FASTML Workshop @ ICCAD

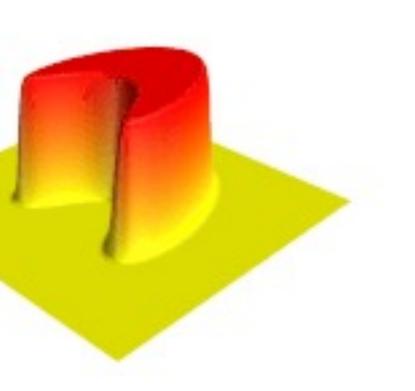
ResilienQ: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training

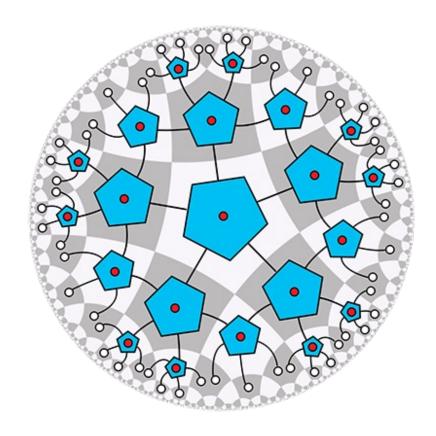
Hanrui Wang^{*1}, Yilian Liu^{* 2}, Pengyu Liu^{* 3}, Song Han¹ ¹MIT, ²Cornell University, ³CMU

• Prepare the initial state of the quantum device

Amplitude Encoding in QML

Quantum State Preparation



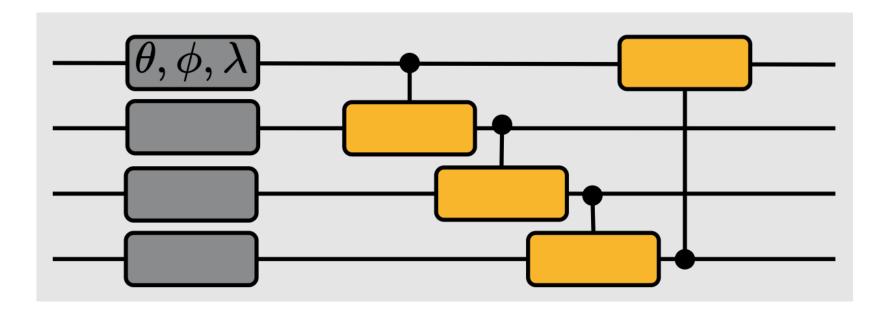


Initial States in PDE

Initial States in Quantum Error Correction

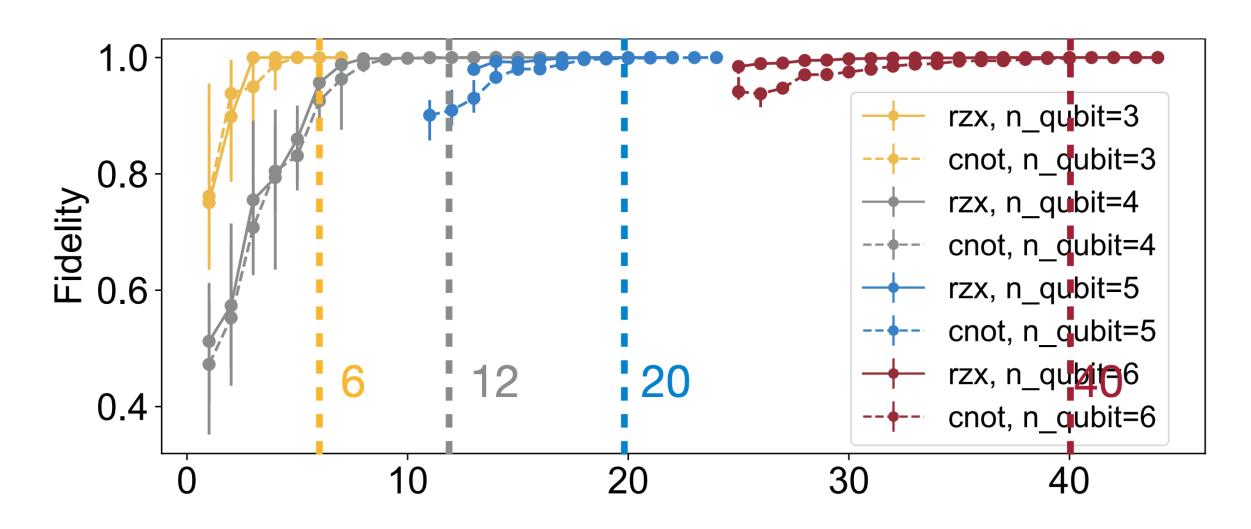
Quantum State Preparation

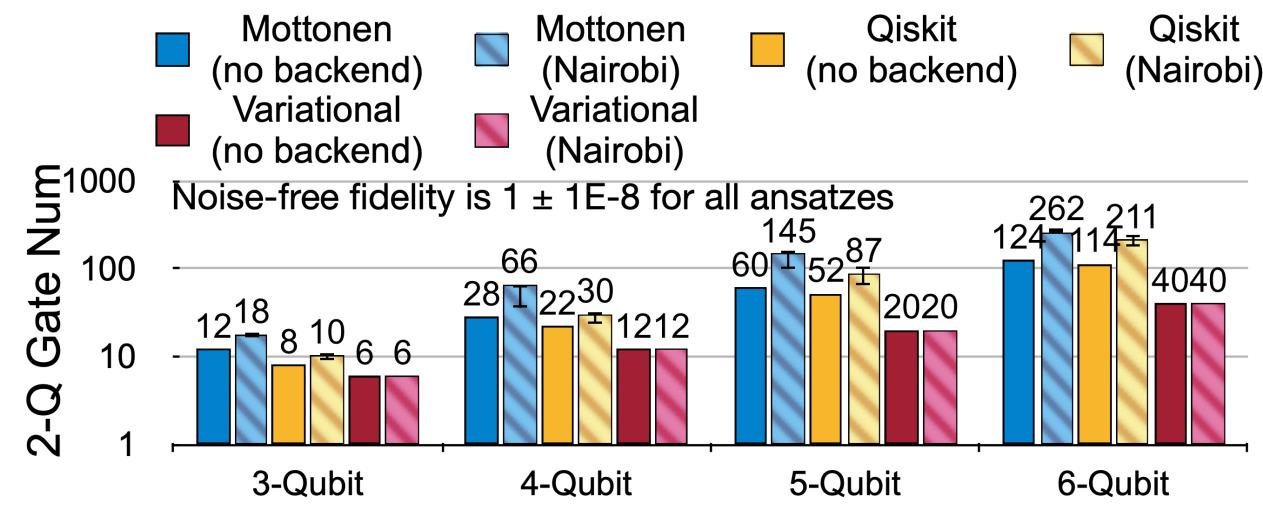
- Two ways for state preparation:
 - Arithmetic decomposition based
 - Shannon Decomposition
 - Mottonen Decomposition
 - Variational circuit based



Cost of Variational State Preparation

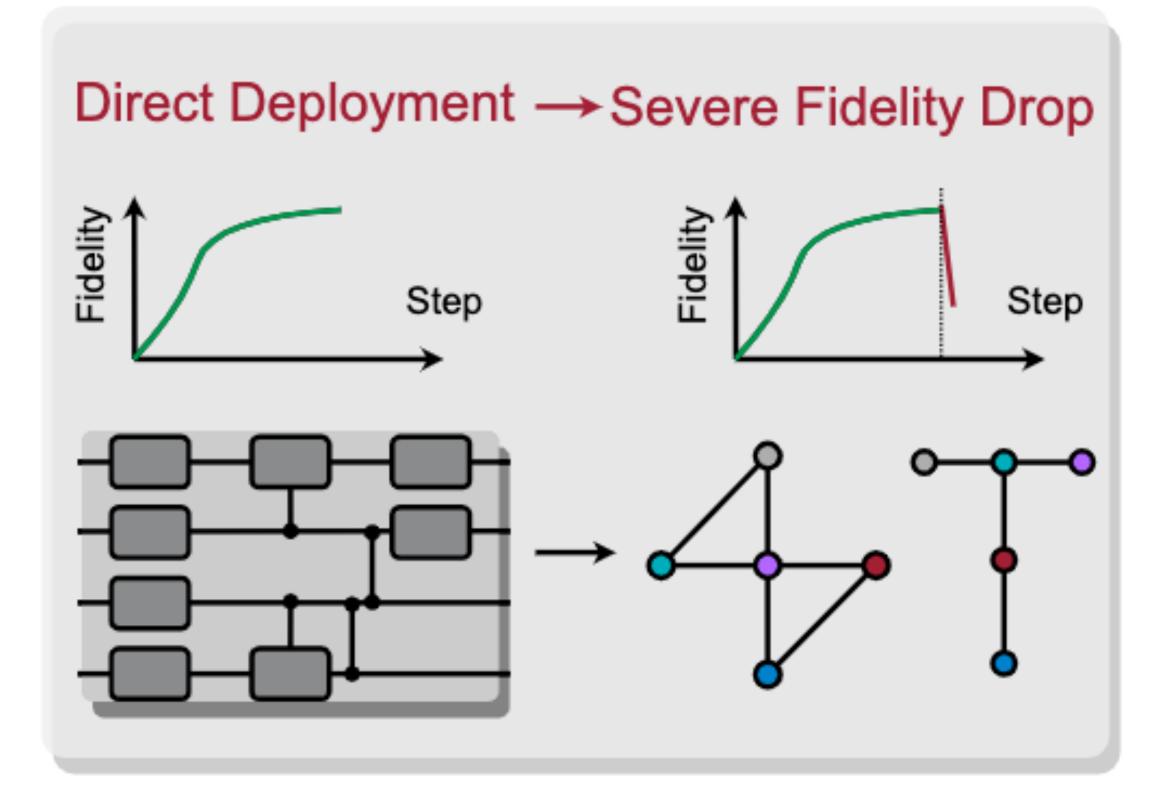
- Number of 2Q gate required is O(2^N)
- Variational State preparation requires fewer number of gates





Robust Variational State Preparation

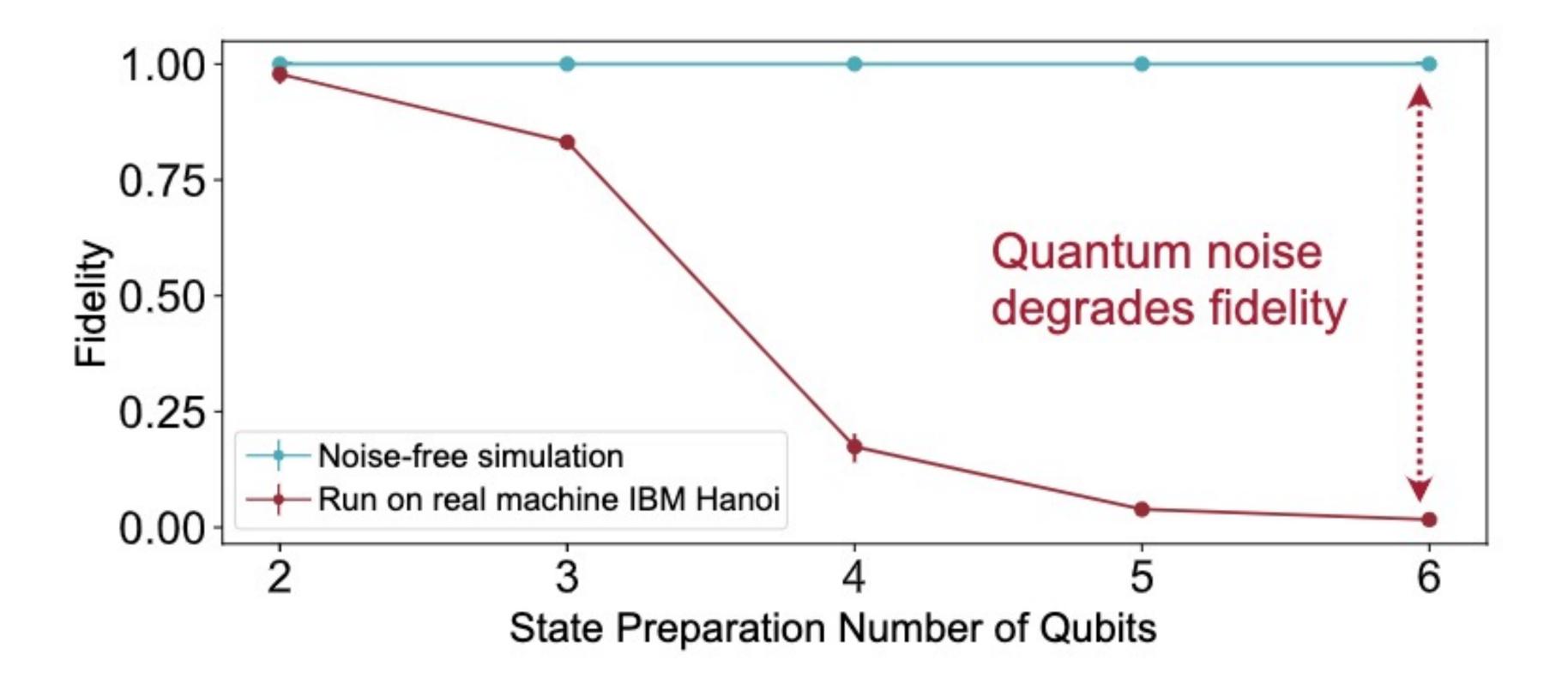
• Noise degrades state prep fidelity



Classical Off-Chip Training Noise-Unaware

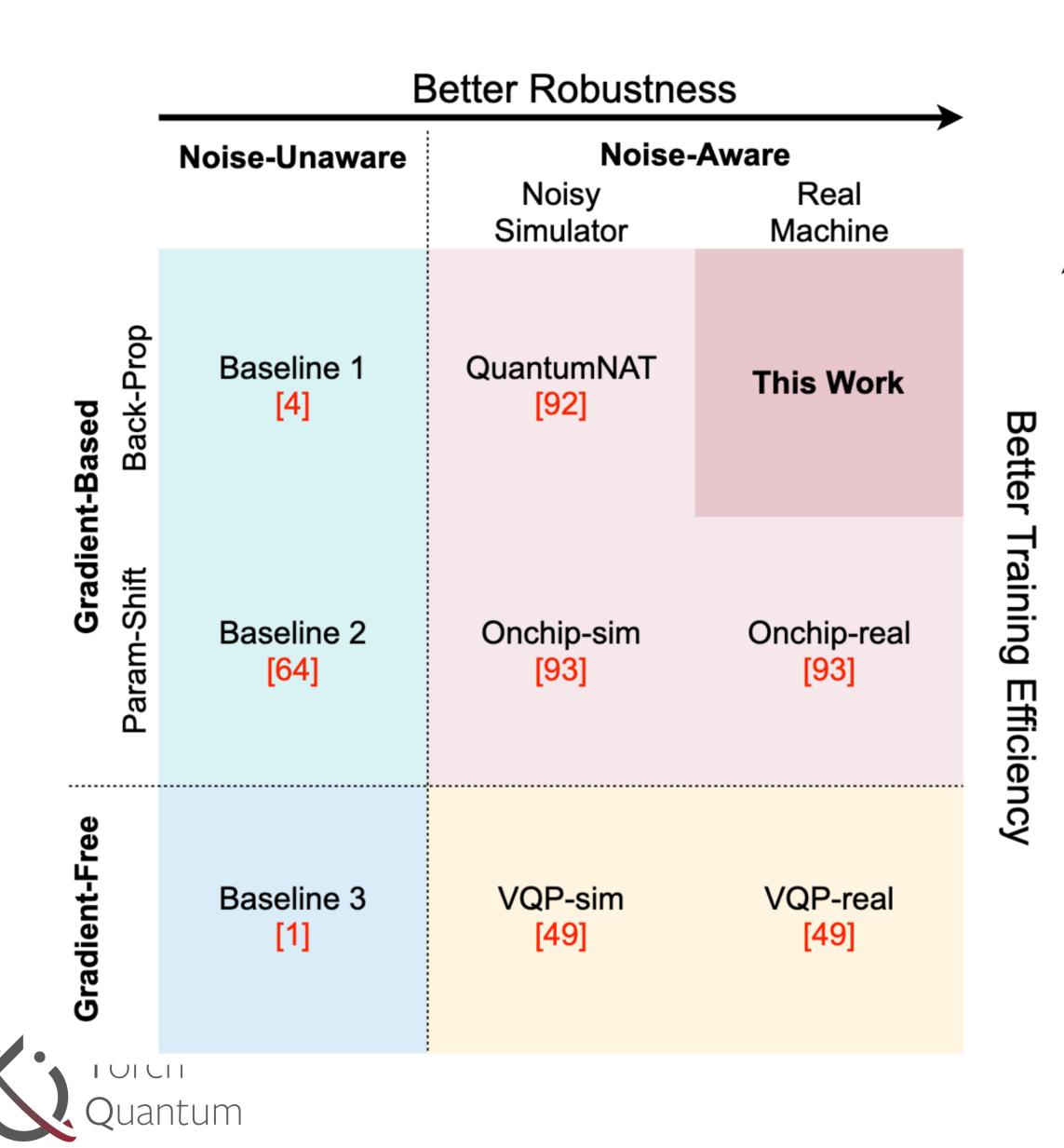
Conventional Offline Training

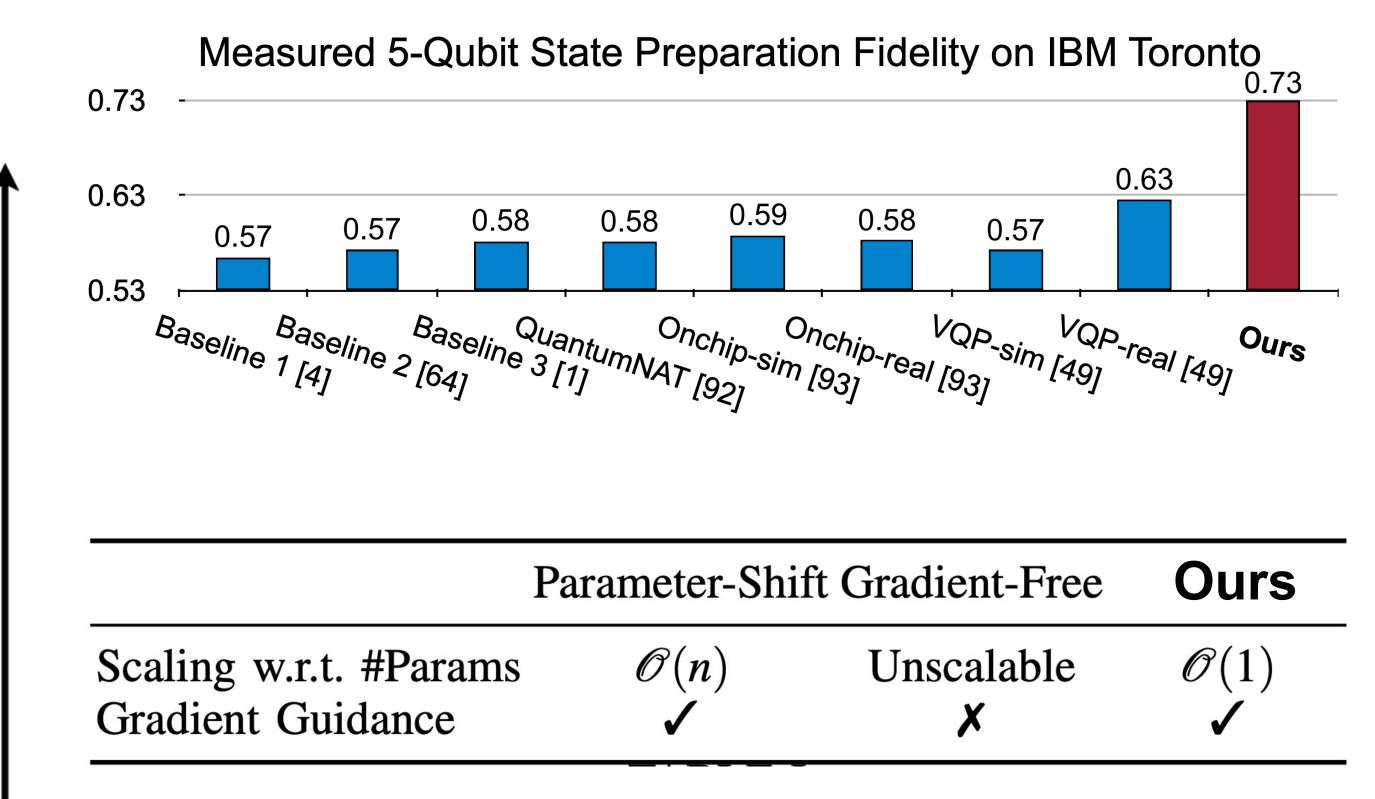
• Noise degrades state prep fidelity



Quantum Noise Impact

Prior Work for Robust Variational Circuit



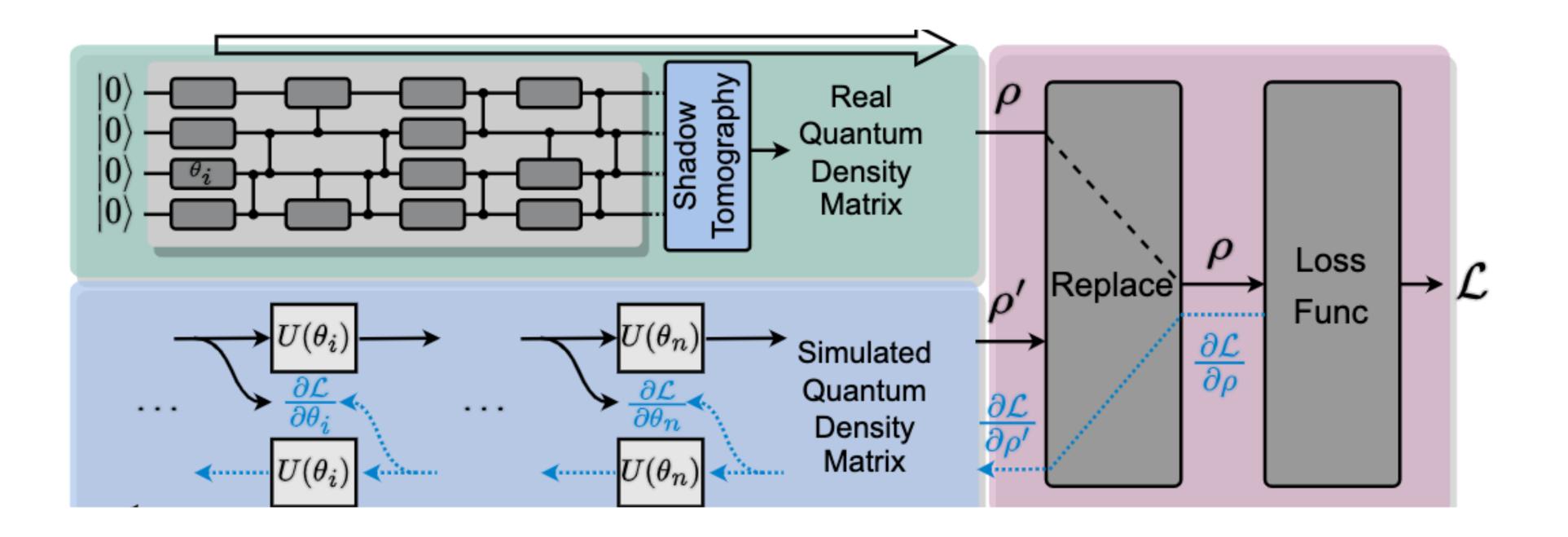


ResilienQ: Robust State Preparation

- Gradient Proxy
- Native Pulse
- Hardware Efficient Ansatz

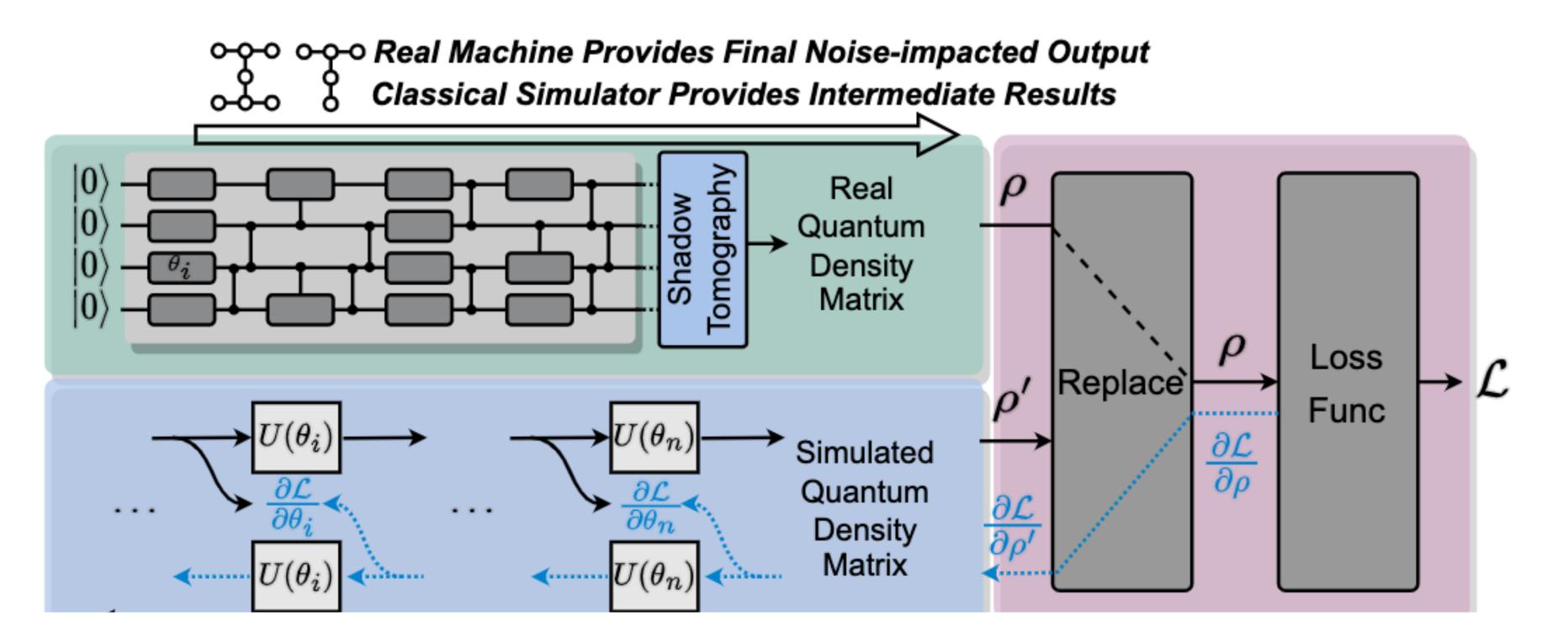
Gradient Proxy: Forward on real device; backward on simulator

Make the parameters aware of the real noise



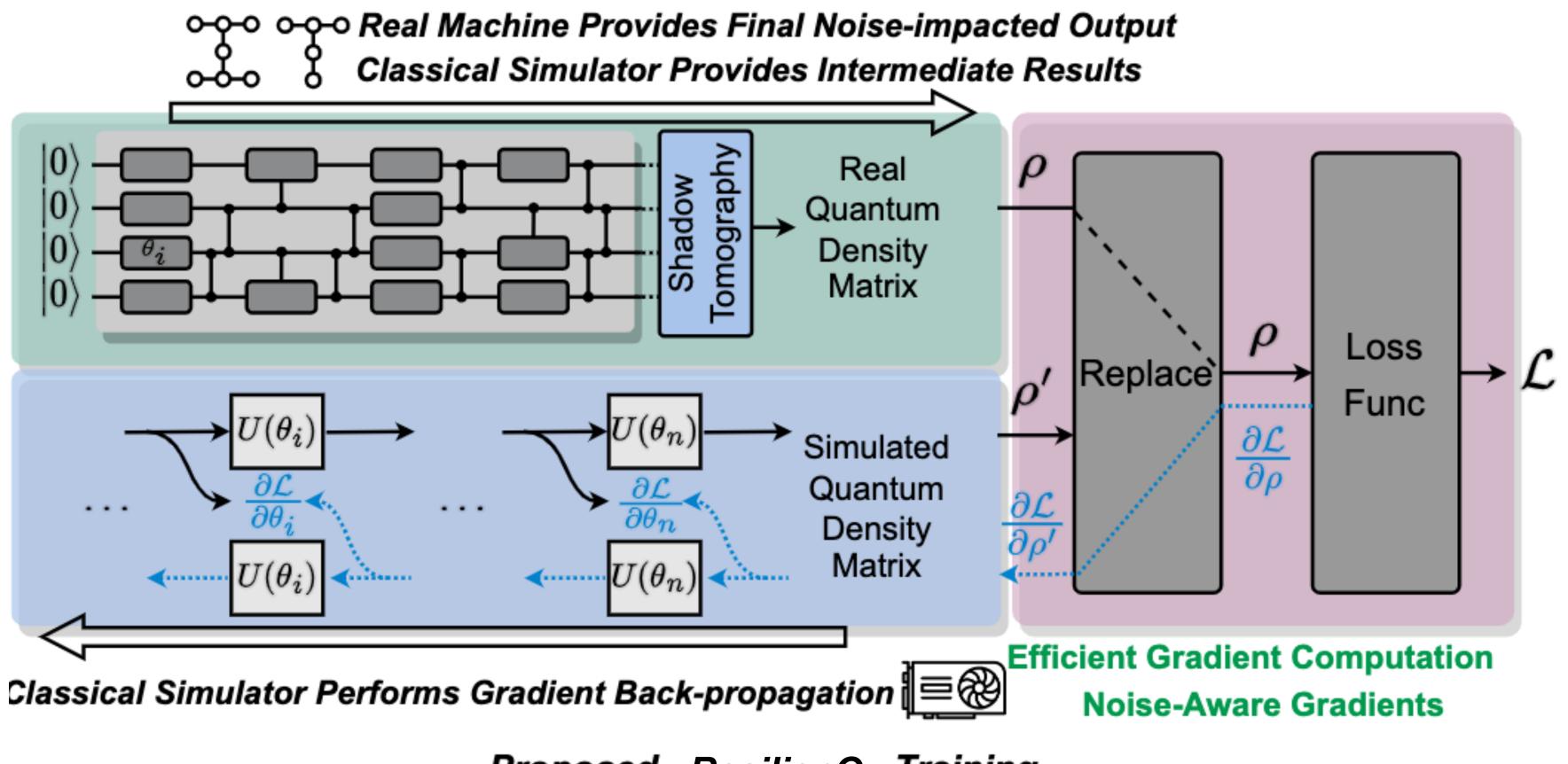
Gradient Proxy: Forward on real device; backward on simulator

Make the parameters aware of the real noise



Gradient Proxy: Forward on real device; backward on simulator

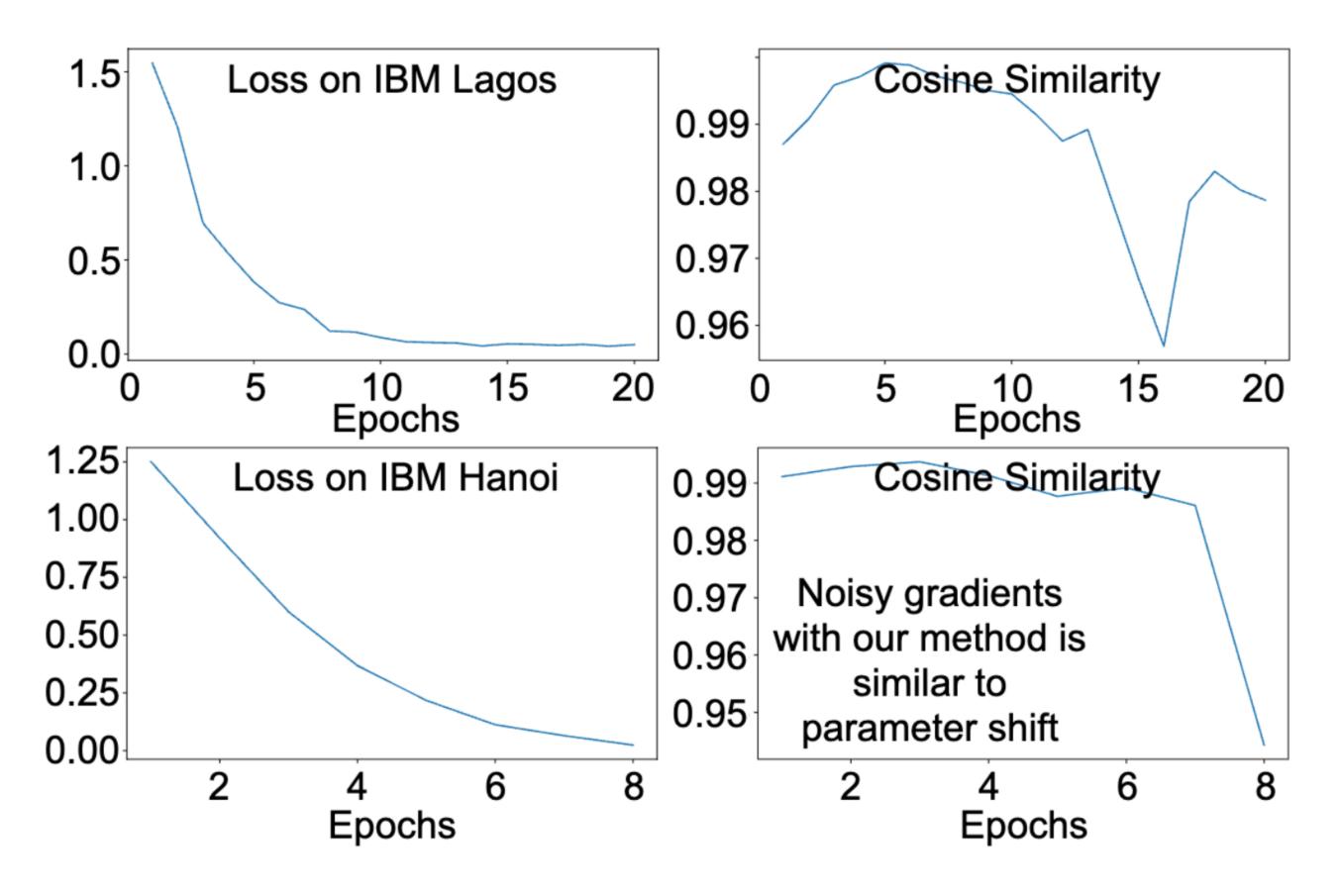
Make the parameters aware of the real noise



Proposed ResilienQ Training

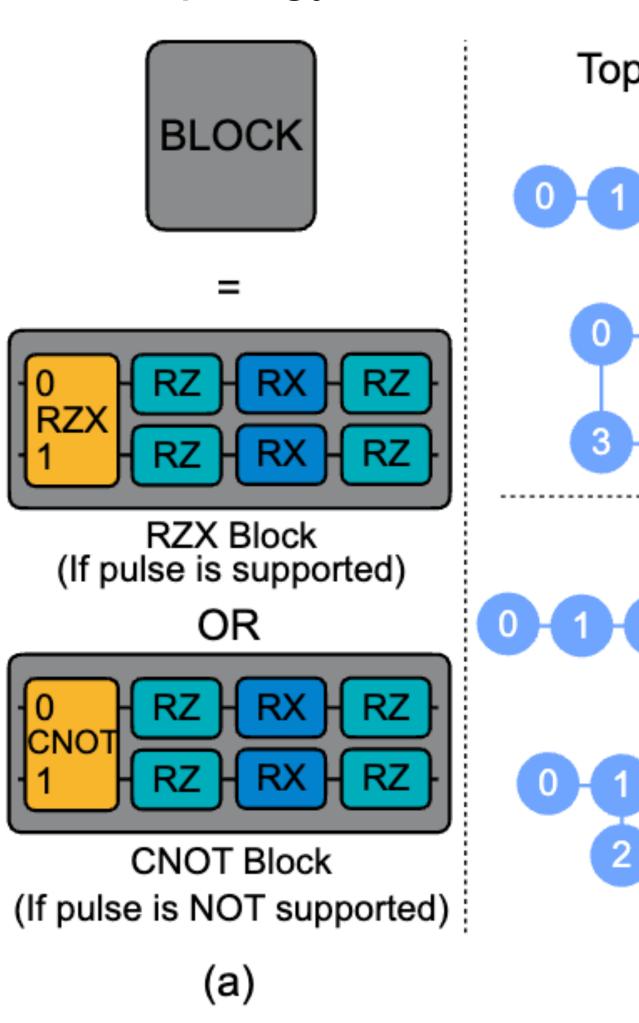
Is the estimated gradient accurate?

Noise-aware gradients approximated with I with the parameter shift rule

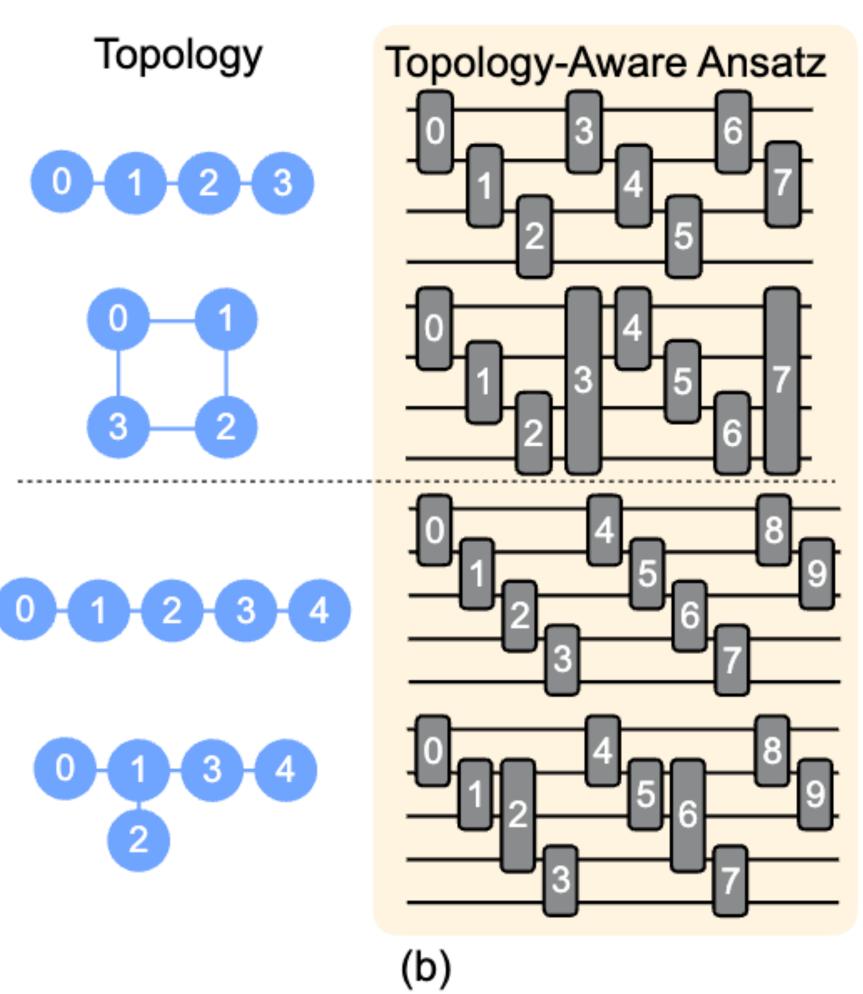


• Noise-aware gradients approximated with ResilienQ are close to the accurate ones computed

Adapt to the hardware topology

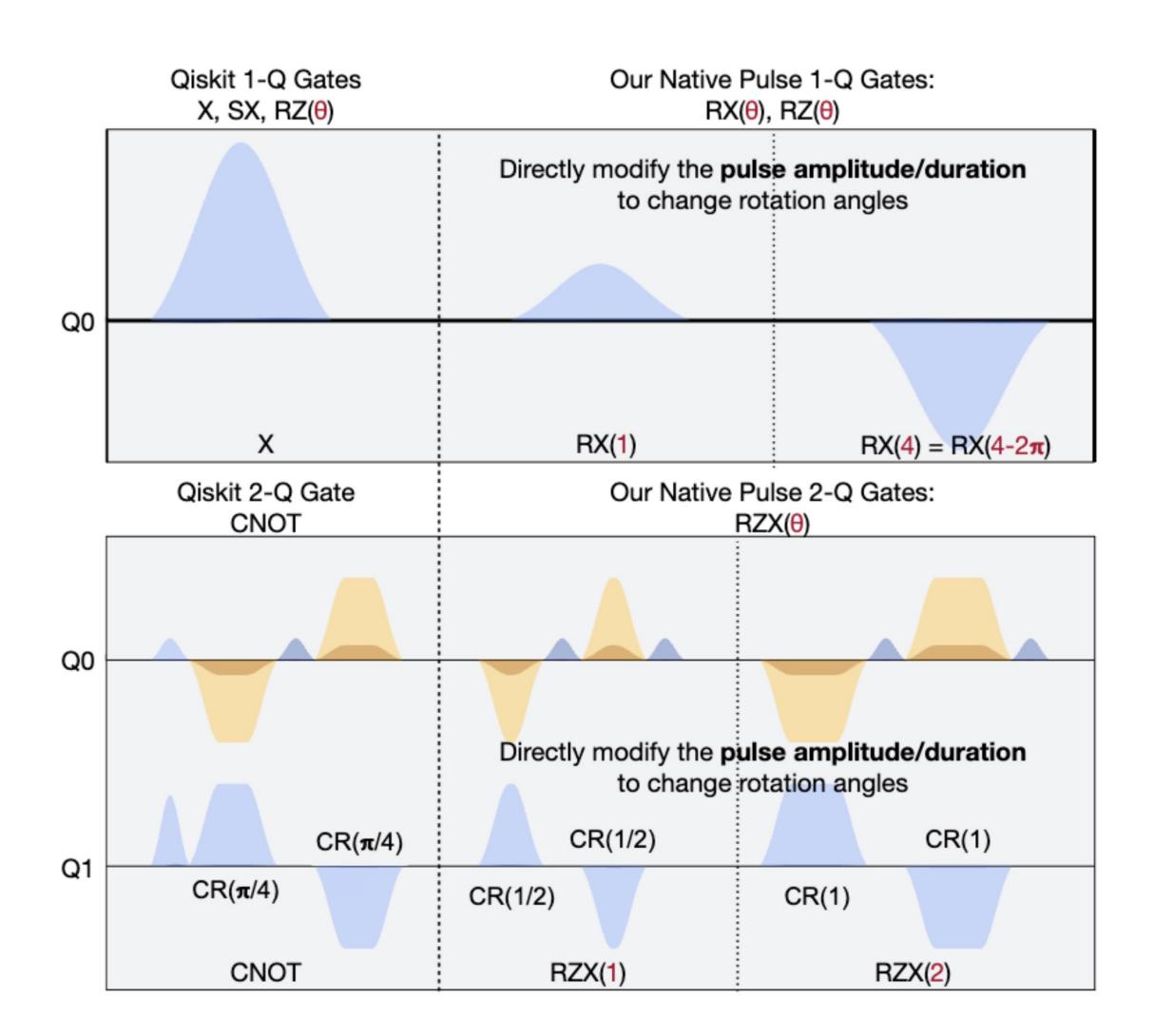


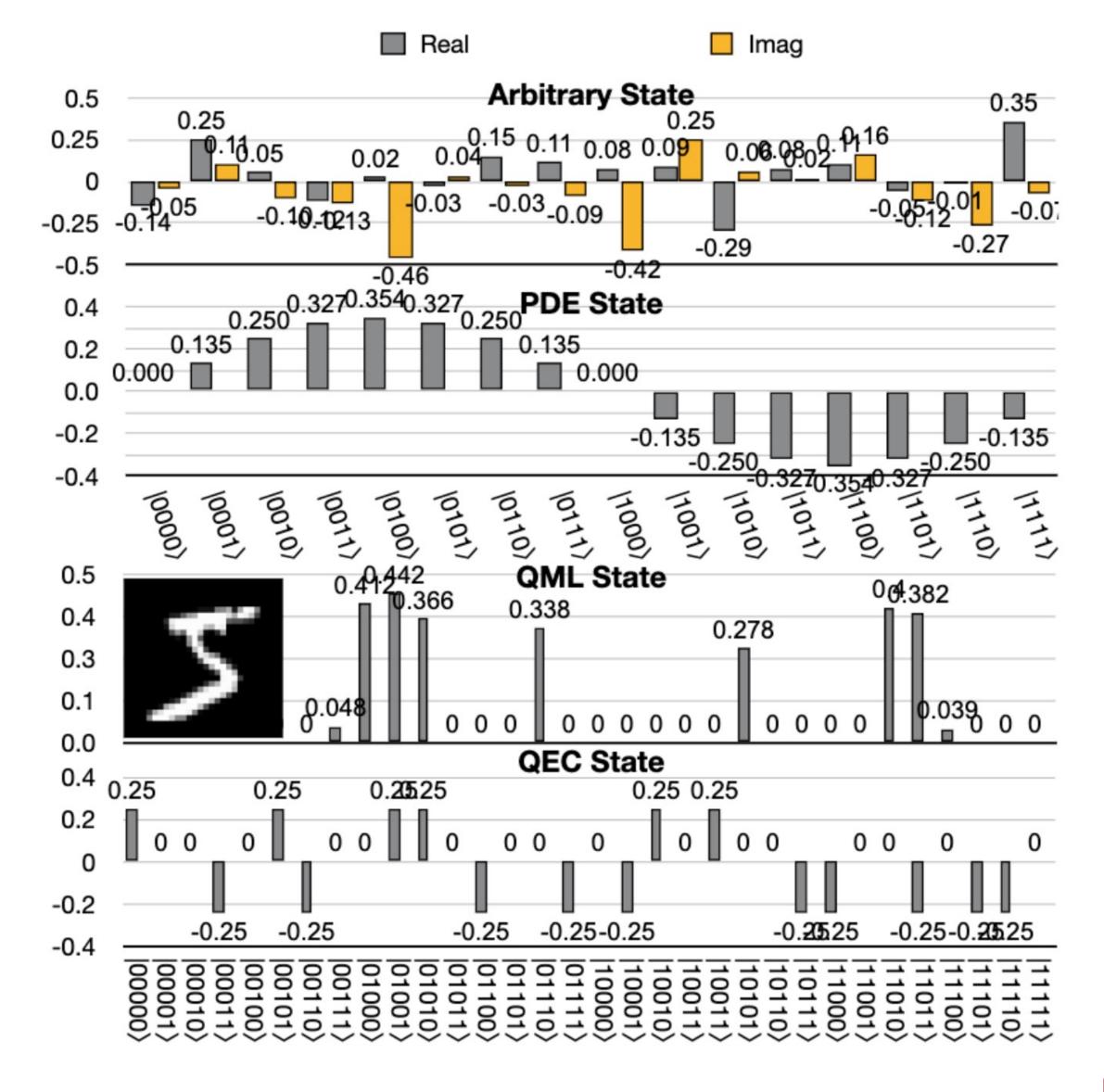
Hardware Efficient Ansatz



Optimize on the Pulse level

• Scale the pulse magnitude according to the parameter.

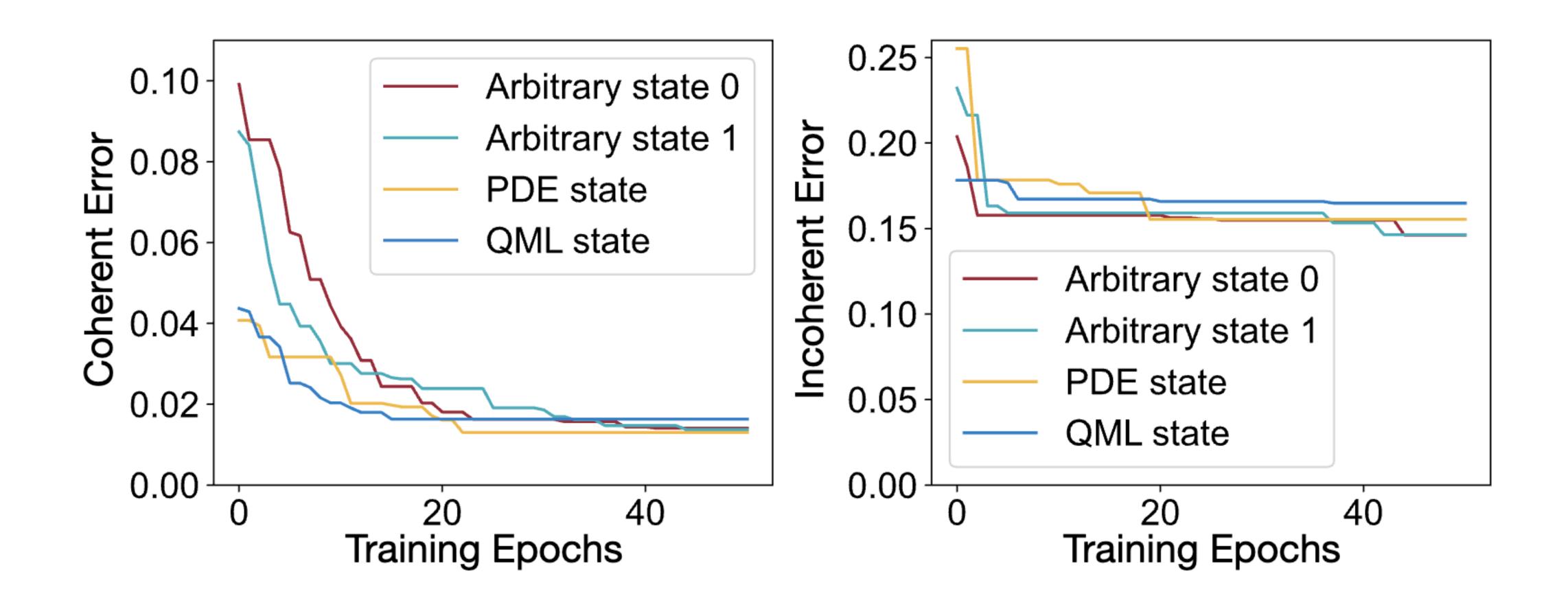


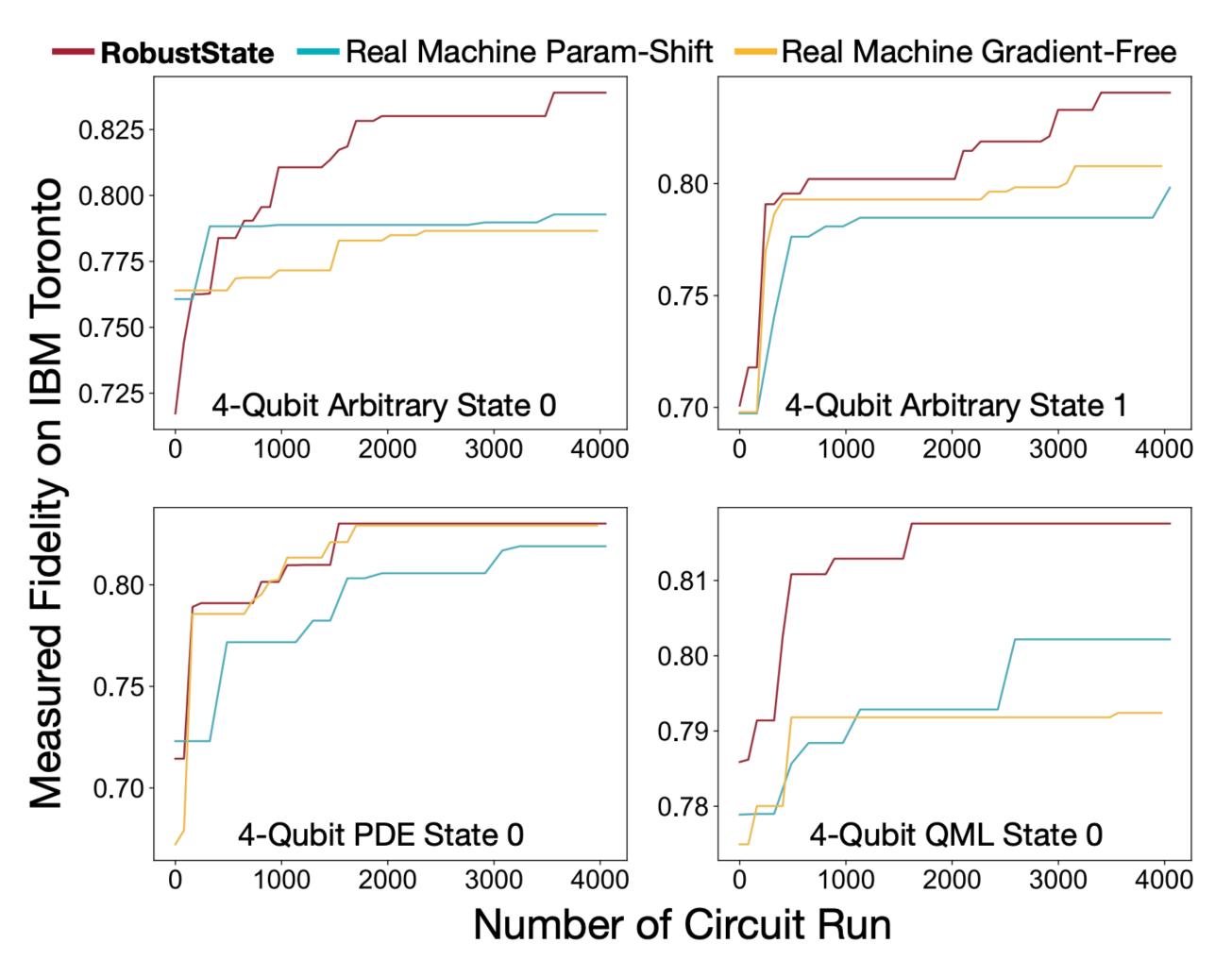


Benchmarks

Evaluation

Reduction of Coherent Errors





Efficiency over parameter shift

Comparison with arithmetic decomposition

Fidelity

Mottonen [4], [66] Mottonen+SABRE [4], [45], [66]

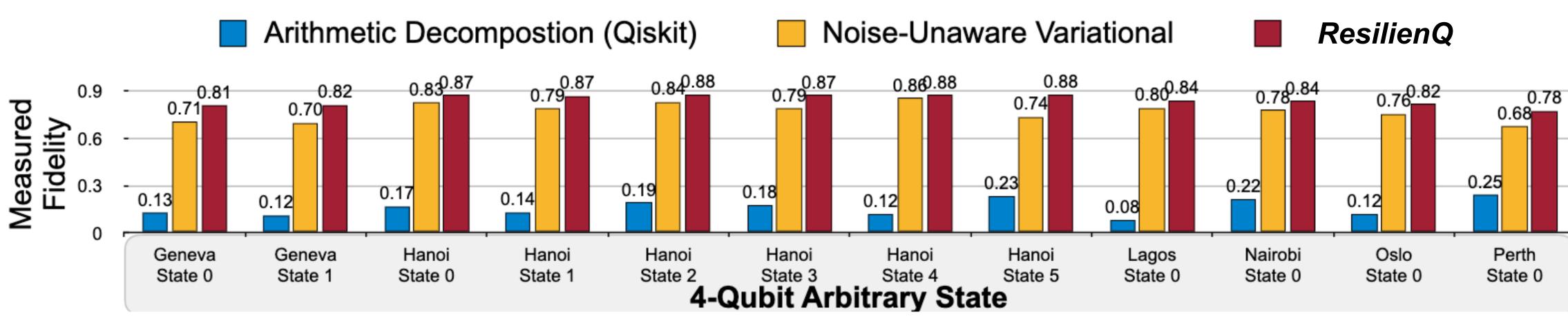
Qiskit [36] Qiskit + SABRE [45]

Ours

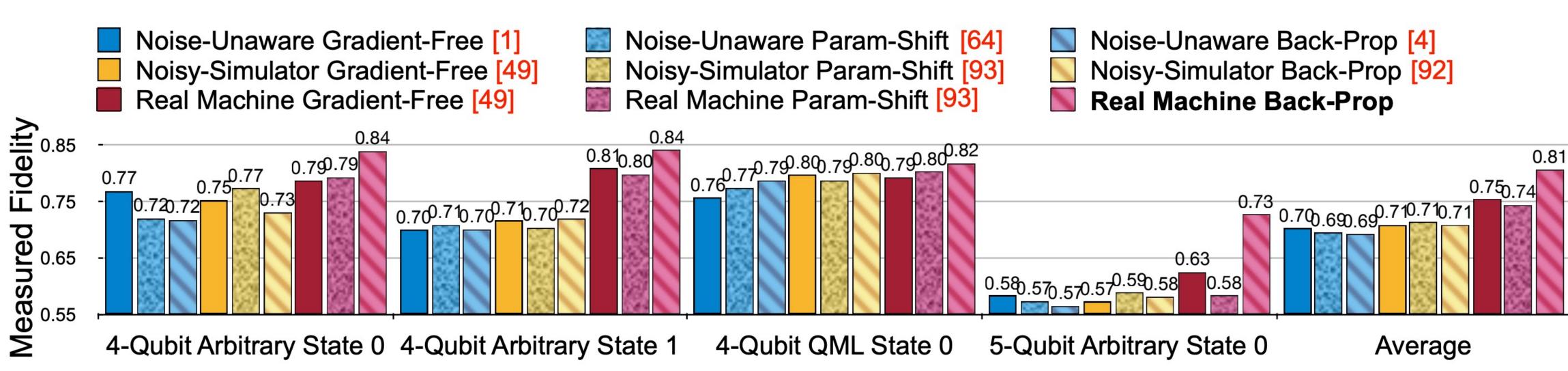
	0.777	0.713	0.718	0.736
	0.176	0.277	0.481	0.311
	0.262	0.266	0.626	0.385
]	0.156	0.175	0.269	0.200
	0.099	0.401	0.299	0.266
	Arbitrary	PDE	QML	Avg.

Result on real quantum hardware

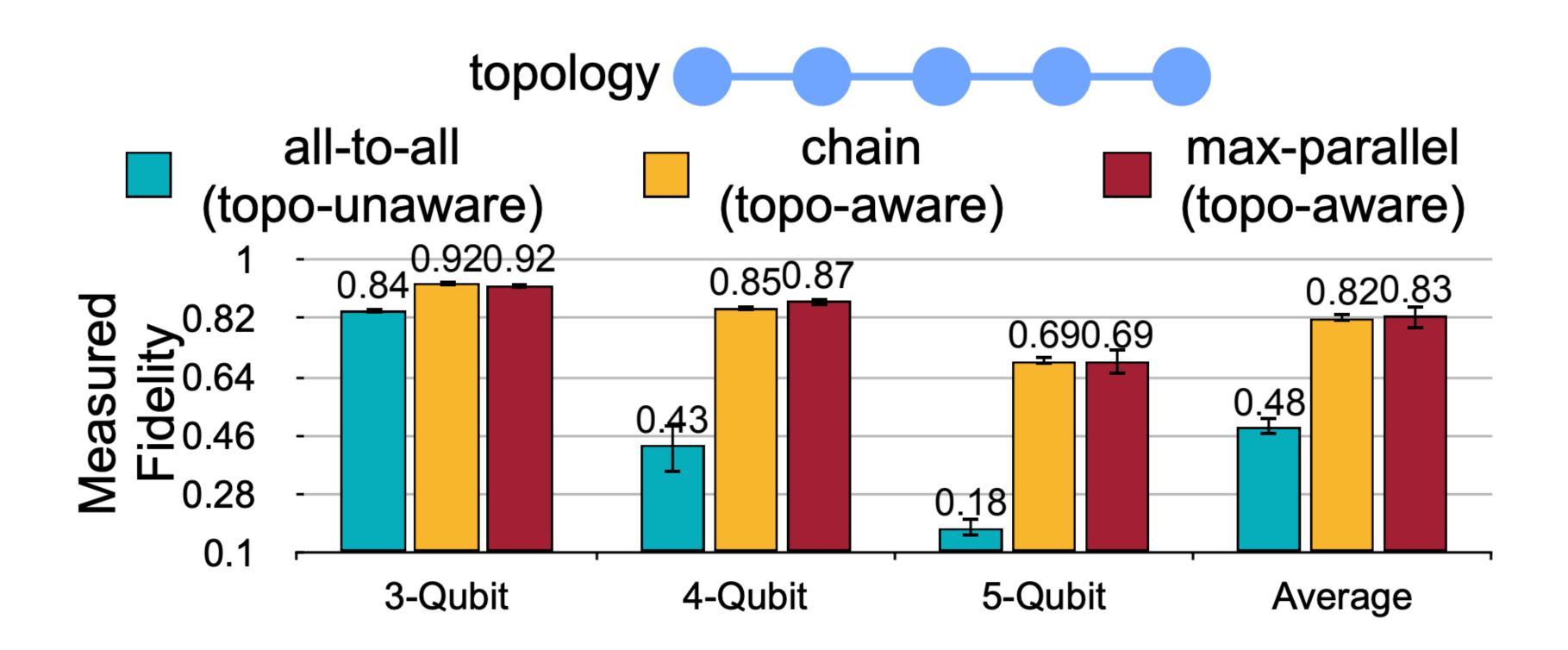
• On real quantum device



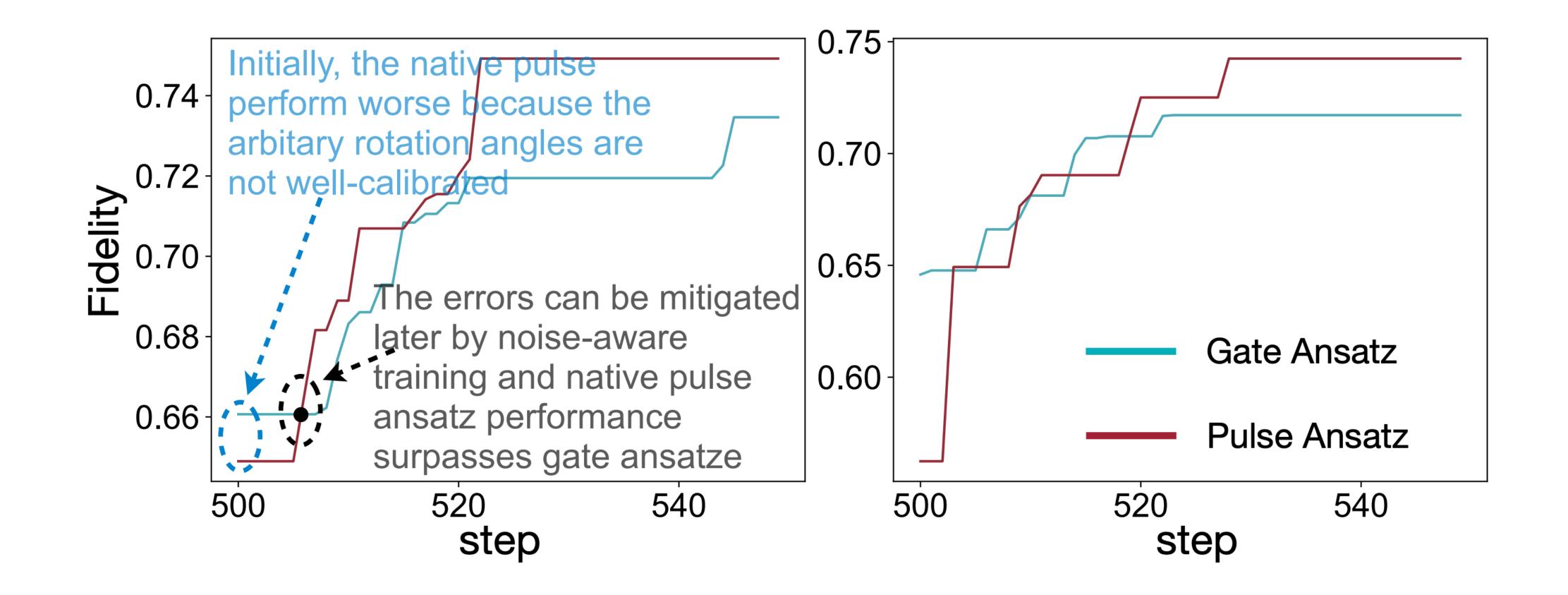
Comparison to other robust VQC training methods



Effectiveness of hardware-efficient ansatz



Pulse ansatz vs gate ansatz



Extension of gradient proxy to other tasks

- Unitary synthesis
- State regression

Task

Unitary Synthesis Jakarta Unitary Synthesis Toronto Unitary Synthesis Perth (1) Unitary Synthesis Perth (2)

Quantum State Regression Quantum State Regression

	Baseline	Ours
.) 2)	0.845 0.858 0.817 0.798	0.868 0.940 0.834 0.821
(1) Loss (2) Loss	0.167 0.163	0.147 0.124

- Comparable to arithmetic decomposition, much higher fidelity
- Preparing small to medium-sized states with high fidelity is a crucial task in quantum computing e.g. the color code, surface code
- **Block-wise** unitary synthesis can benefit significantly from ResilienQ

Take Home

- Forward on real device, backward on simulator for noisy gradients
- Pulse-level hardware-efficient ansatz design
- Applicable to other tasks such as **unitary synthesis**

Thank you for listening!

Contum Torch Quantum

https://github.com/mit-han-lab/torchquantum

<u>qmlsys.mit.edu</u>

