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Abstract—Quantum Computing holds the promise of resolving
classically unsolvable problems with superior speed and effi-
ciency. Nonetheless, the prevalent error rate in current quantum
devices surpasses the tolerable threshold for executing meaningful
quantum algorithms by a significant magnitude. Quantum error
correction (QEC) is the technique to enhance the error resilience
of quantum systems by incorporating redundancy, whereby
quantum information is distributed across multiple data qubits.
Additionally, syndrome qubits are implemented to monitor data
qubit parity, thereby detecting potential errors. The syndrome
information is processed by a decoder to predict data qubit
errors. However, accurate decoding is challenging because errors
occur not only on data qubits but on syndrome qubits and
syndrome extraction operations, which cause complex syndrome
patterns. Furthermore, the same syndrome pattern could result
from different underlying errors. Therefore, it is important for
the decoder to consider all syndromes collectively. Given that a
single code family can possess varying code distances, a gener-
alizable decoding approach capable of handling different code
distances is highly desirable. Machine learning (ML) decoders
are considered promising candidates with multi-layer perceptron
(MLP) or convolution neural network (CNN) based ones being
proposed recently. However, most existing ML decoders only
process a local region of syndromes without global receptive field,
and necessitate costly retraining for different code distances.

To overcome these challenges, we introduce TT-QEC, a trans-
former based QEC decoder that performs self-attention across
all input syndromes, thus acquiring global receptive field. It also
employs a mixed loss training mechanism that combines the loss
from local physical errors and the loss from the global parity
labels. Furthermore, leveraging the capability of transformer to
handle arbitrary length of inputs and outputs, we propose an
efficient transfer learning that can produce a decoder for different
code distance based on a model of existing distance.

Evaluation on six code distances and ten different error config-
urations demonstrates that our model consistently outperforms
non-ML decoders, such as Union Find (UF) and Minimum
Weight Perfect Matching (MWPM), and other ML decoders,
thereby achieving best logical error rates. Moreover, the transfer
learning can save over 10× of training cost.

I. INTRODUCTION

Quantum Computing (QC) has been garnering substantial
research interest as an emergent computational model de-
signed to address problems previously deemed unsolvable with
enhanced efficiency. A multitude of sectors and academic
disciplines stand to gain from the potentialities of QC, notably
cryptography [1], database search [2], combinatorial optimiza-
tion [3], molecular dynamics [4], and machine learning [5]–
[14] applications, etc.

Advancements in physical implementation technologies
have spurred the rapid progression of QC hardware over the
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Fig. 1. Transformer for Error correction decoding overview. The Transformer
takes syndrome inputs and processes them through both the transformer model
encoder and decoder. The output of this process consists of error predictions.
One notable advantage is its ability to be seamlessly applied to different code
distances due to the transformer model’s flexible input and output size.

past two decades. These advancements have facilitated the
release of QC systems boasting up to 433 qubits [15]–[19],
representing the cutting-edge of current QC capabilities. The
continuing evolution of QC holds promise for the develop-
ment of even more efficient algorithms, fostering its broader
adoption across numerous domains of application.

Despite the exciting advancements, the qubits and quantum
gates on current quantum machines suffer from high error
rates of 10−3 to 10−2, preventing us from executing appli-
cations that demand significantly lower error rates (below
10−10) [20]–[22]. Therefore, reducing quantum error is of
pressing demand to close the gap. Quantum Error Correction
(QEC), an essential solution to this challenge, lowers the
error rate by integrating redundancy, a process where the
information from a single logical qubit is distributed across
multiple physical qubits. By increasing the redundancy of
the QEC code, the logical error rate plummets exponentially,
assuming that the physical error rate p stays below a certain



limit. Therefore, by skillfully controlling the redundancy, QEC
enables us to achieve the required error rate for executing
specific applications.

Quantum error correction integrates both quantum and
classical elements in its design. On the quantum aspects, we
observe a logical qubit’s role in encoding quantum informa-
tion within the collective state of several data qubits. Error
detection involves the strategic positioning of parity qubits
among these data qubits with one example in Figure 1 top
right. Through periodic execution of a syndrome extraction
circuit, each parity qubit retrieves the parity data of certain
data qubit subsets. Subsequently, it transfers any data qubit
errors into discernible, individual discrepancies. This iterative
process will be repeated for many times (cycles), spanning
from qubit initialization to the final measurement of data
qubits. A syndrome represents the accumulated measurement
results of all parity qubits within a cycle. For the classical
elements of QEC, we come across the decoder’s role. By
analyzing syndromes, the decoder detects potential errors and
determines the most suitable corrections for the data qubits.
The logical error rate relies on factors such as the physical
error rate and decoder performance. Since the same syndrome
could be caused by different set of errors, the decoder typically
need to process a large region of syndromes instead of a small
receptive field.

The rotated surface code [23] is a promising candidate
for realizing fault tolerance. Well-established algorithms for
surface code include Minimum Weight Perfect Matching
(MWPM) and Union Find (UF). Recently, machine learning
(ML), especially neural network (NN) based decoders have
gained attention due to a few desirable characteristics. First,
they generally run in constant time, which is necessary to
prevent a backlog of syndrome outcomes. Second, unlike
MWPM, they are capable of learning both correlations be-
tween physical errors (such as the correlation between X and
Z error in depolarizing errors) as well as learning hidden and
potentially changing underlying physical error distributions.

However, ML based decoders also bring significant chal-
lenges. First, several models, such as those grounded in
convolutional neural networks (CNN), are limited by a small
receptive field. This constraint may hinder their ability to
accurately pinpoint long error chains. Second, many models,
like the multi-layer perceptron (MLP), has a fixed size for
both input and output. As a result, changes in code distance
would mandate retraining of an entirely new model, leading
to considerable overhead.

Therefore, to solve these challenges, we propose TT-QEC,
a transferable transformer model designed for accurate and
efficient decoding of surface code, as illustrated in Figure 1.
For the sake of simplicity, the figure only depicts two dimen-
sions, but in reality, the input syndromes include an additional
temporal dimension – round. Our proposed model employs
a transformer structure, incorporating both an encoder and a
decoder to process the syndromes. Binary features on each
syndrome qubit are projected to token embeddings and aug-
mented with a 3D sinusoidal positional encoding, informing

the model about the location of each qubit. The embeddings
of the 3D inputs are then flattened to 1D input sequence
and processed by the transformer encoder layer. Thanks to
the global interaction capability brought by attention layer, all
input syndromes can be considered holistically which boosts
accuracy. The decoder then uses the positional encoding of
the data qubits to predict the X or Z errors on each of them.
Moreover, we propose a mixed loss that combines the loss
from the local physical error of each qubit with the loss from
global parity prediction.

In order to reduce the cost of model training associated
with different code distances and leverage the knowledge
from trained models, we further propose implementing transfer
learning across code distances. Specifically, given that the
transformer model input can be of arbitrary length, we could
directly reuse the weights of a trained model to a new code
distance by simply altering the input sequence. As such, after
training a model (e.g. for distance 5), we can directly apply
it to a different distance (e.g 7 or 9) and perform a quick
fine-tuning to improve the performance at the target distance.
This approach reduces the cost by a factor of 10 compared to
training from scratch in our settings.

We extensively evaluate TT-QEC across six code distances,
3, 5, 7, 9 and compare it with MWPM, UF and MLP baselines
under 10 different error rates. Our results demonstrate that
TT-QEC consistently surpasses these baselines, achieving the
lowest logical error rates. In summary, TT-QEC makes four
key contributions:

• A novel transformer-based model for surface code de-
coding which uses the syndrome with positional encoding
as inputs and predict errors.

• A mixed loss approach combined loss from local physical
error prediction and global parity prediction improves the
model’s trainability and performance.

• Transfer learning across different code distances. For
the first time, we propose to transfer the knowledge learn
on one distance to another, thus reducing costs.

• Extensive evaluations on different physical error rates
and distances demonstrates that our model consistently
outperforms baselines such as MWPM, UF and MLP.

II. BACKGROUND

A. Quantum Basics

Qubits and Quantum Circuit. The potency of quantum com-
putation is derived from its fundamentally distinct approach to
storing and manipulating information [24], [25]. A quantum
bit, known as a qubit, deviates from a conventional bit in its
capability to exist in a linear combination of the two basis
states 0 and 1: |ψ⟩ = α |0⟩+β |1⟩ , with α, β ∈ C, fulfilling the
condition |α|2+|β|2 = 1. This distinctive feature of generating
a ”superposition” of basis states facilitates the representation
of a linear combination of 2n basis states using an n-qubit
system. This stands in contrast to a classical n-bit register
that can only store one of the 2n states. Quantum computation
on a quantum system involves the manipulation of the state
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Fig. 2. Surface Code. The surface code contains data qubits and two kinds of syndrome qubits. X-type syndrome qubits in green checks Z errors while
Z-type syndrome qubits in yellow check X errors. When error occurs on data qubits, the nearby syndromes may be flipped depending on the parity of data
qubits. When multiple error occurs, the syndrome patterns will be more difficult to decode.

of qubits by employing a quantum circuit. A quantum circuit
comprises a series of operations termed quantum gates, which
facilitate the transition of one quantum state to another.
Operational Noises. In real QC, a myriad of errors can
transpire due to factors such as imperfect control signals,
undesired interactions between qubits, or external environ-
mental interference [26]–[28]. Consequently, qubits undergo
decoherence error over time, while quantum gates impart
operation errors, such as coherent or stochastic errors, into
the system. To mitigate the impact of noise, these systems
require frequent characterization [28] and calibration [29].

B. Quantum Error Correction

Quantum Error Correction (QEC) is a technique that en-
hances the reliability of quantum information by encoding
logical qubits into a larger number of physical data qubits. The
error correction process involves two steps. First, a syndrome
extraction circuit runs on the qubits to produce an error
signature, known as a syndrome. Second, a decoder identifies
and corrects any errors in the data qubits based on this
syndrome. Additional qubits, known as syndrome qubits, are
used to detect errors without disturbing the quantum state of
the data qubits. If the error rate of the physical qubits is below
a certain threshold, QEC can effectively lower the logical qubit
error rate at the cost of using more physical qubits. The errors
are categorized into a discrete set of Pauli errors - bit-flip
(Pauli-X), phase-flip (Pauli-Z), or both. In order to correct an
arbitrary error, it is sufficient to be able to correct Pauli-X (bit-
flip) and Pauli-Z (phase-flip) errors [24]. Since there are two
types of errors to account for, the techniques for quantum error
correction, despite being similar to their classical counterparts,
are often more complex. Moreover, considerations regarding
physical realizations render only certain coding schemes viable
for Noisy Intermediate Scale Quantum (NISQ) devices. In this
paper, we focus on the rotated surface code.
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Fig. 3. Syndrome extraction circuit. Top: Z-type syndrome qubits. Bottom:
X-type syndrome qubits.

C. Surface Code

The Surface code is a prominent QEC scheme that encodes
a logical qubit into a two-dimensional lattice of alternating
data and syndrome (parity) qubits. It is characterized by
its high error threshold and requirement for only nearest-
neighbor connectivity, making it a practical option for real-
world quantum systems. The logical qubit is encoded in a
lattice of size dependent on the ’code distance’ denoted by D,
with larger distances offering increased error tolerance. Errors
on data qubits are detected by adjacent parity qubits using
a stabilizer circuit, as illustrated in Fig. 3 which measures
a four-qubit operator, leading to detection of X, Z, or Y
(combination of X and Z) errors. The surface code can correct
error chains up to length ⌊D−1

2 ⌋. In practice, a simpler variant
of the original Toric code [30], the ’rotated’ surface code
as in Fig. 2 is often preferred due to its more compact
layout, reducing the physical qubit and gate overheads. The
[[D2, 1, D]] stabilizer code has become a prime candidate for
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Fig. 4. Multiple rounds of surface code measurement. The progression of
time is depicted by moving upwards from the array at the base, with each
horizontal plane representing a step in the measurement process. In reality,
errors will also occur in the syndrome extraction circuit and syndrome qubits,
necessitating the need to repeat multiple rounds for decoding. On the right
side, the measurement error on the syndrome qubit will also flip the syndrome.

near-term fault-tolerant quantum computation. Being amenable
to single qubit operations transversally, it has also been shown
that the two qubit CNOT gate can be applied only by merging
and splitting codes in a technique called lattice surgery [31],
rendering physical realizations much more feasible.

D. Decoder

Decoders function by interpreting the syndrome, which is
the outcome of ancilla measurements, as illustrated in Fig. 4 to
establish necessary corrections for data qubits. Errors of the X-
type and Z-type are adjusted separately, which automatically
amends Y-type errors. For a decoder to be effective in large-
scale fault-tolerant quantum computers (FTQCs), it must meet
three key requirements: accuracy, latency, and scalability [32].
Accuracy refers to the decoder’s ability to reliably identify
errors. Latency stipulates that the decoder must operate within
one cycle of syndrome extraction. Scalability demands ef-
ficient implementation of decoders with minimal hardware
resources to function in hardware-limited settings. Typically,
more accurate decoders take longer to operate.

III. RELATED WORKS

A. ML based decoder

Quantum computing’s landscape has been vastly improved
by Machine Learning (ML) based decoders, focusing on

Neural Network (NN) models, Reinforcement Learning (RL)
methods, and innovative designs for decoder scalability. NN
models have seen significant advances, starting with [33]’s first
use of a Boltzmann machine for ML-based decoding in toric
codes. [34], [35] expanded this by applying a Multi-Layer Per-
ceptron (MLP) decoder with comparable performance to pre-
vious algorithms. [36] introduced the use of Long Short-Term
Memory (LSTM) for decoding surface code measurements.
RL techniques form another key branch. [37] translated the
decoding problem into an RL environment for a circuit-level
noise model. [38] and [39] made strides with RL decoders for
specific error types, displaying superior performance through
error correlation learning. [40] enhanced performance further
with a unique reward mechanism. Regarding decoder scalabil-
ity, [41] proposed a scalable ML-based decoder with a low-
depth Convolutional Neural Network (CNN), expanded upon
by [42] and [43]. [44]–[47] ventured into multilevel decoder
architectures to improve performance and training, while en-
suring execution time independence from code distance. Other
noteworthy contributions include [48]’s ML-based decoder for
additional logical corrections, [49]’s concept of a distributed
neural network, and [50]’s fusion of ML and non-ML-decoder
benefits. Together, these significant studies have directed our
focus towards Transformer-based Neural Networks for local
decoding, given their inherent capability for spacetime volume
processing of syndromes. Our research aspires to introduce
new NN decoder architectures and enhance scalability through
a local-global two-level design.

B. Non-ML based decoder

Numerous decoding methods for Quantum Error Correction
(QEC) have been proposed, each presenting unique strengths.
A key approach in QEC is Minimum Weight Perfect Matching
(MWPM), typically applied for topological error correction.
This algorithm leverages Edmonds’ method to identify and
correct errors via the shortest pairing of error syndromes [51].
MWPM algorithms are used to find the most probable error
configuration, with the blossom algorithm [52] assisting in
determining the optimal pairing with minimum weight. Upon
establishing the matching, suitable correction operations are
applied, restoring the original quantum state and effectively
reducing error impact.

The Union Find (UF) decoder is another crucial QEC
algorithm, characterized by its linear-time complexity which
allows for efficient error identification and correction in toric
and surface codes [53]. Lookup Table (LUT) decoders, alterna-
tively, operate by learning a set of error patterns from classical
error correction codes, enabling real-time correction using a
predetermined set of error patterns [54]. The Tensor Network
(TN) decoder, a newer approach, employs the tensor network
structure to detect and correct errors in topological codes
effectively. This graph-based method provides a relatively high
error threshold [55].
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Fig. 5. Overall workflow of TT-QEC. The syndromes are firstly processed by the transformer model to predict the errors. Since the errors may not fully clear
all syndromes, we will pass the cleared syndromes to a global decoder to predict a global parity. The final global parity is the XOR of the global parity from
transformer predicted physical error and that predicted by global decoder.

C. Transformer Models

Transformer models have redefined the field of natural
language processing (NLP), demonstrating outstanding per-
formance in tasks such as language generation and text
classification. Transformers utilize a multi-head self-attention
mechanism to discern relationships among tokens, differing
from traditional recurrent or convolutional neural networks.
This mechanism enables the model to attend to relevant
contextual information from various positions in the input
sequence, capturing long-range dependencies effectively due
to low inductive bias.

The Vision Transformer (ViT), a Transformer variant tai-
lored for visual tasks, carries the success of Transformers
in NLP over to computer vision, surpassing state-of-the-art
CNNs, particularly in dense vision tasks requiring global
context learnability. ViT processes input 2-D/3-D images into
a grid of equal patches, projecting each into a sequence of fea-
ture vectors. The Transformer integrates position embeddings
to encode spatial coordinates, which, together with the patch
embeddings, are fed into the Transformer encoder, allowing
the model to comprehend the spatial context of the input
sequence/image.

IV. METHODOLOGY

In this section, we will first outline the error correction
workflow in our TT-QEC framework, before delving into
the details of the transformer model and transfer learning
framework.

A. Overall Workflow

As mentioned earlier, the iterative syndrome extraction
process produces syndrome measurement outcomes at each
round. The decoder predicts error occurrences based on these
outcomes. Since purely ML-based decoders directly predict
errors on data qubits, the predicted errors may not always
align exactly with the syndromes. Therefore, an ML decoder
is typically paired with a non-ML decoder to clear all the
syndromes, as illustrated in Figure 5. Specifically, once the
ML decoder has predicted all errors, these predictions are

used to clear the syndromes and obtain the global parity of
the predicted errors. The syndrome clearing process involves
flipping the syndromes linked to errors once again. Ideally,
given a highly accurate ML decoder, all syndromes could
be cleared. However, any remaining errors are passed to a
global decoder, like MWPM, which guarantees clearance of all
syndromes and subsequently produces another global parity.
The final output is the XOR of two predicted global parities.

B. Transformer Model
Considering that the speed of global decoders, such as

MWPM, is typically proportional to the number of non-zero
syndromes, it is beneficial to have an ML decoder that clears
as many syndromes as possible. Hence, we propose a novel
Transformer-based decoder, as depicted in Figure 6.

We use a cubic grid to encode input syndromes. For a
surface code of distance D, we utilize a D+1 square to ensure
that each syndrome qubit is at an intersection. Conventional
settings determine the number of rounds to be equivalent to
the code distance. We introduce an additional layer for the
final measurement, thereby making the round dimension D+1
as well. Hence, the features form a D + 1 cubic grid. Each
grid cell comprises a feature vector of length six. The first
two channels denote the locations of the X check and Z check
syndrome qubits, respectively, as shown in Figure 6 and below.

Location encoding for the X check syndrome qubits:
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0


Location encoding for the Z check syndrome qubits

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 0


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Following the positional information, the next two channels
of the feature vector are the syndromes, which vary across
different rounds. In the final stage of error correction, we
achieve perfect error correction by measuring the data qubits in
a specific basis. Defining the temporal boundaries of the lattice
is crucial for the network to generalize to different syndrome
measurement rounds. The fifth channel of the dataset is set to
1 for the first round and 0 for subsequent rounds. Similarly,
the sixth channel is set to 1 for the last round and 0 for all
the other rounds.

The features are then projected to a higher-dimensional
space by a learnable embedding layer. To inform the model
about the location of each qubit, we add 3-dimensional si-
nusoidal positional encoding to the embedded inputs. With
the position information added, we can safely flatten the
3D embeddings sequence to 1D and send it to the Trans-
former encoder. The encoder consists of multiple layers, each
containing one multi-head self-attention (MHSA) and one
Feed-forward network (FFN) layer. The MHSA allows each
syndrome feature to attend to any syndrome in the entire 3D
grid, thereby enabling better awareness of long-range error
chains. The FFN layer contains two fully-connected layers that
project the embedding to an even higher dimension, apply an
activation function, and project back.

To predict physical errors, we use the Transformer decoder
layers. The inputs are directly the positional encoding of the
data qubit positions. We then predict the errors on a 3D grid of
data qubits with the decoder layers. Inside each decoder layer,
there is a layer of self-attention and one layer of cross-attention
between the encoder and decoder. The queries for cross-
attention come from the decoder layer inputs while the keys
and values come from the encoder. This mechanism allows the
layer to have access to all the previous syndrome information.

Following this, we have an FFN layer and a prediction layer
that outputs the logits. Given that false positives are more
detrimental than false negatives, we use a confidence threshold
to predict an error. Typically, the confidence after Sigmoid
needs to be larger than 0.95 for a positive prediction.

C. Mixed Loss

During the training procedure, we propose a novel loss
function that combines losses from two sources. One source
is the loss from predicting local physical errors. Another
source arises from the prediction of global parity, which is
obtained through a global average pooling of encoder output
embeddings, followed by a prediction layer as shown in the
Figure 6 top right. The global parity provides additional
information on the final parity of the syndromes, which serves
as auxiliary information that can improve the generalization of
different syndrome patterns.

D. Transfer Learning

Lastly, for each type of code, there is a family of codes
with different distances. Depending on the quantum algorithm
in use, the required logical error rate will differ, thus requiring
different code distances. Existing work often necessitates
retraining for different code distances, which is costly in
terms of both data collection and training time. Hence, in
TT-QEC, we propose a transfer learning scheme to reuse the
knowledge already learned. The reasoning behind this is the
considerable similarity between different code distances; for
example, handling syndromes of distance 5 code would be
similar to handling a sub-block for distance 7 code. For a new
distance, we directly apply the existing trained model, and
fine-tune it on the new dataset. This ability to leverage transfer
learning essentially stems from the transformer’s capability to
process input and output sequences of arbitrary sizes. The only



TABLE I
COMPARISON OF LOGICAL ERROR RATES UNDER DIFFERENT CODE

DISTANCE AND PHYSICAL ERROR RATES.

Logical Error Rate ↓
Distance Phys. Err. Rate UF MWPM MLP TT-QEC

3 0.0500 0.16745 0.14063 0.14794 0.13005
0.0100 0.01039 0.00800 0.00903 0.00784

5 0.0500 0.24120 0.17279 0.20888 0.17232
0.0100 0.00406 0.00268 0.00443 0.00254

7 0.0500 0.29813 0.20178 0.28454 0.20590
0.0100 0.00113 0.00064 0.00197 0.00059

9 0.0500 0.35250 0.23161 0.32770 0.23144
0.0100 0.00028 0.00002 0.00017 0.00001

aspect that needs careful handling is the positional encoding
under the new distance.

V. EVALUATION

A. Evaluation Methodology

Benchmarks: We have selected the rotated surface code
with distances of 3, 5, 7, 9. The round is set to be the same
as the distance. The phenomenological error model [56] we
use encompasses errors on syndrome measurement and data
qubits. Each syndrome qubit experiences a measurement error
with a probability p. The errors on data qubits are depolarizing
errors, which occur with a probability p, causing Pauli X, Y,
or Z errors with equal probability. As assumed in previous
work [57], the error probabilities of these two types are
considered to be equal. We choose values of p from the set
0.05, 0.01. The Google Stim package is used to construct the
circuit and perform stabilizer simulations.

Baselines: Our three baselines include the Union Find
decoder, the Minimum Weight Perfect Matching (MWPM)
decoder as implemented in [52], and a Multi-Layer Perceptron
(MLP) architecture. Following [58], our MLP architecture
has two hidden layers, with the dimensions of these layers
set empirically. As the MLP requires fixed-size inputs and
generates fixed-size outputs, it does not facilitate transfer
learning like the Transformer does.

Training Settings: Our main model is a Transformer with
6 layers, an embedding dimension of 256, 8 heads, and a feed-
forward network (FFN) hidden dimension of 512. This model
contains 7.9 million parameters. We also have a smaller model
with 6 layers, an embedding dimension of 64, 2 heads, and
an FFN hidden dimension of 128, which includes 0.5 million
parameters. For training, we collect a dataset of 1,000,000
samples with a 1% error rate. We use a learning rate of 0.001
with linear warmup and cosine decay, a weight decay with
lambda 0.0001, and we train for 100 epochs. We utilize the
Adam optimizer with a weighted binary cross-entropy loss for
local physical errors, and a normal binary cross-entropy loss
for global parity errors. For the MLP model, we use a physical
error rate of 1% for d = 3, 5 and 2.5% for d = 7, 9. Like the
initial Transformer model, we train for 100 epochs with the

Table 2

MLP TT-QEC (Ours)

D3  
p0.02

0.9947426636 0.9948888625

D3  
p0.01

0.9983116276 0.9985573321

D3  
p0.005

0.9994225132 0.9995764106

D5 
p0.02

0.9889308392 0.9937012955

D5 
p0.02

0.9959447681 0.9982913849

D5 
p0.01

0.9983177486 0.9995275454

D7 
p0.02

0.9879513405 0.9930361059

D7 
p0.01

0.9964786993 0.9980431314

D7 
p0.005

0.9990689292 0.9999

AVG 0.995455077921628 0.997277053252479
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Fig. 7. Accuracy comparison between the TT-QEC an MLP baseline. Class
0 accuracy is the accuracy of correctly identify a no error data qubit as no
error (True Negative). Class 1 accuracy is the accuracy of correctly identify
an error when the data qubit has error (True Positive).

threshold 0.038

When physical error rate is 
smaller than threshold: 
larger distance reduces 
logical error rate

When physical error rate is 
larger than threshold:

larger distance increases 
logical error rate

Fig. 8. Threshold of transformer based decoder. The threshold indicated the
largest acceptable physical error rate for which using QEC can reduce error
rate. Transformer obtains about 0.038 threshold.

Adam optimizer. Training is conducted on a single NVIDIA
A6000 GPU.

Transfer Learning Settings: The distance 5 model, trained
from scratch, is used as the source model for transfer learning.
For all other distances, we use a constant learning rate of
0.0005 and train for 10 epochs. All other settings remain
identical to the training from scratch.

B. Experiment Results

Main Results: Table I presents our primary results for
varying code distances and physical error rates. Notice that
all the models are transferred from the distance 5 model. In
general, TT-QEC achieves a lower logical error rate for all
benchmarks. The improvements over Union Find and MLP
decoders are considerably more significant than the MWPM.
This is likely because the global decoder in TT-QEC’s frame-



TABLE II
COMPARISON OF LOGICAL ERROR RATE WITH GLOBAL LOSS.

Error Rate 0.0500 0.0400 0.0300 0.0250 0.0200

Local loss 0.17276 0.10659 0.05207 0.03384 0.01751
+ Global loss 0.17232 0.10659 0.05196 0.03384 0.01744

Error Rate 0.0150 0.0100 0.0075 0.0050 0.0025

Local loss 0.00808 0.00259 0.00097 0.00039 0.00007
+ Global loss 0.00802 0.00254 0.00103 0.00035 0.00005

work also employs an MWPM. The MLP model can surpass
the Union Find but is generally not as good as MWPM and
TT-QEC, even though the MLP models are trained individually
for each code distance. This result highlights the effectiveness
of our proposed transfer learning techniques. Furthermore, in
Figure 7, we show the physical error prediction accuracy for
baseline MLP and our TT-QEC. The class 0 accuracy means
the ratio of predicted 0 when the ground truth is 0 (true
negative). The class 1 accuracy means the ratio of predicted
1 when the ground truth is 1 (true positive). We can see that
the accuracy for class 0 is in general much higher then class 1
because of the imbalance of training dataset. Moreover, our
TT-QEC can achieve 43% higher accuracy on the class 1
which means the TT-QEC model can identify errors with much
higher reliability. That is beneficial when we desire the low
level decoder to clear as many as syndromes as possible and
speedup the end-to-end process.

Evaluation of the Threshold: Figure 8 shows the threshold
evaluation of TT-QEC, with the X-axis as physical and Y-
axis as logical error rates. The curves of different distances
intersect at a point where the physical error rate is 0.0038 and
the logical error rate is around 0.09. When p is smaller than the
threshold, larger code distances reduce the logical error rate.
However, when p is larger than the threshold, larger distances
do not help. Instead, we observe larger logical error rates.
This trend can be attributed to the increased error introduced
by larger system sizes, which eclipses the benefits of greater
redundancy with more qubits.

Effectiveness of Mixed Loss: To evaluate the mixed loss
function, we perform an ablation study on the distance 5 code,
as shown in Table II. Each column shows the comparison
of the logical error rate under a specific physical error rate.
The performance with both local and global loss can achieve
better or equivalent performance for nine out of ten cases.
This demonstrates that the global parity loss provides valuable
guidance during the model’s training process.

Ablation on Model Size: We evaluate two models with
different sizes but the same training setting in Table III
under code distance 5 and varying physical error rates. It is
evident that the larger model, with approximately 8 million
parameters, outperforms the smaller model with 500 thousand
parameters. The larger model is not overfitted to the training
set and performs poorly on testing. This outcome is mainly
due to the large size of the training set.

TABLE III
COMPARISON OF LOGICLA ERROR RATES UNDER DIFFERENT MODEL SIZE.

Error Rate 0.0200 0.0150 0.0100 0.0075 0.0050

503K Params 0.01812 0.00860 0.00290 0.00127 0.00045
7,911K Params 0.01744 0.00802 0.00254 0.00103 0.00035

VI. CONCLUSION

In conclusion, our study introduces an innovative and potent
quantum error correction (QEC) decoder for rotated surface
codes, harnessing the capabilities of machine learning and
transformer model architecture. Rigorous evaluations reveal
our decoder consistently surpasses existing benchmarks, ex-
hibiting enhanced error correction for a range of code dis-
tances. Moreover, the transformer architecture also enables fast
transfer learning between different code distance, amortizing
the cost for model training. The integration of a global
decoder and utilization of larger Transformer models are key
in attaining these notable outcomes. This investigation lays
the groundwork for future progress in ML-based Transformer
decoders for stabilizer codes, fostering precision and prompt-
ness in quantum computations. Consequently, it significantly
contributes to the evolution of dependable and proficient
quantum computing systems during the NISQ era and beyond.
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