL agent sequentially places𝑇
macros (M0 toM𝑇−1) onto a layout area or chip canvas (we use
both terms). The problem has the following components.

• States: 𝑠𝑡 encodes the observed information collected from
the RL environment at the current placement step 𝑡 .

• Position action: 𝑎𝑃𝑡 is drawn from an action space A𝑃 , rep-
resented by 𝑁𝑚𝑎𝑥 × 𝑁𝑚𝑎𝑥 discrete actions (𝑁𝑚𝑎𝑥 is set to
128) that correspond to all possible locations on the chip
canvas where the current macro could be placed without
overlapping with already placed elements. However, to re-
duce the search space, the canvas is generally divided into
smaller areas of 𝑁𝑟 × 𝑁𝑐 grid cells, where 𝑁𝑟 are the grid
rows and 𝑁𝑐 are the grid columns. 𝑁𝑟 and 𝑁𝑐 should not be
greater than 𝑁𝑚𝑎𝑥 .

• Position mask:𝑚𝑃
𝑡 is an 𝑁𝑚𝑎𝑥 × 𝑁𝑚𝑎𝑥 matrix with 0 or 1

entries that represent which positions are free for placement
(value 1) or occupied (value 0). Positions outside the chip
canvas are marked (masked) as unplaceable areas.

• Reward: the R is calculated at the end of a placement, mean-
ing once all macros and standard cell clusters have been
placed on the chip canvas. It is a negative weighted sum of
several proxy costs: wirelength (C𝑊 ), congestion (C𝐶 ), and
density (C𝐷 )

The RL agent modeled by the deep neural network is trained to
maximize an expected cumulative reward as follows:

J (𝜃 ) = E𝑝∼𝜋 (𝜃 )
[
R𝑝

]
, (1)

where 𝜃 represents the parameters of the RLmodel, and 𝑝 represents
episodes drawn from the policy distribution 𝜋 (𝜃 ). The placement
is constrained by the following four requirements: (1) macros and
layout areas can be rectilinear polygons [6, 16, 20, 22]; (2) macros are
placed in groups based on the design hierarchy (design hierarchy
bias); (3) macros are restricted to be placed near the periphery
(peripheral bias); (4) macros are placed so that pins are not blocked
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for their connections with other standard cells and macros (pin
accessibility).

3 METHODOLOGY
As shown in Figure 1, our framework consists of three distinct en-
gines designed to optimize the processes of standard cell and macro
grouping, macro placement, and post-processing placement. First,
the grouping engine groups millions of standard cells into several
clusters and classifies all the macros into groups based on the de-
sign hierarchy. It can be guided by human or automatically inferred
from the netlist (as we did not have access to the original RTL).
Second, the RL-based placement engine receives input from the
grouping engine and produces near-final placements. This engine
uses methods to handle rectilinear macros and layout areas, and to
satisfy constraints about the design hierarchy, and peripheral bias.
Third, the SA-based post-placement engine fine tunes the results
generated by the RL placement engine for better pin accessibility,
and dead-space minimization.

Circuit Netlist

Ini�al Placement
(Fixed core size, IO)

Macro Placement
(Our)

Standard-Cell
Placement

Clock Tree Synthesis

Rou�ng

5

…

choose 
a macro

shi�

flip

swap

sa�sfy
pin constraints

Figure 1: Our macro placer in physical design flow.

3.1 Grouping Engine
The grouping of standard cells is done in a similar way to Google
method [21], which utilizes hMETIS [15] as its underlying partition-
ing algorithm. Our main focus is on grouping macros, where we
allow for human guidance. When human guidance is not possible,
we propose an alternative method which analyzes the names of
all macros in the netlist and identifies the group information by
constructing a tree data structure composed of common sub-strings.
This is based on the expectation that names will reflect the original
hierarchy to some degree. Figure 2 illustrates the resulting tree
data structure, which consists of nodes that represent sub-strings
found in the macro names. To identify proper groups, a recursive
search procedure is implemented at each depth level of the tree,
such that all nodes in the same depth level are traversed. If a node
at a given depth level has more than one child, it is considered a
group. Otherwise, the search continues to deeper depth levels. In
this way, a list of unique groups are generated and used in the RL
placement engine.

A

B C D E

Depth 0

Root

F G H I K

M N O

Depth 1

Depth 2

Depth 3P Q
….

Depth N

Macro name: A/B/G/N

Sub-string
as

Group name

Figure 2: An example of tree data structure.

3.2 Deep RL-based Placement Engine
This engine takes the outputs of the grouping engine to initialize
the placement simulator (e.g., environment) in which it performs
algorithms to handle rectilinear macros in rectilinear layout areas.

3.2.1 Rectilinear Macros and Area Handling. We propose two al-
gorithms for handling the placement of rectilinear macros. The
first algorithm identifies non-placeable areas, and the second al-
gorithm decomposes each rectilinear shape (non-placeable areas
and rectilinear macros) into multiple rectangles as illustrated in
Figure 3. This representation allows the use of a grid-based masking
algorithm (Section 3.2.2) to work with “primitive”, i.e. rectangular,
blocks and maximize the use of the layout area.

non-placeable areas

1st algorithm 2nd algorithm

Rec�linear macro

2nd algorithm

Figure 3: Rectilinear macros and layout handling.

3.2.2 Masking Control Algorithm. Our next step is to control the
position mask to ensure that the currently placed macro adheres to
the design hierarchy and periphery bias. It is performed repeatedly
at beginning of each placement step, and it returns the position
mask (𝑚 𝑗 ) of the current macro to be placed (M𝑖

𝑗
). As illustrated

in Figure 4, if the macro is the first from its group, the position
mask is the boundary mask (𝑀𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ), which allows the macro
to be placed only by the closest peripheral grid cells. Beginning
with the second macro of a group, to increase pin accessibility and
follow the design hierarchy, the algorithm restricts the placeable
grid cells to be in close proximity to macros from the same group
that have already been placed. To do that, the algorithm loops
through all placed macros from that group and selects grid cells
with intersecting rows and columns according to the following
criteria.
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Figure 4: An illustration of the masking control algorithm.
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⌋), (2)

where 𝑥 ,𝑦 are the center coordinates and𝑤 ,ℎ the size of the macros,
and M𝑃 and M𝐶 are the placed macros and the current macro,
respectively. {𝑥𝑙𝑟M , 𝑦𝑙𝑟M } are left and right cells of the placed macros,
while {𝑥𝑡𝑏M , 𝑦𝑡𝑏M } are top and bottom cells. Intuitively, the selected
cells enable the edge of the current macro to align with the edges
of already placed macros.

3.2.3 Neural network model. Our neural network model (Figure
5) uses an Edge-GNN to encode the observed information sent
from the environment into a low-dimensional vector representa-
tion, enabling it to adapt to unseen data. Our proposal makes a
key contribution by incorporating additional information that sig-
nificantly enriches the macro and design features. Specifically, we
introduce three crucial elements: the group index, which identifies
the group to which a macro belongs; the pin side, which specifies
the side of the pin on placed macros; and the corner list, which
represents all points in clockwise order from the area of the macro
and layout area so that the rectangular and non-rectangular shapes
of macros and area can be unified.

Furthermore, as an additional advancement, we upgrade our
model to a two-head policy that allows the macro position and
orientation to be predicted simultaneously. Actions drawn from
the two-head policy create a joint distribution of two categorical
distributions that is updated via gradient descent. The PPO[25]
algorithm was chosen to train the RL agent because it is robust to
hyperparameters and works well with distributed training systems,
allowing to speed up the collection of simulation data.

3.2.4 Reward function. Our reward function R is defined as a neg-
ative weighted sum of four proxy costs as follows.

R = −(𝛼C𝑊 + 𝛽C𝐶 + 𝛾C𝐷 + 𝜔C𝐻 ) (3)

where C𝑊 , C𝐶 , and C𝐷 are the three common proxy costs of wire-
length, congestion, and density, respectively. The calculation of

wirelength cost, density cost, and congestion cost follows known
methods (see [21], [10] for example)in which the wirelength cost is
approximated as the normalized half-perimeter wirelength (HPWL);
the density cost is approximated as the average density of the dens-
est 10% of grid cells, and the congestion cost is approximated as
the average of the top 5% most congested grid cells. In addition
to these conventional proxy costs, we propose a novel proxy cost
C𝐻 , which is an extra proxy cost added to the reward function to
encourage closeness between macros in the same design hierarchy.
It is formulated as follows.

C𝐻 =
1
𝐺

𝐺∑︁
𝑔=0

∑
𝑖, 𝑗∈𝑁𝑔,𝑖≠𝑗 𝑑𝑖𝑠𝑡𝑖 𝑗∑

𝑖, 𝑗∈𝑁𝑔,𝑖≠𝑗 min (𝑤𝑖 𝑗 , ℎ𝑖 𝑗 )
, (4)

where𝐺 , and𝑁𝑔 are the number of groups and number of macros
in group 𝑔, respectively. 𝑑𝑖𝑠𝑡𝑖 𝑗 is the Euclidean distance between
two macros in a group and 𝑤𝑖 𝑗 , and ℎ𝑖 𝑗 are the sum of the width
and sum of the height of two macros, respectively. Intuitively, the
cost will be high if macros of the same group are far apart on the
canvas, and the cost will be lower as the macros move toward their
expected positions, with each macro close to the other macros from
its group.

3.3 SA-based Post Placement Engine
To achieve human-quality placement in terms of pin accessibil-
ity and dead-space minimization, we propose an SA-based post-
placement engine, which incorporates the following key ideas: (1)
The engine operates on a dense grid of cells that is linearly scaled
with the chip canvas, typically around 2000×2000 cells, providing
sufficient precision for macro placement in a reasonable runtime; (2)
For each iteration, each macro is applied one of three actions with
equal probability: 𝑠ℎ𝑖 𝑓 𝑡 (moving a macro to the closest boundary),
𝑠𝑤𝑎𝑝 (swapping two macros of the same size, shape, and hierarchy
group), or 𝑓 𝑙𝑖𝑝 (flipping a macro along the x or y axis); (3) If there
are any pin accessibility violations present after applying an action,
we will revert back to the previous situation.

4 EXPERIMENTS
Implementation: We built our framework on top of Google Cir-
cuit Training[2]. We use DreamPLACE[18] to read designs from
LEF/DEF files and modify it to get the die-area from the macros
and layout areas.

Evaluation designs:We evaluate the framework using three netlists
of Ariane CPU[1] provided by [21], [10], and a version we gener-
ated using NanGate45 standard-cell library (NG45). Furthermore,
we validated the framework on three industrial designs that con-
tain rectilinear macros and layout areas, implemented originally in
an advanced technology node from a commercial foundry. Unfor-
tunately, we are not allowed to disclose exact numbers. Finally,
in order to assess the generality of the trained model, we per-
formed training and testing using one Ariane with random rec-
tilinear macros and layouts at NG45 and ASAP7 standard-cell li-
brary (ASAP7). Program and evaluation designs are released at
https://anonymous.4open.science/r/rl4cad-AE0F.

Infrastructure: Building on top of Google Circuit Training allows
our framework to run in distributed fashion across multiple servers
and GPUs. However, we constrain our resource utilization to typical

https://anonymous.4open.science/r/rl4cad-AE0F
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Figure 5: Neural network model of RL agent with extra features and policy head for orientation prediction.

configurations. Specifically, our experiments were conducted on
a server with a 64-thread CPU, 512 GB of RAM, and an A5000
GPU with 24 GB of memory. Each run uses 25 collectors to gather
simulation data.

Settings: For comparison purposes, we keep almost all training
settings the same as the settings from G-CT[21] and TILOS[10].
Additionally, some settings were tuned to work best with our frame-
work: (1) The cost weights 𝛼 , 𝛽 , 𝛾 , and 𝜔 in the reward function1
were set to 5.0, 1.0, 0.5, and 0.1, respectively. Wirelength weight is
set to 5.0 to increase the proportion of wirelength proxy which is
hard to optimize under the periphery bias constraint; (2) We select
the grid size (𝑁𝑟 and 𝑁𝑐 ) relative to the chip canvas so that the
smallest macro can fit inside a grid cell; (3) The number of nodes
and edges in the RL model is chosen relative to the netlist size (e.g.,
macros, clusters), and does not cause issues during model updates
using GPUs.

4.1 Evaluations Using the Netlists of Ariane
Our framework can be applied to designs with rectangular macros
and areas without losing generality. Table 1 describes three different
netlists for the Ariane CPU (A-GCT, A-TILOS, and A-OURS) and it
shows our results for CT Metrics (block placement with proxy costs
averaged over nine runs) and the metrics after we complete the
layouts (post block placement) with a commercial P&R tool (P&R
Metrics, post-route). For the block placement metrics, we compare
our results with CT and SA results as published in [2, 10] as well
as our own configuration adding the hierarchy cost. Our method
can produce placements that show better proxy cost than those
published in [2] and [10] for both the original configuration (with
8% and 16.7% improvement on A-GCT and A-TILOS, respectively)
and our configuration (with 8.6% and 12% improvement on A-GCT
and A-TILOS, respectively).

For the P&R Metrics, we report results for our netlist2 A-OURS,
along with the results using CT, SA, and the block placement stage
for three academic placers integrated in OpenROAD[3]: RePLAce,

1The weights 𝛼 , 𝛽 , 𝛾 in CT weighted cost are 1.0, 1.0, 0.5, respectively, and 1.0, 0.5 and
0.5 in TILOS weighted cost
2All metrics from the P&R Tool are reported after the post-route optimization stage
without cleaning DRC errors.

TritonMP and Hier-RTLMP. As indicated, we complete and measure
post-route with the same commercial tool for consistency. In three
out of four metrics, our framework has the best or second-best re-
sults compared to other placers. Figure 6 shows physical placements
from the systems we studied. Our placer shows similarities to Hier-
RTLMP in term of placing macros based on the design hierarchy, as
well as similarities to both Hier-RTLMP and TritonMP in placing
macros on the periphery. We do not force macros away from the
IO ports and leave that human-like rule for further improvements.

Table 1: Results on different Ariane netlists

Designs Netlist information Model Configuration
Core # # # Ori. Our # #
Size Macros IOs Clusters Grid Grid Nodes Edges

Ariane 356.592 133 1231 799 35x33 12x18 1200 10000(GCT) 356.640
Ariane 1347.1 133 495 810 23x28 23x10 1200 12000(TILOS) 1346.8
Ariane 1445.9 133 495 41 - 25x10 200 1100(OURS) 1444.8

CT metrics

Designs Placer WL Den. Cont. Hier. CT Our Inference
Cost Cost Cost Cost Cost Cost time(h)

Ariane

CT[2] 0.1013 0.5502 0.9174 - 1.1102 - -

(GCT)

CT(12×18) 0.0886 0.5345 0.8852 2.2115 - 1.6411 0.02
SA(12×18) 0.0963 0.5057 0.8446 1.4281 - 1.5523 14
Our𝑅𝐿 0.0973 0.5088 0.8507 1.0571 1.0315 1.5264 0.02

Our𝑃𝑂𝑆𝑇 0.0933 0.5070 0.8414 1.0565 1.0209 1.4997 0.1

Ariane

CT[10] 0.1060 0.5280 1.0470 - 0.8932 - -

(TILOS)

SA[10] 0.0860 0.4990 0.8350 - 0.7533 - 12.5
CT(23×10) 0.0975 0.5860 0.7881 2.9580 - 1.7635 0.02
SA(23×10) 0.1061 0.5038 0.7761 1.5988 - 1.5820 10
Our𝑅𝐿 0.1092 0.5121 0.7701 1.3207 0.7503 1.5752 0.02

Our𝑃𝑂𝑆𝑇 0.1045 0.5156 0.7643 1.3211 0.7444 1.5522 0.1
P&R Metrics (post-route)

Designs Placer Area WNS TNS # Power Proxy Inference
(mm2) (ns) (ns) DRC (mW) cost time (h)

Ariane

CT(25×10) 1.2806 -0.91 -4833.9 9 585 1.8570 0.02

(OURS)

SA(25×10) 1.2850 -0.93 -5320.6 9 586 1.7879 14
RePLAce 1.2812 -1.04 -5423.7 9 584 1.7244 1
TritonMP 1.2839 -0.89 -5068.2 9 586 1.9621 1

Hier-RTLMP 1.2823 -0.84 -4632.2 7 586 1.6482 8
Our 1.2803 -0.86 -4731.0 6 586 1.5807 0.1

Discussions: Here we propose explanations for the results: (1)
Our masking strategy and model enhancement show advantages
in reserving as much space as possible for standard cells in the
middle area. This brings a reduction in density and congestion
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Figure 6: Placements on Ariane-NG45 (freq.=770 MHz, density = 64%) using different academic placers.

costs, and consequently, the total weighted cost. (2) Our placer
finds placements that better preserve the design hierarchy, leading
to a better hierarchy cost and thus the total weighted cost. (3) Our
strategy for choosing grid size results in a significant reduction
in density and congestion when compared to previously reported
work.

4.2 Evaluation of Industrial Designs
For each design, we selected the top three placements from the
training phase and evaluated them using a commercial, state-of-
the-art P&R tool. The best results are reported in Table 2 together
with results from the timing-driven placer from the commercial
P&R tool (Comm) and from the same tool but aided by designers
(Human). We only applied reasonable efforts (no “benchmarking”) ,
meaning we wanted to see if results were comparable, and not to try
to prove if any such approach could “beat” the others. The netlists
cannot be disclosed. Our placer achieved PPA results that are better
than those obtained by the designers within a few evaluations and
are quite comparable to those achieved by the timing-driven placer
from the P&R tool. The output from our placement is entered into
the commercial tool without any additional modification (See Fig
1) nor prior knowledge about the power grid or later steps. This
may create some DRC errors. Improving this aspect is a long-term
plan for our future work.

4.3 Generalization between Technology Nodes
The last experiment assessed the possible generalization of our
model to designs containing rectilinear macros and areas. In this
study, we restricted the macro shapes to L, J and T patterns[14],
and avoided modifying macro shapes on their IO sides. The top plot
from Figure 7 shows the training and evaluation curves from 80 syn-
thesized designs used for training and 20 synthesized designs used
for testing. The model is well trained to handle rectilinear designs
from NG45. When we evaluated with 100 synthesized designs at
ASAP7, the model-generated placements improved outperforming
the random placements after 100K policy updates (middle plot of
Figure 7). Finally, we tested the transferability of the best model
trained onNG45 to amore challenging synthesized design at ASAP7.
The bottom plot of Figure 7 shows that adapting from a pre-trained
model enabled the model to converge faster than training the model

Table 2: Results of industrial designs

Designs # # # # # Recti. Recti.
Macro Types IOs Cells Nets Layout Macros

ic1 89 59 1125 1.5M 1.7M ✓
ic2 169 97 630 3.8M 4.3M ✓
ic3 94 21 2207 1.8M 1.8M ✓ ✓

Layout Metrics

Designs Placer Area WNS TNS # Power Run
(mm2) (ns) (ns) DRC (mW) time(h)

ic1
Human 0.4550 -0.6201 -0.6201 2559 44.6 weeks
Comm 0.4495 -0.6044 -0.6044 2491 46.8 0.5
Our 0.4548 -0.6178 -0.6178 2695 43.7 14

ic2
Human 1.0331 -0.0709 -376.68 6619 62.6 weeks
Comm 1.0256 -0.0739 -302.11 23088 58.5 12
Our 1.0206 -0.0698 -288.59 23542 59.8 28

ic3
Human 5.7972 -0.4193 -1.4651 3924 284 weeks
Comm 5.7965 -0.4544 -15.5075 5038 274 1.7
Our 5.7961 -0.1402 -0.5792 4313 269 14

on that design from scratch. Figure 8 depicts placements on unseen
designs of Ariane at NG45 and ASAP7, which are generated by the
trained model and are fine-tuned with SA-based post-placement.

4.4 Runtime analysis
Table 1 and Table 2 reports the inference time and training time
of various placers. Our learning-based placer only needs a few
minutes to obtain a good placement. However, to generate a well-
trained agent, the agent needs a few hours of training. Specifically,
14 hours are needed with the G-CT netlist and 10 hours with the
TILOS netlist, which increases the total runtime. It’s worth noting
that with the same amount of training time, the reported work
required a farm of CPUs and GPUs (20×96vCPUs and 8×V100s),
while our placer has been optimized to consume minimal comput-
ing resources and conform to common EDA server configurations.
Using an adaptation technique from a pre-trained agent is a way
to reduce the training time to 6 hours[21]. However, keeping the
runtime of a RL-based placer to be the same as that of traditional
placers is a challenging problem. We will address this in our future
work.
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Figure 7: Evaluation curves on Ariane-NG45 (top), Ariane-
ASAP7 (middle), and adaptation to a harder Ariane-ASAP7.

Figure 8: Post-placement on Ariane (NG45 and ASAP7).

5 CONCLUSION
This work proposed an RL-based macro placement framework that
exceeds the performance of reported work and achieves comparable
results to existing baseline algorithms. It strictly respects crucial
human-like constraints, with a specific focus on design hierarchy
and peripheral bias. Furthermore, this approach has the potential
to generalize a learned model to various designs with rectilinear
macros and areas. Lastly, our advances, conducted on standard
training machines, can drive the research in RL-based placement
towards efficiency and affordability allowing IC design house to
adopt it without adding excessive computing resources.
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