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❏ Experiments at colliders typically have a silicon 
pixel detector at the center

❏ Concentric rings tiled with sensors

❏ Silicon sensors are depleted of charge carriers 
by high voltage

❏ When a charged particle from a collision 
passes through, it creates e/h pairs

❏ Charge is read out and transferred off-detector 

❏ Charge cluster information is used for physics analysis 
offline

Silicon pixel detectors
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Silicon Pixel Detector at CMS (LHC, CERN)

https://cms.cern/detector 
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❏ Connecting the dots between charge collected in 
different pixel layers creates a particle track

❏ Detector should be low-mass so interactions in inactive material 
doesn’t disrupt this trajectory

❏ Solenoid magnet immerses the pixel detector in a 
magnetic-field, causing tracks to curve

❏ Very curved → low transverse momentum (low-pT)

❏ Almost straight → high transverse momentum (high-pT)

❏ Reconstructing vertices is critical

❏ Secondary vertices help identify particles: long, short, 
medium lifetime?

Particle tracks and vertices
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Survey of Big Data sizes in 2021

https://arxiv.org/abs/2202.07659
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❏ LHC/CMS produces a lot of data

❏ New data every 25 ns  (p-p collision)

❏ Physicists have to throw most of it away

❏ Physically and financially challenging

❏ Risk to throw away significant information

❏ Detector is continuously being sprayed with 
particles

❏ Need radiation tolerant on-detector electronics 

❏ High voltage and low temperature 
requirements

❏ Up to -800 V, -35 C

Designing hardware for the LHC is challenging
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❏ On-chip data filtering at rate (40 MHz)

❏ AI algorithms

❏ Reconfigurable algorithms

❏ Hybrid pixel detector 
❏ Silicon sensor

❏ Pixelated ROIC

❏ Analog front-end + ADC

❏ AI in digital logic

Goal of the Smart Pixel team
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Sensor geometry, charge clusters, and profiles
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❏ Inputs are cluster images projected onto y-axis 
and the associated y0

❏ Three output categories

❏ high-momentum (> 200 MeV)

❏ low-momentum, negatively charged

❏ low-momentum, positively charged

❏ Simulated dataset of 800,000 clusters

❏ Classical training and testing set split 80%-20%

❏ Tensorflow/Keras, 200 epochs for training, 20 
epochs of early stopping, 1024 batch size, Adam 
optimizer

Neural network classifier (filter)
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NN Classifier

{high-pT , low-pT-, low-pT+}
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❏ Three models of increasing complexity

❏ Model 1

❏ Two input features: cluster y-size and position y0

❏ Single dense layer, 128 neurons, 771 parameters

❏ Model 2

❏ 14 input features: cluster y-profile (13) and 
position y0

❏ Single dense layer, 128 neurons, 2,307 
parameters

❏ Model 3

❏ 105 input features: cluster y-profile at 8 time 
instants (13 x 8) and position y0

❏ CNN (time-lapse picture), 83,331 parameters

Neural-network design space exploration
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Hardware implementation

Bandwidth saving
54.4% - 75.4%
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HLS-based hardware design flow
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Pre-HLs Validation
● Static Checks
● Code Coverage

(100-1000x faster than 
RTL coverage)

Post-HLS Validation
● C vs RTL Simulation
● RTL Coverage
● UVM Support

Model Development
● Optimization
● Quantization
● Training

Model Conversion
● Parallelism
● I/O Style/BRAM

C++ Model Gen
● AC Datatypes
● AC Math/Linebuffer

High-Level Synthesis
● Micro-Architecture
● Memory Opt
● Pipelining
● PPA
● ASIC or FPGA Target

RTL Synthesis
● Timing Closure
● Gate Netlist/ 

Bitstream



❏ Input quantization

❏ The charge collected by the analog readout 
goes through an ADC

❏ 2-bit quantization for the y-profile

❏ Ranges of collected charges

❏ y0 coordinate on 6 bits

❏ 64 bins of 250 μm width

Neural-network hardware co-design (model inputs)
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NN 
Classifier
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ADC y0



❏ Model quantization

❏ Quantization-aware training with QKeras

❏ Model “inspired” on the previous design space exploration

❏ Extra dense layer

❏ Batch normalization (~Dropout) prevent overfitting in training

❏ 5 bits for weights, 10 bits for activation provides best results

Neural-network hardware co-design (model weights)
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❏ Goal: reduce area

❏ Batch-normalization folding

❏ Neurons reduction

❏ Weights & activation bit-width reduction

❏ Softmax → Argmax

Neural-network hardware co-design (optimizations)
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❏ Drop y0 as a feature and use a region-specific implementation

❏ 13 different models provide altogether better performance

❏ We can leverage weight reprogrammability

Neural-network hardware co-design (optimizations #2)
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Expected loss in model performance 
because of Lorentz drift



❏ Integration of the ML algorithm as digital logic 
with the analog front-end into the in the 
pixelated area (ROIC)

❏ Low-power 28nm CMOS

❏ Early power estimates for the digital logic 

< 300 μW

ROIC integration
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❏ Tapeout of the current classifier algorithm (filtering)

❏ Moving to compression (or featurization)

❏ Train algorithms to extract properties of the incident particles

❏ Read this information out instead of raw (filtered) data

Where we are now
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Thank you
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Q/A


