Part 6: Convolutional Neural Networks in hls4ml#

In this notebook you will learn how to train a pruned and quantized convolutional neural network (CNN) and deploy it using hls4ml. For this exercise, we will use the Street View House Numbers (SVHN) Dataset (http://ufldl.stanford.edu/housenumbers/).

The SVHN dataset consists of real-world images of house numbers extracted from Google Street View images. The format is similar to that of the MNIST dataset, but is a much more challenging real-world problem, as illustrated by the examples shown below.

All the images are in RGB format and have been cropped to 32x32 pixels. Unlike MNIST, more than one digit can be present in the same image and in these cases, the center digit is used to assign a label to the image. Each image can belong to one of 10 classes, corresponding to digits 0 through 9.

alt text

The SVHN dataset consists of 73,257 images for training (and 531,131 extra samples that are easier to classify and can be used as additional training data) and 26,032 images for testing.

Start with the neccessary imports#

import matplotlib.pyplot as plt
import numpy as np
import time
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
2024-09-05 18:37:44.590022: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
/home/runner/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm

Fetch the SVHN dataset using Tensorflow Dataset#

In this part we will fetch the trainining, validation and test dataset using Tensorflow Datasets (https://www.tensorflow.org/datasets). We will not use the ‘extra’ training in order to save time, but you could fetch it by adding split='train[:90%]+extra'. We will use the first 90% of the training data for training and the last 10% for validation.

ds_train, info = tfds.load('svhn_cropped', split='train[:90%]', with_info=True, as_supervised=True)
ds_test = tfds.load('svhn_cropped', split='test', shuffle_files=True, as_supervised=True)
ds_val = tfds.load('svhn_cropped', split='train[-10%:]', shuffle_files=True, as_supervised=True)

assert isinstance(ds_train, tf.data.Dataset)
train_size = int(info.splits['train'].num_examples)
input_shape = info.features['image'].shape
n_classes = info.features['label'].num_classes

print('Training on {} samples of input shape {}, belonging to {} classes'.format(train_size, input_shape, n_classes))
fig = tfds.show_examples(ds_train, info)
2024-09-05 18:37:46.494478: W tensorflow/core/platform/cloud/google_auth_provider.cc:184] All attempts to get a Google authentication bearer token failed, returning an empty token. Retrieving token from files failed with "NOT_FOUND: Could not locate the credentials file.". Retrieving token from GCE failed with "FAILED_PRECONDITION: Error executing an HTTP request: libcurl code 6 meaning 'Could not resolve hostname', error details: Could not resolve host: metadata".
Downloading and preparing dataset Unknown size (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/runner/tensorflow_datasets/svhn_cropped/3.0.0...
Dl Completed...: 0 url [00:00, ? url/s]

Dl Size...: 0 MiB [00:00, ? MiB/s]

Dl Completed...:   0%|          | 0/1 [00:00<?, ? url/s]

Dl Size...: 0 MiB [00:00, ? MiB/s]

Dl Completed...:   0%|          | 0/2 [00:00<?, ? url/s]

Dl Size...: 0 MiB [00:00, ? MiB/s]

Dl Completed...:   0%|          | 0/3 [00:00<?, ? url/s]

Dl Size...: 0 MiB [00:00, ? MiB/s]

Dl Completed...:   0%|          | 0/3 [00:00<?, ? url/s]

Dl Size...:   0%|          | 0/61 [00:00<?, ? MiB/s]

Dl Completed...:   0%|          | 0/3 [00:00<?, ? url/s]

Dl Size...:   0%|          | 0/1328 [00:00<?, ? MiB/s]

Dl Completed...:   0%|          | 0/3 [00:00<?, ? url/s]

Dl Size...:   0%|          | 0/1501 [00:00<?, ? MiB/s]


Dl Size...:   0%|          | 1/1501 [00:01<42:21,  1.69s/ MiB]

Dl Completed...:   0%|          | 0/3 [00:01<?, ? url/s]

Dl Size...:   0%|          | 1/1501 [00:01<42:21,  1.69s/ MiB]

Dl Completed...:   0%|          | 0/3 [00:01<?, ? url/s]

Dl Size...:   0%|          | 2/1501 [00:01<42:19,  1.69s/ MiB]


Dl Size...:   0%|          | 3/1501 [00:01<11:55,  2.09 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:01<?, ? url/s]

Dl Size...:   0%|          | 3/1501 [00:01<11:55,  2.09 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   0%|          | 4/1501 [00:02<11:55,  2.09 MiB/s]


Dl Size...:   0%|          | 5/1501 [00:02<09:24,  2.65 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   0%|          | 5/1501 [00:02<09:24,  2.65 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   0%|          | 6/1501 [00:02<09:23,  2.65 MiB/s]


Dl Size...:   0%|          | 7/1501 [00:02<06:41,  3.72 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   0%|          | 7/1501 [00:02<06:41,  3.72 MiB/s]


Dl Size...:   1%|          | 8/1501 [00:02<05:43,  4.35 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   1%|          | 8/1501 [00:02<05:43,  4.35 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   1%|          | 9/1501 [00:02<05:43,  4.35 MiB/s]


Dl Size...:   1%|          | 10/1501 [00:02<04:05,  6.07 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   1%|          | 10/1501 [00:02<04:05,  6.07 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:02<?, ? url/s]

Dl Size...:   1%|          | 11/1501 [00:02<04:05,  6.07 MiB/s]


Dl Size...:   1%|          | 12/1501 [00:03<03:22,  7.34 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 12/1501 [00:03<03:22,  7.34 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 13/1501 [00:03<03:22,  7.34 MiB/s]


Dl Size...:   1%|          | 14/1501 [00:03<03:03,  8.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 14/1501 [00:03<03:03,  8.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 15/1501 [00:03<03:03,  8.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 16/1501 [00:03<03:03,  8.11 MiB/s]


Dl Size...:   1%|          | 17/1501 [00:03<02:21, 10.47 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 17/1501 [00:03<02:21, 10.47 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|          | 18/1501 [00:03<02:21, 10.47 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|▏         | 19/1501 [00:03<02:21, 10.47 MiB/s]


Dl Size...:   1%|▏         | 20/1501 [00:03<01:54, 12.98 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|▏         | 20/1501 [00:03<01:54, 12.98 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|▏         | 21/1501 [00:03<01:54, 12.98 MiB/s]


Dl Size...:   1%|▏         | 22/1501 [00:03<01:45, 14.00 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   1%|▏         | 22/1501 [00:03<01:45, 14.00 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 23/1501 [00:03<01:45, 14.00 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 24/1501 [00:03<01:45, 14.00 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 25/1501 [00:03<01:45, 14.00 MiB/s]


Dl Size...:   2%|▏         | 26/1501 [00:03<01:17, 19.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 26/1501 [00:03<01:17, 19.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 27/1501 [00:03<01:17, 19.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 28/1501 [00:03<01:16, 19.14 MiB/s]


Dl Size...:   2%|▏         | 29/1501 [00:03<01:15, 19.39 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 29/1501 [00:03<01:15, 19.39 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 30/1501 [00:03<01:15, 19.39 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 31/1501 [00:03<01:15, 19.39 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:03<?, ? url/s]

Dl Size...:   2%|▏         | 32/1501 [00:03<01:15, 19.39 MiB/s]


Dl Size...:   2%|▏         | 33/1501 [00:04<01:08, 21.28 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   2%|▏         | 33/1501 [00:04<01:08, 21.28 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   2%|▏         | 34/1501 [00:04<01:08, 21.28 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   2%|▏         | 35/1501 [00:04<01:08, 21.28 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   2%|▏         | 36/1501 [00:04<01:08, 21.28 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   2%|▏         | 37/1501 [00:04<01:08, 21.28 MiB/s]


Dl Size...:   3%|▎         | 38/1501 [00:04<00:58, 24.82 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 38/1501 [00:04<00:58, 24.82 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 39/1501 [00:04<00:58, 24.82 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 40/1501 [00:04<00:58, 24.82 MiB/s]


Dl Size...:   3%|▎         | 41/1501 [00:04<00:56, 25.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 41/1501 [00:04<00:56, 25.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 42/1501 [00:04<00:56, 25.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 43/1501 [00:04<00:56, 25.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 44/1501 [00:04<00:56, 25.79 MiB/s]


Dl Size...:   3%|▎         | 45/1501 [00:04<00:52, 27.95 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 45/1501 [00:04<00:52, 27.95 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 46/1501 [00:04<00:52, 27.95 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 47/1501 [00:04<00:52, 27.95 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 48/1501 [00:04<00:51, 27.95 MiB/s]


Dl Size...:   3%|▎         | 49/1501 [00:04<00:47, 30.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 49/1501 [00:04<00:47, 30.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 50/1501 [00:04<00:47, 30.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 51/1501 [00:04<00:47, 30.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   3%|▎         | 52/1501 [00:04<00:47, 30.79 MiB/s]


Dl Size...:   4%|▎         | 53/1501 [00:04<00:44, 32.29 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▎         | 53/1501 [00:04<00:44, 32.29 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▎         | 54/1501 [00:04<00:44, 32.29 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▎         | 55/1501 [00:04<00:44, 32.29 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▎         | 56/1501 [00:04<00:44, 32.29 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 57/1501 [00:04<00:44, 32.29 MiB/s]


Dl Size...:   4%|▍         | 58/1501 [00:04<00:40, 35.44 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 58/1501 [00:04<00:40, 35.44 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 59/1501 [00:04<00:40, 35.44 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 60/1501 [00:04<00:40, 35.44 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 61/1501 [00:04<00:40, 35.44 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 62/1501 [00:04<00:40, 35.44 MiB/s]


Dl Size...:   4%|▍         | 63/1501 [00:04<00:39, 36.76 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 63/1501 [00:04<00:39, 36.76 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 64/1501 [00:04<00:39, 36.76 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 65/1501 [00:04<00:39, 36.76 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 66/1501 [00:04<00:39, 36.76 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   4%|▍         | 67/1501 [00:04<00:39, 36.76 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   5%|▍         | 68/1501 [00:04<00:38, 36.76 MiB/s]


Dl Size...:   5%|▍         | 69/1501 [00:04<00:34, 41.91 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:04<?, ? url/s]

Dl Size...:   5%|▍         | 69/1501 [00:04<00:34, 41.91 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▍         | 70/1501 [00:05<00:34, 41.91 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▍         | 71/1501 [00:05<00:34, 41.91 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▍         | 72/1501 [00:05<00:34, 41.91 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▍         | 73/1501 [00:05<00:34, 41.91 MiB/s]


Dl Size...:   5%|▍         | 74/1501 [00:05<00:33, 42.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▍         | 74/1501 [00:05<00:33, 42.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▍         | 75/1501 [00:05<00:33, 42.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 76/1501 [00:05<00:33, 42.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 77/1501 [00:05<00:33, 42.14 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 78/1501 [00:05<00:33, 42.14 MiB/s]


Dl Size...:   5%|▌         | 79/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 79/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 80/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 81/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   5%|▌         | 82/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 83/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 84/1501 [00:05<00:32, 43.88 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 85/1501 [00:05<00:32, 43.88 MiB/s]


Dl Size...:   6%|▌         | 86/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 86/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 87/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 88/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 89/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 90/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 91/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 92/1501 [00:05<00:30, 46.51 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▌         | 93/1501 [00:05<00:30, 46.51 MiB/s]


Dl Size...:   6%|▋         | 94/1501 [00:05<00:25, 54.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▋         | 94/1501 [00:05<00:25, 54.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▋         | 95/1501 [00:05<00:25, 54.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▋         | 96/1501 [00:05<00:25, 54.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   6%|▋         | 97/1501 [00:05<00:25, 54.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 98/1501 [00:05<00:25, 54.79 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 99/1501 [00:05<00:25, 54.79 MiB/s]


Dl Size...:   7%|▋         | 100/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 100/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 101/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 102/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 103/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 104/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 105/1501 [00:05<00:25, 54.80 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 106/1501 [00:05<00:25, 54.80 MiB/s]


Dl Size...:   7%|▋         | 107/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 107/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 108/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 109/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 110/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 111/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   7%|▋         | 112/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 113/1501 [00:05<00:23, 58.11 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 114/1501 [00:05<00:23, 58.11 MiB/s]


Dl Size...:   8%|▊         | 115/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 115/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 116/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 117/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 118/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 119/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 120/1501 [00:05<00:21, 63.37 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 121/1501 [00:05<00:21, 63.37 MiB/s]


Dl Size...:   8%|▊         | 122/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 122/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 123/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 124/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 125/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 126/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   8%|▊         | 127/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   9%|▊         | 128/1501 [00:05<00:21, 64.93 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   9%|▊         | 129/1501 [00:05<00:21, 64.93 MiB/s]


Dl Size...:   9%|▊         | 130/1501 [00:05<00:20, 68.52 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   9%|▊         | 130/1501 [00:05<00:20, 68.52 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:05<?, ? url/s]

Dl Size...:   9%|▊         | 131/1501 [00:05<00:19, 68.52 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:06<?, ? url/s]

Dl Size...:   9%|▉         | 132/1501 [00:06<00:19, 68.52 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:06<?, ? url/s]

Dl Size...:   9%|▉         | 133/1501 [00:06<00:19, 68.52 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:06<?, ? url/s]

Dl Size...:   9%|▉         | 134/1501 [00:06<00:19, 68.52 MiB/s]

Dl Completed...:   0%|          | 0/3 [00:06<?, ? url/s]

Dl Size...:   9%|▉         | 135/1501 [00:06<00:19, 68.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]
Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 135/1501 [00:06<00:19, 68.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 136/1501 [00:06<00:19, 68.52 MiB/s]


Dl Size...:   9%|▉         | 137/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 137/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 138/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 139/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 140/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 141/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:   9%|▉         | 142/1501 [00:06<00:19, 68.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 143/1501 [00:06<00:19, 68.72 MiB/s]


Dl Size...:  10%|▉         | 144/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 144/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 145/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 146/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 147/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 148/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 149/1501 [00:06<00:23, 57.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|▉         | 150/1501 [00:06<00:23, 57.17 MiB/s]


Dl Size...:  10%|█         | 151/1501 [00:06<00:26, 51.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 151/1501 [00:06<00:26, 51.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 152/1501 [00:06<00:26, 51.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 153/1501 [00:06<00:26, 51.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 154/1501 [00:06<00:26, 51.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 155/1501 [00:06<00:25, 51.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 156/1501 [00:06<00:25, 51.79 MiB/s]


Dl Size...:  10%|█         | 157/1501 [00:06<00:28, 47.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  10%|█         | 157/1501 [00:06<00:28, 47.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 158/1501 [00:06<00:28, 47.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 159/1501 [00:06<00:28, 47.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 160/1501 [00:06<00:28, 47.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 161/1501 [00:06<00:28, 47.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 162/1501 [00:06<00:28, 47.65 MiB/s]


Dl Size...:  11%|█         | 163/1501 [00:06<00:30, 44.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 163/1501 [00:06<00:30, 44.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 164/1501 [00:06<00:30, 44.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 165/1501 [00:06<00:30, 44.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 166/1501 [00:06<00:30, 44.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 167/1501 [00:06<00:29, 44.49 MiB/s]


Dl Size...:  11%|█         | 168/1501 [00:06<00:29, 45.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█         | 168/1501 [00:06<00:29, 45.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█▏        | 169/1501 [00:06<00:29, 45.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█▏        | 170/1501 [00:06<00:29, 45.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█▏        | 171/1501 [00:06<00:29, 45.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  11%|█▏        | 172/1501 [00:06<00:29, 45.59 MiB/s]


Dl Size...:  12%|█▏        | 173/1501 [00:06<00:30, 43.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 173/1501 [00:06<00:30, 43.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 174/1501 [00:06<00:30, 43.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:06<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 175/1501 [00:06<00:30, 43.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 176/1501 [00:07<00:30, 43.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 177/1501 [00:07<00:30, 43.03 MiB/s]


Dl Size...:  12%|█▏        | 178/1501 [00:07<00:30, 43.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 178/1501 [00:07<00:30, 43.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 179/1501 [00:07<00:30, 43.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 180/1501 [00:07<00:30, 43.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 181/1501 [00:07<00:30, 43.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 182/1501 [00:07<00:29, 43.99 MiB/s]


Dl Size...:  12%|█▏        | 183/1501 [00:07<00:30, 43.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 183/1501 [00:07<00:30, 43.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 184/1501 [00:07<00:30, 43.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 185/1501 [00:07<00:30, 43.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 186/1501 [00:07<00:30, 43.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  12%|█▏        | 187/1501 [00:07<00:30, 43.04 MiB/s]


Dl Size...:  13%|█▎        | 188/1501 [00:07<00:31, 41.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 188/1501 [00:07<00:31, 41.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 189/1501 [00:07<00:31, 41.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 190/1501 [00:07<00:31, 41.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 191/1501 [00:07<00:31, 41.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 192/1501 [00:07<00:31, 41.54 MiB/s]


Dl Size...:  13%|█▎        | 193/1501 [00:07<00:31, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 193/1501 [00:07<00:31, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 194/1501 [00:07<00:31, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 195/1501 [00:07<00:31, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 196/1501 [00:07<00:31, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 197/1501 [00:07<00:31, 40.99 MiB/s]


Dl Size...:  13%|█▎        | 198/1501 [00:07<00:30, 43.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 198/1501 [00:07<00:30, 43.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 199/1501 [00:07<00:30, 43.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 200/1501 [00:07<00:30, 43.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 201/1501 [00:07<00:30, 43.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  13%|█▎        | 202/1501 [00:07<00:30, 43.11 MiB/s]


Dl Size...:  14%|█▎        | 203/1501 [00:07<00:31, 41.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▎        | 203/1501 [00:07<00:31, 41.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▎        | 204/1501 [00:07<00:31, 41.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▎        | 205/1501 [00:07<00:31, 41.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▎        | 206/1501 [00:07<00:31, 41.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 207/1501 [00:07<00:31, 41.34 MiB/s]


Dl Size...:  14%|█▍        | 208/1501 [00:07<00:30, 43.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 208/1501 [00:07<00:30, 43.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 209/1501 [00:07<00:29, 43.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 210/1501 [00:07<00:29, 43.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 211/1501 [00:07<00:29, 43.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 212/1501 [00:07<00:29, 43.09 MiB/s]


Dl Size...:  14%|█▍        | 213/1501 [00:07<00:30, 42.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 213/1501 [00:07<00:30, 42.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 214/1501 [00:07<00:30, 42.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 215/1501 [00:07<00:30, 42.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:07<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 216/1501 [00:07<00:30, 42.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  14%|█▍        | 217/1501 [00:08<00:30, 42.09 MiB/s]


Dl Size...:  15%|█▍        | 218/1501 [00:08<00:31, 40.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 218/1501 [00:08<00:31, 40.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 219/1501 [00:08<00:31, 40.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 220/1501 [00:08<00:31, 40.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 221/1501 [00:08<00:31, 40.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 222/1501 [00:08<00:31, 40.52 MiB/s]


Dl Size...:  15%|█▍        | 223/1501 [00:08<00:30, 41.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 223/1501 [00:08<00:30, 41.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 224/1501 [00:08<00:30, 41.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▍        | 225/1501 [00:08<00:30, 41.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 226/1501 [00:08<00:30, 41.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 227/1501 [00:08<00:30, 41.37 MiB/s]


Dl Size...:  15%|█▌        | 228/1501 [00:08<00:30, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 228/1501 [00:08<00:30, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 229/1501 [00:08<00:30, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 230/1501 [00:08<00:30, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 231/1501 [00:08<00:30, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  15%|█▌        | 232/1501 [00:08<00:30, 42.16 MiB/s]


Dl Size...:  16%|█▌        | 233/1501 [00:08<00:30, 42.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 233/1501 [00:08<00:30, 42.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 234/1501 [00:08<00:30, 42.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 235/1501 [00:08<00:30, 42.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 236/1501 [00:08<00:30, 42.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 237/1501 [00:08<00:30, 42.07 MiB/s]


Dl Size...:  16%|█▌        | 238/1501 [00:08<00:29, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 238/1501 [00:08<00:29, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 239/1501 [00:08<00:29, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 240/1501 [00:08<00:29, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 241/1501 [00:08<00:29, 42.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 242/1501 [00:08<00:29, 42.16 MiB/s]


Dl Size...:  16%|█▌        | 243/1501 [00:08<00:30, 40.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▌        | 243/1501 [00:08<00:30, 40.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▋        | 244/1501 [00:08<00:30, 40.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▋        | 245/1501 [00:08<00:30, 40.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▋        | 246/1501 [00:08<00:30, 40.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  16%|█▋        | 247/1501 [00:08<00:30, 40.82 MiB/s]


Dl Size...:  17%|█▋        | 248/1501 [00:08<00:30, 41.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 248/1501 [00:08<00:30, 41.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 249/1501 [00:08<00:30, 41.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 250/1501 [00:08<00:30, 41.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 251/1501 [00:08<00:30, 41.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 252/1501 [00:08<00:30, 41.10 MiB/s]


Dl Size...:  17%|█▋        | 253/1501 [00:08<00:30, 41.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 253/1501 [00:08<00:30, 41.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 254/1501 [00:08<00:30, 41.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 255/1501 [00:08<00:30, 41.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 256/1501 [00:08<00:30, 41.07 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 257/1501 [00:08<00:30, 41.07 MiB/s]


Dl Size...:  17%|█▋        | 258/1501 [00:08<00:29, 42.86 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:08<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 258/1501 [00:08<00:29, 42.86 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 259/1501 [00:09<00:28, 42.86 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 260/1501 [00:09<00:28, 42.86 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 261/1501 [00:09<00:28, 42.86 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  17%|█▋        | 262/1501 [00:09<00:28, 42.86 MiB/s]


Dl Size...:  18%|█▊        | 263/1501 [00:09<00:28, 43.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 263/1501 [00:09<00:28, 43.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 264/1501 [00:09<00:28, 43.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 265/1501 [00:09<00:28, 43.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 266/1501 [00:09<00:28, 43.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 267/1501 [00:09<00:28, 43.98 MiB/s]


Dl Size...:  18%|█▊        | 268/1501 [00:09<00:30, 40.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 268/1501 [00:09<00:30, 40.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 269/1501 [00:09<00:30, 40.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 270/1501 [00:09<00:30, 40.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 271/1501 [00:09<00:30, 40.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 272/1501 [00:09<00:30, 40.26 MiB/s]


Dl Size...:  18%|█▊        | 273/1501 [00:09<00:28, 42.47 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 273/1501 [00:09<00:28, 42.47 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 274/1501 [00:09<00:28, 42.47 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 275/1501 [00:09<00:28, 42.47 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 276/1501 [00:09<00:28, 42.47 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  18%|█▊        | 277/1501 [00:09<00:28, 42.47 MiB/s]


Dl Size...:  19%|█▊        | 278/1501 [00:09<00:29, 41.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▊        | 278/1501 [00:09<00:29, 41.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▊        | 279/1501 [00:09<00:29, 41.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▊        | 280/1501 [00:09<00:29, 41.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▊        | 281/1501 [00:09<00:29, 41.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 282/1501 [00:09<00:29, 41.20 MiB/s]


Dl Size...:  19%|█▉        | 283/1501 [00:09<00:28, 42.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 283/1501 [00:09<00:28, 42.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 284/1501 [00:09<00:28, 42.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 285/1501 [00:09<00:28, 42.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 286/1501 [00:09<00:28, 42.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 287/1501 [00:09<00:28, 42.99 MiB/s]


Dl Size...:  19%|█▉        | 288/1501 [00:09<00:28, 43.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 288/1501 [00:09<00:28, 43.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 289/1501 [00:09<00:28, 43.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 290/1501 [00:09<00:28, 43.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 291/1501 [00:09<00:27, 43.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  19%|█▉        | 292/1501 [00:09<00:27, 43.23 MiB/s]


Dl Size...:  20%|█▉        | 293/1501 [00:09<00:30, 39.71 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 293/1501 [00:09<00:30, 39.71 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 294/1501 [00:09<00:30, 39.71 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 295/1501 [00:09<00:30, 39.71 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 296/1501 [00:09<00:30, 39.71 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 297/1501 [00:09<00:30, 39.71 MiB/s]


Dl Size...:  20%|█▉        | 298/1501 [00:09<00:28, 42.00 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 298/1501 [00:09<00:28, 42.00 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 299/1501 [00:09<00:28, 42.00 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:09<00:12,  6.04s/ url]

Dl Size...:  20%|█▉        | 300/1501 [00:09<00:28, 42.00 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 301/1501 [00:10<00:28, 42.00 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 302/1501 [00:10<00:28, 42.00 MiB/s]


Dl Size...:  20%|██        | 303/1501 [00:10<00:28, 42.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 303/1501 [00:10<00:28, 42.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 304/1501 [00:10<00:28, 42.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 305/1501 [00:10<00:28, 42.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 306/1501 [00:10<00:28, 42.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  20%|██        | 307/1501 [00:10<00:28, 42.04 MiB/s]


Dl Size...:  21%|██        | 308/1501 [00:10<00:27, 42.92 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 308/1501 [00:10<00:27, 42.92 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 309/1501 [00:10<00:27, 42.92 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 310/1501 [00:10<00:27, 42.92 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 311/1501 [00:10<00:27, 42.92 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 312/1501 [00:10<00:27, 42.92 MiB/s]


Dl Size...:  21%|██        | 313/1501 [00:10<00:26, 44.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 313/1501 [00:10<00:26, 44.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 314/1501 [00:10<00:26, 44.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 315/1501 [00:10<00:26, 44.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 316/1501 [00:10<00:26, 44.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 317/1501 [00:10<00:26, 44.70 MiB/s]


Dl Size...:  21%|██        | 318/1501 [00:10<00:29, 40.27 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██        | 318/1501 [00:10<00:29, 40.27 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██▏       | 319/1501 [00:10<00:29, 40.27 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██▏       | 320/1501 [00:10<00:29, 40.27 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██▏       | 321/1501 [00:10<00:29, 40.27 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  21%|██▏       | 322/1501 [00:10<00:29, 40.27 MiB/s]


Dl Size...:  22%|██▏       | 323/1501 [00:10<00:29, 40.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 323/1501 [00:10<00:29, 40.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 324/1501 [00:10<00:29, 40.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 325/1501 [00:10<00:29, 40.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 326/1501 [00:10<00:29, 40.49 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 327/1501 [00:10<00:28, 40.49 MiB/s]


Dl Size...:  22%|██▏       | 328/1501 [00:10<00:28, 40.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 328/1501 [00:10<00:28, 40.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 329/1501 [00:10<00:28, 40.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 330/1501 [00:10<00:28, 40.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 331/1501 [00:10<00:28, 40.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 332/1501 [00:10<00:28, 40.87 MiB/s]


Dl Size...:  22%|██▏       | 333/1501 [00:10<00:28, 41.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 333/1501 [00:10<00:28, 41.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 334/1501 [00:10<00:28, 41.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 335/1501 [00:10<00:28, 41.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 336/1501 [00:10<00:28, 41.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  22%|██▏       | 337/1501 [00:10<00:28, 41.19 MiB/s]


Dl Size...:  23%|██▎       | 338/1501 [00:10<00:27, 42.40 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 338/1501 [00:10<00:27, 42.40 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 339/1501 [00:10<00:27, 42.40 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 340/1501 [00:10<00:27, 42.40 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:10<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 341/1501 [00:10<00:27, 42.40 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 342/1501 [00:11<00:27, 42.40 MiB/s]


Dl Size...:  23%|██▎       | 343/1501 [00:11<00:26, 42.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 343/1501 [00:11<00:26, 42.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 344/1501 [00:11<00:26, 42.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 345/1501 [00:11<00:26, 42.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 346/1501 [00:11<00:26, 42.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 347/1501 [00:11<00:26, 42.90 MiB/s]


Dl Size...:  23%|██▎       | 348/1501 [00:11<00:28, 40.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 348/1501 [00:11<00:28, 40.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 349/1501 [00:11<00:28, 40.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 350/1501 [00:11<00:28, 40.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 351/1501 [00:11<00:28, 40.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  23%|██▎       | 352/1501 [00:11<00:28, 40.15 MiB/s]


Dl Size...:  24%|██▎       | 353/1501 [00:11<00:28, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▎       | 353/1501 [00:11<00:28, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▎       | 354/1501 [00:11<00:27, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▎       | 355/1501 [00:11<00:27, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▎       | 356/1501 [00:11<00:27, 40.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 357/1501 [00:11<00:27, 40.99 MiB/s]


Dl Size...:  24%|██▍       | 358/1501 [00:11<00:30, 37.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 358/1501 [00:11<00:30, 37.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 359/1501 [00:11<00:30, 37.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 360/1501 [00:11<00:30, 37.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 361/1501 [00:11<00:30, 37.09 MiB/s]


Dl Size...:  24%|██▍       | 362/1501 [00:11<00:31, 36.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 362/1501 [00:11<00:31, 36.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 363/1501 [00:11<00:31, 36.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 364/1501 [00:11<00:31, 36.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 365/1501 [00:11<00:31, 36.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 366/1501 [00:11<00:31, 36.42 MiB/s]


Dl Size...:  24%|██▍       | 367/1501 [00:11<00:32, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  24%|██▍       | 367/1501 [00:11<00:32, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 368/1501 [00:11<00:32, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 369/1501 [00:11<00:32, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 370/1501 [00:11<00:32, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 371/1501 [00:11<00:32, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 372/1501 [00:11<00:32, 34.73 MiB/s]


Dl Size...:  25%|██▍       | 373/1501 [00:11<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 373/1501 [00:11<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 374/1501 [00:11<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▍       | 375/1501 [00:11<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 376/1501 [00:11<00:30, 36.63 MiB/s]


Dl Size...:  25%|██▌       | 377/1501 [00:11<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:11<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 377/1501 [00:11<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 378/1501 [00:12<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 379/1501 [00:12<00:30, 36.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 380/1501 [00:12<00:30, 36.63 MiB/s]


Dl Size...:  25%|██▌       | 381/1501 [00:12<00:33, 33.45 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 381/1501 [00:12<00:33, 33.45 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  25%|██▌       | 382/1501 [00:12<00:33, 33.45 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 383/1501 [00:12<00:33, 33.45 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 384/1501 [00:12<00:33, 33.45 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 385/1501 [00:12<00:33, 33.45 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 386/1501 [00:12<00:33, 33.45 MiB/s]


Dl Size...:  26%|██▌       | 387/1501 [00:12<00:32, 34.32 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 387/1501 [00:12<00:32, 34.32 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 388/1501 [00:12<00:32, 34.32 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 389/1501 [00:12<00:32, 34.32 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 390/1501 [00:12<00:32, 34.32 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 391/1501 [00:12<00:32, 34.32 MiB/s]


Dl Size...:  26%|██▌       | 392/1501 [00:12<00:32, 34.02 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 392/1501 [00:12<00:32, 34.02 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 393/1501 [00:12<00:32, 34.02 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▌       | 394/1501 [00:12<00:32, 34.02 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▋       | 395/1501 [00:12<00:32, 34.02 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▋       | 396/1501 [00:12<00:32, 34.02 MiB/s]


Dl Size...:  26%|██▋       | 397/1501 [00:12<00:29, 37.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  26%|██▋       | 397/1501 [00:12<00:29, 37.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 398/1501 [00:12<00:29, 37.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 399/1501 [00:12<00:29, 37.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 400/1501 [00:12<00:29, 37.33 MiB/s]


Dl Size...:  27%|██▋       | 401/1501 [00:12<00:31, 34.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 401/1501 [00:12<00:31, 34.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 402/1501 [00:12<00:31, 34.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 403/1501 [00:12<00:31, 34.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 404/1501 [00:12<00:31, 34.63 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 405/1501 [00:12<00:31, 34.63 MiB/s]


Dl Size...:  27%|██▋       | 406/1501 [00:12<00:28, 37.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 406/1501 [00:12<00:28, 37.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 407/1501 [00:12<00:28, 37.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 408/1501 [00:12<00:28, 37.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 409/1501 [00:12<00:28, 37.93 MiB/s]


Dl Size...:  27%|██▋       | 410/1501 [00:12<00:30, 35.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 410/1501 [00:12<00:30, 35.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 411/1501 [00:12<00:30, 35.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:12<00:12,  6.04s/ url]

Dl Size...:  27%|██▋       | 412/1501 [00:12<00:30, 35.54 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 413/1501 [00:13<00:30, 35.54 MiB/s]


Dl Size...:  28%|██▊       | 414/1501 [00:13<00:30, 35.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 414/1501 [00:13<00:30, 35.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 415/1501 [00:13<00:30, 35.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 416/1501 [00:13<00:30, 35.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 417/1501 [00:13<00:30, 35.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 418/1501 [00:13<00:30, 35.93 MiB/s]


Dl Size...:  28%|██▊       | 419/1501 [00:13<00:31, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 419/1501 [00:13<00:31, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 420/1501 [00:13<00:31, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 421/1501 [00:13<00:31, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 422/1501 [00:13<00:31, 34.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 423/1501 [00:13<00:31, 34.73 MiB/s]


Dl Size...:  28%|██▊       | 424/1501 [00:13<00:28, 38.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 424/1501 [00:13<00:28, 38.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 425/1501 [00:13<00:28, 38.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 426/1501 [00:13<00:28, 38.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  28%|██▊       | 427/1501 [00:13<00:28, 38.33 MiB/s]


Dl Size...:  29%|██▊       | 428/1501 [00:13<00:30, 35.76 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▊       | 428/1501 [00:13<00:30, 35.76 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▊       | 429/1501 [00:13<00:29, 35.76 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▊       | 430/1501 [00:13<00:29, 35.76 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▊       | 431/1501 [00:13<00:29, 35.76 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 432/1501 [00:13<00:29, 35.76 MiB/s]


Dl Size...:  29%|██▉       | 433/1501 [00:13<00:27, 39.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 433/1501 [00:13<00:27, 39.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 434/1501 [00:13<00:27, 39.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 435/1501 [00:13<00:27, 39.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 436/1501 [00:13<00:27, 39.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 437/1501 [00:13<00:27, 39.03 MiB/s]


Dl Size...:  29%|██▉       | 438/1501 [00:13<00:28, 37.58 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 438/1501 [00:13<00:28, 37.58 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 439/1501 [00:13<00:28, 37.58 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 440/1501 [00:13<00:28, 37.58 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 441/1501 [00:13<00:28, 37.58 MiB/s]


Dl Size...:  29%|██▉       | 442/1501 [00:13<00:27, 38.06 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  29%|██▉       | 442/1501 [00:13<00:27, 38.06 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 443/1501 [00:13<00:27, 38.06 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 444/1501 [00:13<00:27, 38.06 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 445/1501 [00:13<00:27, 38.06 MiB/s]


Dl Size...:  30%|██▉       | 446/1501 [00:13<00:32, 32.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 446/1501 [00:13<00:32, 32.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 447/1501 [00:13<00:32, 32.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 448/1501 [00:13<00:32, 32.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:13<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 449/1501 [00:13<00:32, 32.01 MiB/s]


Dl Size...:  30%|██▉       | 450/1501 [00:14<00:31, 33.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|██▉       | 450/1501 [00:14<00:31, 33.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 451/1501 [00:14<00:31, 33.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 452/1501 [00:14<00:31, 33.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 453/1501 [00:14<00:31, 33.70 MiB/s]


Dl Size...:  30%|███       | 454/1501 [00:14<00:35, 29.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 454/1501 [00:14<00:35, 29.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 455/1501 [00:14<00:35, 29.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 456/1501 [00:14<00:35, 29.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  30%|███       | 457/1501 [00:14<00:35, 29.53 MiB/s]


Dl Size...:  31%|███       | 458/1501 [00:14<00:37, 27.61 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 458/1501 [00:14<00:37, 27.61 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 459/1501 [00:14<00:37, 27.61 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 460/1501 [00:14<00:37, 27.61 MiB/s]


Dl Size...:  31%|███       | 461/1501 [00:14<00:40, 25.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 461/1501 [00:14<00:40, 25.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 462/1501 [00:14<00:40, 25.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 463/1501 [00:14<00:40, 25.53 MiB/s]


Dl Size...:  31%|███       | 464/1501 [00:14<00:52, 19.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 464/1501 [00:14<00:52, 19.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 465/1501 [00:14<00:52, 19.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 466/1501 [00:14<00:52, 19.73 MiB/s]


Dl Size...:  31%|███       | 467/1501 [00:14<00:53, 19.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:14<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 467/1501 [00:14<00:53, 19.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 468/1501 [00:15<00:53, 19.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  31%|███       | 469/1501 [00:15<00:53, 19.17 MiB/s]


Dl Size...:  31%|███▏      | 470/1501 [00:15<00:56, 18.41 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  31%|███▏      | 470/1501 [00:15<00:56, 18.41 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  31%|███▏      | 471/1501 [00:15<00:55, 18.41 MiB/s]


Dl Size...:  31%|███▏      | 472/1501 [00:15<01:01, 16.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  31%|███▏      | 472/1501 [00:15<01:01, 16.72 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 473/1501 [00:15<01:01, 16.72 MiB/s]


Dl Size...:  32%|███▏      | 474/1501 [00:15<01:01, 16.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 474/1501 [00:15<01:01, 16.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 475/1501 [00:15<01:01, 16.74 MiB/s]


Dl Size...:  32%|███▏      | 476/1501 [00:15<01:02, 16.44 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 476/1501 [00:15<01:02, 16.44 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 477/1501 [00:15<01:02, 16.44 MiB/s]


Dl Size...:  32%|███▏      | 478/1501 [00:15<01:04, 15.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 478/1501 [00:15<01:04, 15.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 479/1501 [00:15<01:03, 15.98 MiB/s]


Dl Size...:  32%|███▏      | 480/1501 [00:15<01:03, 16.14 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 480/1501 [00:15<01:03, 16.14 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 481/1501 [00:15<01:03, 16.14 MiB/s]


Dl Size...:  32%|███▏      | 482/1501 [00:15<01:04, 15.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:15<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 482/1501 [00:15<01:04, 15.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 483/1501 [00:16<01:04, 15.87 MiB/s]


Dl Size...:  32%|███▏      | 484/1501 [00:16<01:00, 16.68 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 484/1501 [00:16<01:00, 16.68 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 485/1501 [00:16<01:00, 16.68 MiB/s]


Dl Size...:  32%|███▏      | 486/1501 [00:16<01:04, 15.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 486/1501 [00:16<01:04, 15.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  32%|███▏      | 487/1501 [00:16<01:04, 15.74 MiB/s]


Dl Size...:  33%|███▎      | 488/1501 [00:16<01:01, 16.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 488/1501 [00:16<01:01, 16.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 489/1501 [00:16<01:01, 16.57 MiB/s]


Dl Size...:  33%|███▎      | 490/1501 [00:16<01:06, 15.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 490/1501 [00:16<01:06, 15.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 491/1501 [00:16<01:05, 15.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 492/1501 [00:16<01:05, 15.31 MiB/s]


Dl Size...:  33%|███▎      | 493/1501 [00:16<01:02, 16.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 493/1501 [00:16<01:02, 16.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 494/1501 [00:16<01:02, 16.01 MiB/s]


Dl Size...:  33%|███▎      | 495/1501 [00:16<00:59, 16.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 495/1501 [00:16<00:59, 16.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 496/1501 [00:16<00:59, 16.80 MiB/s]


Dl Size...:  33%|███▎      | 497/1501 [00:16<01:03, 15.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 497/1501 [00:16<01:03, 15.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 498/1501 [00:16<01:03, 15.90 MiB/s]


Dl Size...:  33%|███▎      | 499/1501 [00:16<01:00, 16.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:16<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 499/1501 [00:16<01:00, 16.53 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 500/1501 [00:17<01:00, 16.53 MiB/s]


Dl Size...:  33%|███▎      | 501/1501 [00:17<01:03, 15.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 501/1501 [00:17<01:03, 15.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  33%|███▎      | 502/1501 [00:17<01:03, 15.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▎      | 503/1501 [00:17<01:03, 15.79 MiB/s]


Dl Size...:  34%|███▎      | 504/1501 [00:17<00:59, 16.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▎      | 504/1501 [00:17<00:59, 16.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▎      | 505/1501 [00:17<00:59, 16.65 MiB/s]


Dl Size...:  34%|███▎      | 506/1501 [00:17<01:05, 15.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▎      | 506/1501 [00:17<01:05, 15.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 507/1501 [00:17<01:05, 15.16 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 508/1501 [00:17<01:05, 15.16 MiB/s]


Dl Size...:  34%|███▍      | 509/1501 [00:17<01:00, 16.29 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 509/1501 [00:17<01:00, 16.29 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 510/1501 [00:17<01:00, 16.29 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 511/1501 [00:17<01:00, 16.29 MiB/s]


Dl Size...:  34%|███▍      | 512/1501 [00:17<00:57, 17.05 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 512/1501 [00:17<00:57, 17.05 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 513/1501 [00:17<00:57, 17.05 MiB/s]


Dl Size...:  34%|███▍      | 514/1501 [00:17<00:57, 17.13 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 514/1501 [00:17<00:57, 17.13 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 515/1501 [00:17<00:57, 17.13 MiB/s]


Dl Size...:  34%|███▍      | 516/1501 [00:17<00:58, 16.96 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:17<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 516/1501 [00:17<00:58, 16.96 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  34%|███▍      | 517/1501 [00:18<00:58, 16.96 MiB/s]


Dl Size...:  35%|███▍      | 518/1501 [00:18<00:58, 16.88 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 518/1501 [00:18<00:58, 16.88 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 519/1501 [00:18<00:58, 16.88 MiB/s]


Dl Size...:  35%|███▍      | 520/1501 [00:18<00:57, 16.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 520/1501 [00:18<00:57, 16.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 521/1501 [00:18<00:57, 16.99 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 522/1501 [00:18<00:57, 16.99 MiB/s]


Dl Size...:  35%|███▍      | 523/1501 [00:18<00:54, 17.96 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 523/1501 [00:18<00:54, 17.96 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 524/1501 [00:18<00:54, 17.96 MiB/s]


Dl Size...:  35%|███▍      | 525/1501 [00:18<01:00, 16.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▍      | 525/1501 [00:18<01:00, 16.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 526/1501 [00:18<01:00, 16.17 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 527/1501 [00:18<01:00, 16.17 MiB/s]


Dl Size...:  35%|███▌      | 528/1501 [00:18<00:56, 17.12 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 528/1501 [00:18<00:56, 17.12 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 529/1501 [00:18<00:56, 17.12 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 530/1501 [00:18<00:56, 17.12 MiB/s]


Dl Size...:  35%|███▌      | 531/1501 [00:18<00:53, 17.97 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 531/1501 [00:18<00:53, 17.97 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  35%|███▌      | 532/1501 [00:18<00:53, 17.97 MiB/s]


Dl Size...:  36%|███▌      | 533/1501 [00:18<00:56, 17.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 533/1501 [00:18<00:56, 17.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:18<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 534/1501 [00:18<00:56, 17.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 535/1501 [00:19<00:56, 17.19 MiB/s]


Dl Size...:  36%|███▌      | 536/1501 [00:19<00:55, 17.29 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 536/1501 [00:19<00:55, 17.29 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 537/1501 [00:19<00:55, 17.29 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 538/1501 [00:19<00:55, 17.29 MiB/s]


Dl Size...:  36%|███▌      | 539/1501 [00:19<00:54, 17.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 539/1501 [00:19<00:54, 17.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 540/1501 [00:19<00:54, 17.74 MiB/s]


Dl Size...:  36%|███▌      | 541/1501 [00:19<00:57, 16.64 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 541/1501 [00:19<00:57, 16.64 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 542/1501 [00:19<00:57, 16.64 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 543/1501 [00:19<00:57, 16.64 MiB/s]


Dl Size...:  36%|███▌      | 544/1501 [00:19<00:56, 16.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▌      | 544/1501 [00:19<00:56, 16.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▋      | 545/1501 [00:19<00:56, 16.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▋      | 546/1501 [00:19<00:56, 16.80 MiB/s]


Dl Size...:  36%|███▋      | 547/1501 [00:19<00:53, 17.85 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  36%|███▋      | 547/1501 [00:19<00:53, 17.85 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 548/1501 [00:19<00:53, 17.85 MiB/s]


Dl Size...:  37%|███▋      | 549/1501 [00:19<00:53, 17.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 549/1501 [00:19<00:53, 17.80 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:19<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 550/1501 [00:19<00:53, 17.80 MiB/s]


Dl Size...:  37%|███▋      | 551/1501 [00:20<00:54, 17.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 551/1501 [00:20<00:54, 17.37 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 552/1501 [00:20<00:54, 17.37 MiB/s]


Dl Size...:  37%|███▋      | 553/1501 [00:20<00:54, 17.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 553/1501 [00:20<00:54, 17.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 554/1501 [00:20<00:54, 17.46 MiB/s]


Dl Size...:  37%|███▋      | 555/1501 [00:20<00:55, 16.96 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 555/1501 [00:20<00:55, 16.96 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 556/1501 [00:20<00:55, 16.96 MiB/s]


Dl Size...:  37%|███▋      | 557/1501 [00:20<00:53, 17.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 557/1501 [00:20<00:53, 17.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 558/1501 [00:20<00:53, 17.67 MiB/s]


Dl Size...:  37%|███▋      | 559/1501 [00:20<00:56, 16.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 559/1501 [00:20<00:56, 16.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 560/1501 [00:20<00:56, 16.59 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 561/1501 [00:20<00:56, 16.59 MiB/s]


Dl Size...:  37%|███▋      | 562/1501 [00:20<00:54, 17.35 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  37%|███▋      | 562/1501 [00:20<00:54, 17.35 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 563/1501 [00:20<00:54, 17.35 MiB/s]


Dl Size...:  38%|███▊      | 564/1501 [00:20<00:57, 16.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 564/1501 [00:20<00:57, 16.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 565/1501 [00:20<00:57, 16.26 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 566/1501 [00:20<00:57, 16.26 MiB/s]


Dl Size...:  38%|███▊      | 567/1501 [00:20<00:56, 16.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:20<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 567/1501 [00:20<00:56, 16.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 568/1501 [00:21<00:56, 16.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 569/1501 [00:21<00:56, 16.57 MiB/s]


Dl Size...:  38%|███▊      | 570/1501 [00:21<00:52, 17.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 570/1501 [00:21<00:52, 17.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 571/1501 [00:21<00:52, 17.57 MiB/s]


Dl Size...:  38%|███▊      | 572/1501 [00:21<00:51, 17.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 572/1501 [00:21<00:51, 17.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 573/1501 [00:21<00:51, 17.90 MiB/s]


Dl Size...:  38%|███▊      | 574/1501 [00:21<00:53, 17.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 574/1501 [00:21<00:53, 17.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 575/1501 [00:21<00:53, 17.31 MiB/s]


Dl Size...:  38%|███▊      | 576/1501 [00:21<00:52, 17.60 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 576/1501 [00:21<00:52, 17.60 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  38%|███▊      | 577/1501 [00:21<00:52, 17.60 MiB/s]


Dl Size...:  39%|███▊      | 578/1501 [00:21<00:52, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▊      | 578/1501 [00:21<00:52, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▊      | 579/1501 [00:21<00:52, 17.70 MiB/s]


Dl Size...:  39%|███▊      | 580/1501 [00:21<00:52, 17.56 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▊      | 580/1501 [00:21<00:52, 17.56 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▊      | 581/1501 [00:21<00:52, 17.56 MiB/s]


Dl Size...:  39%|███▉      | 582/1501 [00:21<00:52, 17.35 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 582/1501 [00:21<00:52, 17.35 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 583/1501 [00:21<00:52, 17.35 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 584/1501 [00:21<00:52, 17.35 MiB/s]


Dl Size...:  39%|███▉      | 585/1501 [00:21<00:50, 18.28 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:21<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 585/1501 [00:21<00:50, 18.28 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 586/1501 [00:22<00:50, 18.28 MiB/s]


Dl Size...:  39%|███▉      | 587/1501 [00:22<00:56, 16.28 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 587/1501 [00:22<00:56, 16.28 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 588/1501 [00:22<00:56, 16.28 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 589/1501 [00:22<00:56, 16.28 MiB/s]


Dl Size...:  39%|███▉      | 590/1501 [00:22<00:53, 17.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 590/1501 [00:22<00:53, 17.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 591/1501 [00:22<00:53, 17.09 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  39%|███▉      | 592/1501 [00:22<00:53, 17.09 MiB/s]


Dl Size...:  40%|███▉      | 593/1501 [00:22<00:50, 17.84 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 593/1501 [00:22<00:50, 17.84 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 594/1501 [00:22<00:50, 17.84 MiB/s]


Dl Size...:  40%|███▉      | 595/1501 [00:22<00:51, 17.44 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 595/1501 [00:22<00:51, 17.44 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 596/1501 [00:22<00:51, 17.44 MiB/s]


Dl Size...:  40%|███▉      | 597/1501 [00:22<00:51, 17.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 597/1501 [00:22<00:51, 17.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 598/1501 [00:22<00:51, 17.67 MiB/s]


Dl Size...:  40%|███▉      | 599/1501 [00:22<00:50, 17.84 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 599/1501 [00:22<00:50, 17.84 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|███▉      | 600/1501 [00:22<00:50, 17.84 MiB/s]


Dl Size...:  40%|████      | 601/1501 [00:22<00:52, 17.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 601/1501 [00:22<00:52, 17.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 602/1501 [00:22<00:52, 17.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:22<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 603/1501 [00:22<00:52, 17.03 MiB/s]


Dl Size...:  40%|████      | 604/1501 [00:23<00:51, 17.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 604/1501 [00:23<00:51, 17.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 605/1501 [00:23<00:51, 17.42 MiB/s]


Dl Size...:  40%|████      | 606/1501 [00:23<00:52, 17.06 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 606/1501 [00:23<00:52, 17.06 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  40%|████      | 607/1501 [00:23<00:52, 17.06 MiB/s]


Dl Size...:  41%|████      | 608/1501 [00:23<00:52, 17.08 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 608/1501 [00:23<00:52, 17.08 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 609/1501 [00:23<00:52, 17.08 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 610/1501 [00:23<00:52, 17.08 MiB/s]


Dl Size...:  41%|████      | 611/1501 [00:23<00:50, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 611/1501 [00:23<00:50, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 612/1501 [00:23<00:50, 17.70 MiB/s]


Dl Size...:  41%|████      | 613/1501 [00:23<00:49, 18.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 613/1501 [00:23<00:49, 18.11 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 614/1501 [00:23<00:48, 18.11 MiB/s]


Dl Size...:  41%|████      | 615/1501 [00:23<00:52, 17.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 615/1501 [00:23<00:52, 17.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 616/1501 [00:23<00:51, 17.03 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 617/1501 [00:23<00:51, 17.03 MiB/s]


Dl Size...:  41%|████      | 618/1501 [00:23<00:47, 18.48 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 618/1501 [00:23<00:47, 18.48 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████      | 619/1501 [00:23<00:47, 18.48 MiB/s]


Dl Size...:  41%|████▏     | 620/1501 [00:23<00:50, 17.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████▏     | 620/1501 [00:23<00:50, 17.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:23<00:12,  6.04s/ url]

Dl Size...:  41%|████▏     | 621/1501 [00:23<00:50, 17.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  41%|████▏     | 622/1501 [00:24<00:50, 17.46 MiB/s]


Dl Size...:  42%|████▏     | 623/1501 [00:24<00:48, 17.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 623/1501 [00:24<00:48, 17.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 624/1501 [00:24<00:48, 17.98 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 625/1501 [00:24<00:48, 17.98 MiB/s]


Dl Size...:  42%|████▏     | 626/1501 [00:24<00:47, 18.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 626/1501 [00:24<00:47, 18.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 627/1501 [00:24<00:47, 18.31 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 628/1501 [00:24<00:47, 18.31 MiB/s]


Dl Size...:  42%|████▏     | 629/1501 [00:24<00:46, 18.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 629/1501 [00:24<00:46, 18.73 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 630/1501 [00:24<00:46, 18.73 MiB/s]


Dl Size...:  42%|████▏     | 631/1501 [00:24<00:47, 18.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 631/1501 [00:24<00:47, 18.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 632/1501 [00:24<00:47, 18.46 MiB/s]


Dl Size...:  42%|████▏     | 633/1501 [00:24<00:49, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 633/1501 [00:24<00:49, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 634/1501 [00:24<00:48, 17.70 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 635/1501 [00:24<00:48, 17.70 MiB/s]


Dl Size...:  42%|████▏     | 636/1501 [00:24<00:47, 18.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 636/1501 [00:24<00:47, 18.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  42%|████▏     | 637/1501 [00:24<00:47, 18.10 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:24<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 638/1501 [00:24<00:47, 18.10 MiB/s]


Dl Size...:  43%|████▎     | 639/1501 [00:25<00:47, 18.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 639/1501 [00:25<00:47, 18.34 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 640/1501 [00:25<00:46, 18.34 MiB/s]


Dl Size...:  43%|████▎     | 641/1501 [00:25<00:47, 18.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 641/1501 [00:25<00:47, 18.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 642/1501 [00:25<00:47, 18.21 MiB/s]


Dl Size...:  43%|████▎     | 643/1501 [00:25<00:48, 17.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 643/1501 [00:25<00:48, 17.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 644/1501 [00:25<00:48, 17.82 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 645/1501 [00:25<00:48, 17.82 MiB/s]


Dl Size...:  43%|████▎     | 646/1501 [00:25<00:46, 18.48 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 646/1501 [00:25<00:46, 18.48 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 647/1501 [00:25<00:46, 18.48 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 648/1501 [00:25<00:46, 18.48 MiB/s]


Dl Size...:  43%|████▎     | 649/1501 [00:25<00:43, 19.58 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 649/1501 [00:25<00:43, 19.58 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 650/1501 [00:25<00:43, 19.58 MiB/s]


Dl Size...:  43%|████▎     | 651/1501 [00:25<00:43, 19.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 651/1501 [00:25<00:43, 19.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  43%|████▎     | 652/1501 [00:25<00:43, 19.57 MiB/s]


Dl Size...:  44%|████▎     | 653/1501 [00:25<00:45, 18.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  44%|████▎     | 653/1501 [00:25<00:45, 18.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  44%|████▎     | 654/1501 [00:25<00:45, 18.74 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  44%|████▎     | 655/1501 [00:25<00:45, 18.74 MiB/s]


Dl Size...:  44%|████▎     | 656/1501 [00:25<00:44, 19.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  44%|████▎     | 656/1501 [00:25<00:44, 19.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 657/1501 [00:25<00:43, 19.20 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:25<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 658/1501 [00:25<00:43, 19.20 MiB/s]


Dl Size...:  44%|████▍     | 659/1501 [00:26<00:44, 19.08 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 659/1501 [00:26<00:44, 19.08 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 660/1501 [00:26<00:44, 19.08 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 661/1501 [00:26<00:44, 19.08 MiB/s]


Dl Size...:  44%|████▍     | 662/1501 [00:26<00:44, 19.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 662/1501 [00:26<00:44, 19.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 663/1501 [00:26<00:44, 19.01 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 664/1501 [00:26<00:44, 19.01 MiB/s]


Dl Size...:  44%|████▍     | 665/1501 [00:26<00:42, 19.56 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 665/1501 [00:26<00:42, 19.56 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 666/1501 [00:26<00:42, 19.56 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  44%|████▍     | 667/1501 [00:26<00:42, 19.56 MiB/s]


Dl Size...:  45%|████▍     | 668/1501 [00:26<00:40, 20.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 668/1501 [00:26<00:40, 20.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 669/1501 [00:26<00:40, 20.57 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 670/1501 [00:26<00:40, 20.57 MiB/s]


Dl Size...:  45%|████▍     | 671/1501 [00:26<00:40, 20.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 671/1501 [00:26<00:40, 20.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 672/1501 [00:26<00:40, 20.67 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 673/1501 [00:26<00:40, 20.67 MiB/s]


Dl Size...:  45%|████▍     | 674/1501 [00:26<00:40, 20.30 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 674/1501 [00:26<00:40, 20.30 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▍     | 675/1501 [00:26<00:40, 20.30 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 676/1501 [00:26<00:40, 20.30 MiB/s]


Dl Size...:  45%|████▌     | 677/1501 [00:26<00:41, 19.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 677/1501 [00:26<00:41, 19.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:26<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 678/1501 [00:26<00:41, 19.87 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 679/1501 [00:27<00:41, 19.87 MiB/s]


Dl Size...:  45%|████▌     | 680/1501 [00:27<00:40, 20.41 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 680/1501 [00:27<00:40, 20.41 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 681/1501 [00:27<00:40, 20.41 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  45%|████▌     | 682/1501 [00:27<00:40, 20.41 MiB/s]


Dl Size...:  46%|████▌     | 683/1501 [00:27<00:38, 21.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 683/1501 [00:27<00:38, 21.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 684/1501 [00:27<00:38, 21.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 685/1501 [00:27<00:38, 21.33 MiB/s]


Dl Size...:  46%|████▌     | 686/1501 [00:27<00:38, 21.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 686/1501 [00:27<00:38, 21.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 687/1501 [00:27<00:38, 21.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 688/1501 [00:27<00:38, 21.21 MiB/s]


Dl Size...:  46%|████▌     | 689/1501 [00:27<00:39, 20.68 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 689/1501 [00:27<00:39, 20.68 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 690/1501 [00:27<00:39, 20.68 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 691/1501 [00:27<00:39, 20.68 MiB/s]


Dl Size...:  46%|████▌     | 692/1501 [00:27<00:38, 21.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 692/1501 [00:27<00:38, 21.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 693/1501 [00:27<00:38, 21.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▌     | 694/1501 [00:27<00:38, 21.04 MiB/s]


Dl Size...:  46%|████▋     | 695/1501 [00:27<00:35, 22.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▋     | 695/1501 [00:27<00:35, 22.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▋     | 696/1501 [00:27<00:35, 22.42 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  46%|████▋     | 697/1501 [00:27<00:35, 22.42 MiB/s]


Dl Size...:  47%|████▋     | 698/1501 [00:27<00:36, 22.30 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 698/1501 [00:27<00:36, 22.30 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 699/1501 [00:27<00:35, 22.30 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 700/1501 [00:27<00:35, 22.30 MiB/s]


Dl Size...:  47%|████▋     | 701/1501 [00:27<00:33, 23.62 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:27<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 701/1501 [00:27<00:33, 23.62 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 702/1501 [00:28<00:33, 23.62 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 703/1501 [00:28<00:33, 23.62 MiB/s]


Dl Size...:  47%|████▋     | 704/1501 [00:28<00:33, 23.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 704/1501 [00:28<00:33, 23.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 705/1501 [00:28<00:33, 23.46 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 706/1501 [00:28<00:33, 23.46 MiB/s]


Dl Size...:  47%|████▋     | 707/1501 [00:28<00:32, 24.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 707/1501 [00:28<00:32, 24.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 708/1501 [00:28<00:32, 24.52 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 709/1501 [00:28<00:32, 24.52 MiB/s]


Dl Size...:  47%|████▋     | 710/1501 [00:28<00:34, 22.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 710/1501 [00:28<00:34, 22.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 711/1501 [00:28<00:34, 22.93 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  47%|████▋     | 712/1501 [00:28<00:34, 22.93 MiB/s]


Dl Size...:  48%|████▊     | 713/1501 [00:28<00:33, 23.69 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 713/1501 [00:28<00:33, 23.69 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 714/1501 [00:28<00:33, 23.69 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 715/1501 [00:28<00:33, 23.69 MiB/s]


Dl Size...:  48%|████▊     | 716/1501 [00:28<00:33, 23.38 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 716/1501 [00:28<00:33, 23.38 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 717/1501 [00:28<00:33, 23.38 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 718/1501 [00:28<00:33, 23.38 MiB/s]


Dl Size...:  48%|████▊     | 719/1501 [00:28<00:32, 23.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 719/1501 [00:28<00:32, 23.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 720/1501 [00:28<00:32, 23.90 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 721/1501 [00:28<00:32, 23.90 MiB/s]


Dl Size...:  48%|████▊     | 722/1501 [00:28<00:32, 24.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 722/1501 [00:28<00:32, 24.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 723/1501 [00:28<00:32, 24.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 724/1501 [00:28<00:32, 24.15 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:28<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 725/1501 [00:28<00:32, 24.15 MiB/s]


Dl Size...:  48%|████▊     | 726/1501 [00:29<00:31, 24.69 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 726/1501 [00:29<00:31, 24.69 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  48%|████▊     | 727/1501 [00:29<00:31, 24.69 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▊     | 728/1501 [00:29<00:31, 24.69 MiB/s]


Dl Size...:  49%|████▊     | 729/1501 [00:29<00:30, 25.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▊     | 729/1501 [00:29<00:30, 25.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▊     | 730/1501 [00:29<00:30, 25.23 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▊     | 731/1501 [00:29<00:30, 25.23 MiB/s]


Dl Size...:  49%|████▉     | 732/1501 [00:29<00:29, 25.94 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 732/1501 [00:29<00:29, 25.94 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 733/1501 [00:29<00:29, 25.94 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 734/1501 [00:29<00:29, 25.94 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 735/1501 [00:29<00:29, 25.94 MiB/s]


Dl Size...:  49%|████▉     | 736/1501 [00:29<00:29, 26.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 736/1501 [00:29<00:29, 26.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 737/1501 [00:29<00:29, 26.21 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 738/1501 [00:29<00:29, 26.21 MiB/s]


Dl Size...:  49%|████▉     | 739/1501 [00:29<00:29, 25.91 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 739/1501 [00:29<00:29, 25.91 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 740/1501 [00:29<00:29, 25.91 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 741/1501 [00:29<00:29, 25.91 MiB/s]


Dl Size...:  49%|████▉     | 742/1501 [00:29<00:28, 26.43 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  49%|████▉     | 742/1501 [00:29<00:28, 26.43 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 743/1501 [00:29<00:28, 26.43 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 744/1501 [00:29<00:28, 26.43 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 745/1501 [00:29<00:28, 26.43 MiB/s]


Dl Size...:  50%|████▉     | 746/1501 [00:29<00:27, 27.61 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 746/1501 [00:29<00:27, 27.61 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 747/1501 [00:29<00:27, 27.61 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 748/1501 [00:29<00:27, 27.61 MiB/s]


Dl Size...:  50%|████▉     | 749/1501 [00:29<00:28, 26.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 749/1501 [00:29<00:28, 26.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|████▉     | 750/1501 [00:29<00:28, 26.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 751/1501 [00:29<00:27, 26.79 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:29<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 752/1501 [00:29<00:27, 26.79 MiB/s]


Dl Size...:  50%|█████     | 753/1501 [00:29<00:25, 28.95 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 753/1501 [00:29<00:25, 28.95 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 754/1501 [00:30<00:25, 28.95 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 755/1501 [00:30<00:25, 28.95 MiB/s]


Dl Size...:  50%|█████     | 756/1501 [00:30<00:26, 28.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 756/1501 [00:30<00:26, 28.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 757/1501 [00:30<00:26, 28.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  50%|█████     | 758/1501 [00:30<00:26, 28.19 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 759/1501 [00:30<00:26, 28.19 MiB/s]


Dl Size...:  51%|█████     | 760/1501 [00:30<00:25, 29.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 760/1501 [00:30<00:25, 29.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 761/1501 [00:30<00:25, 29.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 762/1501 [00:30<00:25, 29.33 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 763/1501 [00:30<00:25, 29.33 MiB/s]


Dl Size...:  51%|█████     | 764/1501 [00:30<00:23, 31.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 764/1501 [00:30<00:23, 31.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 765/1501 [00:30<00:23, 31.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 766/1501 [00:30<00:23, 31.65 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 767/1501 [00:30<00:23, 31.65 MiB/s]


Dl Size...:  51%|█████     | 768/1501 [00:30<00:24, 29.75 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 768/1501 [00:30<00:24, 29.75 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████     | 769/1501 [00:30<00:24, 29.75 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████▏    | 770/1501 [00:30<00:24, 29.75 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████▏    | 771/1501 [00:30<00:24, 29.75 MiB/s]


Dl Size...:  51%|█████▏    | 772/1501 [00:30<00:24, 30.04 MiB/s]

Dl Completed...:  33%|███▎      | 1/3 [00:30<00:12,  6.04s/ url]

Dl Size...:  51%|█████▏    | 772/1501 [00:30<00:24, 30.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]
Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  51%|█████▏    | 772/1501 [00:30<00:24, 30.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  51%|█████▏    | 773/1501 [00:30<00:24, 30.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 774/1501 [00:30<00:24, 30.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 775/1501 [00:30<00:24, 30.04 MiB/s]


Dl Size...:  52%|█████▏    | 776/1501 [00:30<00:28, 25.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 776/1501 [00:30<00:28, 25.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 777/1501 [00:30<00:28, 25.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:30<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 778/1501 [00:30<00:28, 25.19 MiB/s]


Dl Size...:  52%|█████▏    | 779/1501 [00:31<00:31, 23.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 779/1501 [00:31<00:31, 23.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 780/1501 [00:31<00:31, 23.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 781/1501 [00:31<00:31, 23.18 MiB/s]


Dl Size...:  52%|█████▏    | 782/1501 [00:31<00:32, 22.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 782/1501 [00:31<00:32, 22.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 783/1501 [00:31<00:32, 22.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 784/1501 [00:31<00:32, 22.01 MiB/s]


Dl Size...:  52%|█████▏    | 785/1501 [00:31<00:32, 21.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 785/1501 [00:31<00:32, 21.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 786/1501 [00:31<00:32, 21.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 787/1501 [00:31<00:32, 21.81 MiB/s]


Dl Size...:  52%|█████▏    | 788/1501 [00:31<00:38, 18.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  52%|█████▏    | 788/1501 [00:31<00:38, 18.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 789/1501 [00:31<00:37, 18.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 790/1501 [00:31<00:37, 18.76 MiB/s]


Dl Size...:  53%|█████▎    | 791/1501 [00:31<00:37, 19.16 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 791/1501 [00:31<00:37, 19.16 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 792/1501 [00:31<00:36, 19.16 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 793/1501 [00:31<00:36, 19.16 MiB/s]


Dl Size...:  53%|█████▎    | 794/1501 [00:31<00:37, 19.07 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 794/1501 [00:31<00:37, 19.07 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 795/1501 [00:31<00:37, 19.07 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 796/1501 [00:31<00:36, 19.07 MiB/s]


Dl Size...:  53%|█████▎    | 797/1501 [00:31<00:36, 19.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 797/1501 [00:31<00:36, 19.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:31<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 798/1501 [00:31<00:36, 19.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 799/1501 [00:32<00:36, 19.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 800/1501 [00:32<00:36, 19.05 MiB/s]


Dl Size...:  53%|█████▎    | 801/1501 [00:32<00:34, 20.46 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 801/1501 [00:32<00:34, 20.46 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 802/1501 [00:32<00:34, 20.46 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  53%|█████▎    | 803/1501 [00:32<00:34, 20.46 MiB/s]


Dl Size...:  54%|█████▎    | 804/1501 [00:32<00:34, 20.11 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▎    | 804/1501 [00:32<00:34, 20.11 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▎    | 805/1501 [00:32<00:34, 20.11 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▎    | 806/1501 [00:32<00:34, 20.11 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 807/1501 [00:32<00:34, 20.11 MiB/s]


Dl Size...:  54%|█████▍    | 808/1501 [00:32<00:32, 21.23 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 808/1501 [00:32<00:32, 21.23 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 809/1501 [00:32<00:32, 21.23 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 810/1501 [00:32<00:32, 21.23 MiB/s]


Dl Size...:  54%|█████▍    | 811/1501 [00:32<00:33, 20.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 811/1501 [00:32<00:33, 20.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 812/1501 [00:32<00:33, 20.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 813/1501 [00:32<00:33, 20.78 MiB/s]


Dl Size...:  54%|█████▍    | 814/1501 [00:32<00:30, 22.71 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 814/1501 [00:32<00:30, 22.71 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 815/1501 [00:32<00:30, 22.71 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 816/1501 [00:32<00:30, 22.71 MiB/s]


Dl Size...:  54%|█████▍    | 817/1501 [00:32<00:31, 21.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 817/1501 [00:32<00:31, 21.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  54%|█████▍    | 818/1501 [00:32<00:31, 21.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:32<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 819/1501 [00:32<00:31, 21.84 MiB/s]


Dl Size...:  55%|█████▍    | 820/1501 [00:33<00:31, 21.31 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 820/1501 [00:33<00:31, 21.31 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 821/1501 [00:33<00:31, 21.31 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 822/1501 [00:33<00:31, 21.31 MiB/s]


Dl Size...:  55%|█████▍    | 823/1501 [00:33<00:29, 23.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 823/1501 [00:33<00:29, 23.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 824/1501 [00:33<00:29, 23.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▍    | 825/1501 [00:33<00:29, 23.14 MiB/s]


Dl Size...:  55%|█████▌    | 826/1501 [00:33<00:30, 22.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 826/1501 [00:33<00:30, 22.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 827/1501 [00:33<00:30, 22.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 828/1501 [00:33<00:30, 22.24 MiB/s]


Dl Size...:  55%|█████▌    | 829/1501 [00:33<00:27, 24.02 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 829/1501 [00:33<00:27, 24.02 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 830/1501 [00:33<00:27, 24.02 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 831/1501 [00:33<00:27, 24.02 MiB/s]


Dl Size...:  55%|█████▌    | 832/1501 [00:33<00:29, 22.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 832/1501 [00:33<00:29, 22.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  55%|█████▌    | 833/1501 [00:33<00:29, 22.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 834/1501 [00:33<00:29, 22.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 835/1501 [00:33<00:29, 22.90 MiB/s]


Dl Size...:  56%|█████▌    | 836/1501 [00:33<00:28, 23.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 836/1501 [00:33<00:28, 23.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 837/1501 [00:33<00:27, 23.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 838/1501 [00:33<00:27, 23.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 839/1501 [00:33<00:27, 23.74 MiB/s]


Dl Size...:  56%|█████▌    | 840/1501 [00:33<00:27, 24.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 840/1501 [00:33<00:27, 24.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 841/1501 [00:33<00:27, 24.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 842/1501 [00:33<00:27, 24.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 843/1501 [00:33<00:27, 24.33 MiB/s]


Dl Size...:  56%|█████▌    | 844/1501 [00:33<00:26, 24.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:33<00:16, 16.96s/ url]

Dl Size...:  56%|█████▌    | 844/1501 [00:33<00:26, 24.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  56%|█████▋    | 845/1501 [00:34<00:26, 24.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  56%|█████▋    | 846/1501 [00:34<00:26, 24.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  56%|█████▋    | 847/1501 [00:34<00:26, 24.80 MiB/s]


Dl Size...:  56%|█████▋    | 848/1501 [00:34<00:24, 26.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  56%|█████▋    | 848/1501 [00:34<00:24, 26.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 849/1501 [00:34<00:24, 26.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 850/1501 [00:34<00:24, 26.72 MiB/s]


Dl Size...:  57%|█████▋    | 851/1501 [00:34<00:25, 25.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 851/1501 [00:34<00:25, 25.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 852/1501 [00:34<00:25, 25.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 853/1501 [00:34<00:25, 25.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 854/1501 [00:34<00:25, 25.52 MiB/s]


Dl Size...:  57%|█████▋    | 855/1501 [00:34<00:24, 26.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 855/1501 [00:34<00:24, 26.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 856/1501 [00:34<00:24, 26.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 857/1501 [00:34<00:24, 26.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 858/1501 [00:34<00:24, 26.04 MiB/s]


Dl Size...:  57%|█████▋    | 859/1501 [00:34<00:22, 28.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 859/1501 [00:34<00:22, 28.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 860/1501 [00:34<00:22, 28.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 861/1501 [00:34<00:22, 28.51 MiB/s]


Dl Size...:  57%|█████▋    | 862/1501 [00:34<00:24, 26.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 862/1501 [00:34<00:24, 26.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  57%|█████▋    | 863/1501 [00:34<00:24, 26.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 864/1501 [00:34<00:24, 26.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 865/1501 [00:34<00:24, 26.35 MiB/s]


Dl Size...:  58%|█████▊    | 866/1501 [00:34<00:23, 26.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 866/1501 [00:34<00:23, 26.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 867/1501 [00:34<00:23, 26.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 868/1501 [00:34<00:23, 26.93 MiB/s]


Dl Size...:  58%|█████▊    | 869/1501 [00:34<00:22, 27.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 869/1501 [00:34<00:22, 27.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 870/1501 [00:34<00:22, 27.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 871/1501 [00:34<00:22, 27.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:34<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 872/1501 [00:34<00:22, 27.54 MiB/s]


Dl Size...:  58%|█████▊    | 873/1501 [00:35<00:20, 29.92 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 873/1501 [00:35<00:20, 29.92 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 874/1501 [00:35<00:20, 29.92 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 875/1501 [00:35<00:20, 29.92 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 876/1501 [00:35<00:20, 29.92 MiB/s]


Dl Size...:  58%|█████▊    | 877/1501 [00:35<00:21, 29.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 877/1501 [00:35<00:21, 29.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  58%|█████▊    | 878/1501 [00:35<00:21, 29.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▊    | 879/1501 [00:35<00:21, 29.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▊    | 880/1501 [00:35<00:21, 29.37 MiB/s]


Dl Size...:  59%|█████▊    | 881/1501 [00:35<00:21, 28.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▊    | 881/1501 [00:35<00:21, 28.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 882/1501 [00:35<00:21, 28.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 883/1501 [00:35<00:21, 28.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 884/1501 [00:35<00:21, 28.88 MiB/s]


Dl Size...:  59%|█████▉    | 885/1501 [00:35<00:19, 31.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 885/1501 [00:35<00:19, 31.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 886/1501 [00:35<00:19, 31.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 887/1501 [00:35<00:19, 31.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 888/1501 [00:35<00:19, 31.26 MiB/s]


Dl Size...:  59%|█████▉    | 889/1501 [00:35<00:20, 29.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 889/1501 [00:35<00:20, 29.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 890/1501 [00:35<00:20, 29.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 891/1501 [00:35<00:20, 29.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 892/1501 [00:35<00:20, 29.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  59%|█████▉    | 893/1501 [00:35<00:20, 29.84 MiB/s]


Dl Size...:  60%|█████▉    | 894/1501 [00:35<00:19, 30.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 894/1501 [00:35<00:19, 30.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 895/1501 [00:35<00:19, 30.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 896/1501 [00:35<00:19, 30.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 897/1501 [00:35<00:19, 30.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 898/1501 [00:35<00:19, 30.39 MiB/s]


Dl Size...:  60%|█████▉    | 899/1501 [00:35<00:19, 31.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 899/1501 [00:35<00:19, 31.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|█████▉    | 900/1501 [00:35<00:19, 31.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 901/1501 [00:35<00:19, 31.24 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 902/1501 [00:35<00:19, 31.24 MiB/s]


Dl Size...:  60%|██████    | 903/1501 [00:35<00:18, 32.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:35<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 903/1501 [00:35<00:18, 32.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 904/1501 [00:36<00:18, 32.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 905/1501 [00:36<00:18, 32.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 906/1501 [00:36<00:18, 32.75 MiB/s]


Dl Size...:  60%|██████    | 907/1501 [00:36<00:18, 32.25 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 907/1501 [00:36<00:18, 32.25 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  60%|██████    | 908/1501 [00:36<00:18, 32.25 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 909/1501 [00:36<00:18, 32.25 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 910/1501 [00:36<00:18, 32.25 MiB/s]


Dl Size...:  61%|██████    | 911/1501 [00:36<00:17, 33.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 911/1501 [00:36<00:17, 33.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 912/1501 [00:36<00:17, 33.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 913/1501 [00:36<00:17, 33.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 914/1501 [00:36<00:17, 33.09 MiB/s]


Dl Size...:  61%|██████    | 915/1501 [00:36<00:17, 33.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 915/1501 [00:36<00:17, 33.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 916/1501 [00:36<00:17, 33.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 917/1501 [00:36<00:17, 33.01 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 918/1501 [00:36<00:17, 33.01 MiB/s]


Dl Size...:  61%|██████    | 919/1501 [00:36<00:17, 33.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████    | 919/1501 [00:36<00:17, 33.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████▏   | 920/1501 [00:36<00:17, 33.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████▏   | 921/1501 [00:36<00:17, 33.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████▏   | 922/1501 [00:36<00:17, 33.30 MiB/s]


Dl Size...:  61%|██████▏   | 923/1501 [00:36<00:16, 35.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  61%|██████▏   | 923/1501 [00:36<00:16, 35.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 924/1501 [00:36<00:16, 35.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 925/1501 [00:36<00:16, 35.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 926/1501 [00:36<00:16, 35.03 MiB/s]


Dl Size...:  62%|██████▏   | 927/1501 [00:36<00:16, 34.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 927/1501 [00:36<00:16, 34.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 928/1501 [00:36<00:16, 34.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 929/1501 [00:36<00:16, 34.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 930/1501 [00:36<00:16, 34.53 MiB/s]


Dl Size...:  62%|██████▏   | 931/1501 [00:36<00:16, 34.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 931/1501 [00:36<00:16, 34.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 932/1501 [00:36<00:16, 34.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 933/1501 [00:36<00:16, 34.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 934/1501 [00:36<00:16, 34.89 MiB/s]


Dl Size...:  62%|██████▏   | 935/1501 [00:36<00:16, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 935/1501 [00:36<00:16, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 936/1501 [00:36<00:16, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 937/1501 [00:36<00:16, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:36<00:16, 16.96s/ url]

Dl Size...:  62%|██████▏   | 938/1501 [00:36<00:16, 34.58 MiB/s]


Dl Size...:  63%|██████▎   | 939/1501 [00:37<00:16, 34.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 939/1501 [00:37<00:16, 34.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 940/1501 [00:37<00:16, 34.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 941/1501 [00:37<00:16, 34.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 942/1501 [00:37<00:16, 34.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 943/1501 [00:37<00:16, 34.29 MiB/s]


Dl Size...:  63%|██████▎   | 944/1501 [00:37<00:15, 35.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 944/1501 [00:37<00:15, 35.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 945/1501 [00:37<00:15, 35.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 946/1501 [00:37<00:15, 35.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 947/1501 [00:37<00:15, 35.72 MiB/s]


Dl Size...:  63%|██████▎   | 948/1501 [00:37<00:15, 34.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 948/1501 [00:37<00:15, 34.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 949/1501 [00:37<00:15, 34.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 950/1501 [00:37<00:15, 34.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 951/1501 [00:37<00:15, 34.69 MiB/s]


Dl Size...:  63%|██████▎   | 952/1501 [00:37<00:15, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 952/1501 [00:37<00:15, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  63%|██████▎   | 953/1501 [00:37<00:15, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▎   | 954/1501 [00:37<00:15, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▎   | 955/1501 [00:37<00:15, 34.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▎   | 956/1501 [00:37<00:15, 34.58 MiB/s]


Dl Size...:  64%|██████▍   | 957/1501 [00:37<00:15, 35.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 957/1501 [00:37<00:15, 35.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 958/1501 [00:37<00:15, 35.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 959/1501 [00:37<00:15, 35.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 960/1501 [00:37<00:15, 35.74 MiB/s]


Dl Size...:  64%|██████▍   | 961/1501 [00:37<00:18, 29.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 961/1501 [00:37<00:18, 29.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 962/1501 [00:37<00:18, 29.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 963/1501 [00:37<00:18, 29.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 964/1501 [00:37<00:18, 29.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 965/1501 [00:37<00:18, 29.40 MiB/s]


Dl Size...:  64%|██████▍   | 966/1501 [00:37<00:18, 29.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 966/1501 [00:37<00:18, 29.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 967/1501 [00:37<00:18, 29.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  64%|██████▍   | 968/1501 [00:37<00:18, 29.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:37<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 969/1501 [00:37<00:18, 29.52 MiB/s]


Dl Size...:  65%|██████▍   | 970/1501 [00:38<00:18, 28.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 970/1501 [00:38<00:18, 28.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 971/1501 [00:38<00:18, 28.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 972/1501 [00:38<00:18, 28.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 973/1501 [00:38<00:18, 28.18 MiB/s]


Dl Size...:  65%|██████▍   | 974/1501 [00:38<00:19, 26.70 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 974/1501 [00:38<00:19, 26.70 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▍   | 975/1501 [00:38<00:19, 26.70 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 976/1501 [00:38<00:19, 26.70 MiB/s]


Dl Size...:  65%|██████▌   | 977/1501 [00:38<00:21, 24.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 977/1501 [00:38<00:21, 24.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 978/1501 [00:38<00:21, 24.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 979/1501 [00:38<00:21, 24.30 MiB/s]


Dl Size...:  65%|██████▌   | 980/1501 [00:38<00:23, 22.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 980/1501 [00:38<00:23, 22.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 981/1501 [00:38<00:22, 22.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 982/1501 [00:38<00:22, 22.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  65%|██████▌   | 983/1501 [00:38<00:22, 22.64 MiB/s]


Dl Size...:  66%|██████▌   | 984/1501 [00:38<00:22, 22.91 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 984/1501 [00:38<00:22, 22.91 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 985/1501 [00:38<00:22, 22.91 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 986/1501 [00:38<00:22, 22.91 MiB/s]


Dl Size...:  66%|██████▌   | 987/1501 [00:38<00:23, 21.70 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 987/1501 [00:38<00:23, 21.70 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 988/1501 [00:38<00:23, 21.70 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:38<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 989/1501 [00:38<00:23, 21.70 MiB/s]


Dl Size...:  66%|██████▌   | 990/1501 [00:39<00:24, 20.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 990/1501 [00:39<00:24, 20.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 991/1501 [00:39<00:24, 20.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 992/1501 [00:39<00:24, 20.76 MiB/s]


Dl Size...:  66%|██████▌   | 993/1501 [00:39<00:25, 19.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 993/1501 [00:39<00:25, 19.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▌   | 994/1501 [00:39<00:25, 19.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▋   | 995/1501 [00:39<00:25, 19.73 MiB/s]


Dl Size...:  66%|██████▋   | 996/1501 [00:39<00:25, 19.57 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▋   | 996/1501 [00:39<00:25, 19.57 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▋   | 997/1501 [00:39<00:25, 19.57 MiB/s]


Dl Size...:  66%|██████▋   | 998/1501 [00:39<00:28, 17.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  66%|██████▋   | 998/1501 [00:39<00:28, 17.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 999/1501 [00:39<00:28, 17.55 MiB/s]


Dl Size...:  67%|██████▋   | 1000/1501 [00:39<00:30, 16.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1000/1501 [00:39<00:30, 16.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1001/1501 [00:39<00:30, 16.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1002/1501 [00:39<00:30, 16.33 MiB/s]


Dl Size...:  67%|██████▋   | 1003/1501 [00:39<00:30, 16.59 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1003/1501 [00:39<00:30, 16.59 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1004/1501 [00:39<00:29, 16.59 MiB/s]


Dl Size...:  67%|██████▋   | 1005/1501 [00:39<00:31, 15.62 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:39<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1005/1501 [00:39<00:31, 15.62 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1006/1501 [00:40<00:31, 15.62 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1007/1501 [00:40<00:31, 15.62 MiB/s]


Dl Size...:  67%|██████▋   | 1008/1501 [00:40<00:30, 16.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1008/1501 [00:40<00:30, 16.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1009/1501 [00:40<00:30, 16.12 MiB/s]


Dl Size...:  67%|██████▋   | 1010/1501 [00:40<00:32, 15.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1010/1501 [00:40<00:32, 15.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1011/1501 [00:40<00:32, 15.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1012/1501 [00:40<00:32, 15.21 MiB/s]


Dl Size...:  67%|██████▋   | 1013/1501 [00:40<00:30, 16.00 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  67%|██████▋   | 1013/1501 [00:40<00:30, 16.00 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1014/1501 [00:40<00:30, 16.00 MiB/s]


Dl Size...:  68%|██████▊   | 1015/1501 [00:40<00:32, 15.15 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1015/1501 [00:40<00:32, 15.15 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1016/1501 [00:40<00:32, 15.15 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1017/1501 [00:40<00:31, 15.15 MiB/s]


Dl Size...:  68%|██████▊   | 1018/1501 [00:40<00:30, 15.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1018/1501 [00:40<00:30, 15.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1019/1501 [00:40<00:30, 15.98 MiB/s]


Dl Size...:  68%|██████▊   | 1020/1501 [00:40<00:31, 15.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:40<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1020/1501 [00:40<00:31, 15.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1021/1501 [00:41<00:31, 15.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1022/1501 [00:41<00:31, 15.20 MiB/s]


Dl Size...:  68%|██████▊   | 1023/1501 [00:41<00:29, 15.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1023/1501 [00:41<00:29, 15.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1024/1501 [00:41<00:29, 15.96 MiB/s]


Dl Size...:  68%|██████▊   | 1025/1501 [00:41<00:30, 15.42 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1025/1501 [00:41<00:30, 15.42 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1026/1501 [00:41<00:30, 15.42 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1027/1501 [00:41<00:30, 15.42 MiB/s]


Dl Size...:  68%|██████▊   | 1028/1501 [00:41<00:29, 15.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  68%|██████▊   | 1028/1501 [00:41<00:29, 15.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▊   | 1029/1501 [00:41<00:29, 15.93 MiB/s]


Dl Size...:  69%|██████▊   | 1030/1501 [00:41<00:30, 15.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▊   | 1030/1501 [00:41<00:30, 15.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▊   | 1031/1501 [00:41<00:29, 15.68 MiB/s]


Dl Size...:  69%|██████▉   | 1032/1501 [00:41<00:28, 16.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1032/1501 [00:41<00:28, 16.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1033/1501 [00:41<00:28, 16.26 MiB/s]


Dl Size...:  69%|██████▉   | 1034/1501 [00:41<00:29, 15.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1034/1501 [00:41<00:29, 15.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1035/1501 [00:41<00:29, 15.88 MiB/s]


Dl Size...:  69%|██████▉   | 1036/1501 [00:41<00:28, 16.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1036/1501 [00:41<00:28, 16.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:41<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1037/1501 [00:41<00:28, 16.45 MiB/s]


Dl Size...:  69%|██████▉   | 1038/1501 [00:42<00:29, 15.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1038/1501 [00:42<00:29, 15.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1039/1501 [00:42<00:28, 15.95 MiB/s]


Dl Size...:  69%|██████▉   | 1040/1501 [00:42<00:27, 16.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1040/1501 [00:42<00:27, 16.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1041/1501 [00:42<00:27, 16.73 MiB/s]


Dl Size...:  69%|██████▉   | 1042/1501 [00:42<00:28, 16.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1042/1501 [00:42<00:28, 16.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  69%|██████▉   | 1043/1501 [00:42<00:28, 16.08 MiB/s]


Dl Size...:  70%|██████▉   | 1044/1501 [00:42<00:27, 16.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1044/1501 [00:42<00:27, 16.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1045/1501 [00:42<00:27, 16.75 MiB/s]


Dl Size...:  70%|██████▉   | 1046/1501 [00:42<00:28, 16.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1046/1501 [00:42<00:28, 16.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1047/1501 [00:42<00:28, 16.18 MiB/s]


Dl Size...:  70%|██████▉   | 1048/1501 [00:42<00:26, 17.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1048/1501 [00:42<00:26, 17.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1049/1501 [00:42<00:26, 17.09 MiB/s]


Dl Size...:  70%|██████▉   | 1050/1501 [00:42<00:27, 16.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|██████▉   | 1050/1501 [00:42<00:27, 16.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1051/1501 [00:42<00:27, 16.19 MiB/s]


Dl Size...:  70%|███████   | 1052/1501 [00:42<00:26, 17.13 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1052/1501 [00:42<00:26, 17.13 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1053/1501 [00:42<00:26, 17.13 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:42<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1054/1501 [00:42<00:26, 17.13 MiB/s]


Dl Size...:  70%|███████   | 1055/1501 [00:43<00:25, 17.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1055/1501 [00:43<00:25, 17.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1056/1501 [00:43<00:25, 17.20 MiB/s]


Dl Size...:  70%|███████   | 1057/1501 [00:43<00:26, 16.61 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1057/1501 [00:43<00:26, 16.61 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  70%|███████   | 1058/1501 [00:43<00:26, 16.61 MiB/s]


Dl Size...:  71%|███████   | 1059/1501 [00:43<00:25, 17.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1059/1501 [00:43<00:25, 17.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1060/1501 [00:43<00:25, 17.09 MiB/s]


Dl Size...:  71%|███████   | 1061/1501 [00:43<00:26, 16.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1061/1501 [00:43<00:26, 16.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1062/1501 [00:43<00:26, 16.58 MiB/s]


Dl Size...:  71%|███████   | 1063/1501 [00:43<00:25, 17.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1063/1501 [00:43<00:25, 17.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1064/1501 [00:43<00:25, 17.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1065/1501 [00:43<00:25, 17.37 MiB/s]


Dl Size...:  71%|███████   | 1066/1501 [00:43<00:25, 17.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1066/1501 [00:43<00:25, 17.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1067/1501 [00:43<00:25, 17.35 MiB/s]


Dl Size...:  71%|███████   | 1068/1501 [00:43<00:25, 16.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1068/1501 [00:43<00:25, 16.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████   | 1069/1501 [00:43<00:25, 16.74 MiB/s]


Dl Size...:  71%|███████▏  | 1070/1501 [00:43<00:25, 17.16 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████▏  | 1070/1501 [00:43<00:25, 17.16 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:43<00:16, 16.96s/ url]

Dl Size...:  71%|███████▏  | 1071/1501 [00:43<00:25, 17.16 MiB/s]


Dl Size...:  71%|███████▏  | 1072/1501 [00:44<00:25, 16.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  71%|███████▏  | 1072/1501 [00:44<00:25, 16.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  71%|███████▏  | 1073/1501 [00:44<00:25, 16.78 MiB/s]


Dl Size...:  72%|███████▏  | 1074/1501 [00:44<00:24, 17.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1074/1501 [00:44<00:24, 17.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1075/1501 [00:44<00:24, 17.45 MiB/s]


Dl Size...:  72%|███████▏  | 1076/1501 [00:44<00:23, 18.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1076/1501 [00:44<00:23, 18.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1077/1501 [00:44<00:23, 18.05 MiB/s]


Dl Size...:  72%|███████▏  | 1078/1501 [00:44<00:24, 17.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1078/1501 [00:44<00:24, 17.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1079/1501 [00:44<00:24, 17.08 MiB/s]


Dl Size...:  72%|███████▏  | 1080/1501 [00:44<00:24, 17.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1080/1501 [00:44<00:24, 17.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1081/1501 [00:44<00:23, 17.53 MiB/s]


Dl Size...:  72%|███████▏  | 1082/1501 [00:44<00:24, 16.83 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1082/1501 [00:44<00:24, 16.83 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1083/1501 [00:44<00:24, 16.83 MiB/s]


Dl Size...:  72%|███████▏  | 1084/1501 [00:44<00:23, 17.41 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1084/1501 [00:44<00:23, 17.41 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1085/1501 [00:44<00:23, 17.41 MiB/s]


Dl Size...:  72%|███████▏  | 1086/1501 [00:44<00:24, 16.82 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1086/1501 [00:44<00:24, 16.82 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1087/1501 [00:44<00:24, 16.82 MiB/s]


Dl Size...:  72%|███████▏  | 1088/1501 [00:44<00:23, 17.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:44<00:16, 16.96s/ url]

Dl Size...:  72%|███████▏  | 1088/1501 [00:44<00:23, 17.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1089/1501 [00:45<00:23, 17.30 MiB/s]


Dl Size...:  73%|███████▎  | 1090/1501 [00:45<00:24, 16.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1090/1501 [00:45<00:24, 16.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1091/1501 [00:45<00:24, 16.79 MiB/s]


Dl Size...:  73%|███████▎  | 1092/1501 [00:45<00:23, 17.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1092/1501 [00:45<00:23, 17.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1093/1501 [00:45<00:23, 17.33 MiB/s]


Dl Size...:  73%|███████▎  | 1094/1501 [00:45<00:22, 17.82 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1094/1501 [00:45<00:22, 17.82 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1095/1501 [00:45<00:22, 17.82 MiB/s]


Dl Size...:  73%|███████▎  | 1096/1501 [00:45<00:24, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1096/1501 [00:45<00:24, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1097/1501 [00:45<00:23, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1098/1501 [00:45<00:23, 16.84 MiB/s]


Dl Size...:  73%|███████▎  | 1099/1501 [00:45<00:23, 17.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1099/1501 [00:45<00:23, 17.26 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1100/1501 [00:45<00:23, 17.26 MiB/s]


Dl Size...:  73%|███████▎  | 1101/1501 [00:45<00:22, 17.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1101/1501 [00:45<00:22, 17.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1102/1501 [00:45<00:22, 17.80 MiB/s]


Dl Size...:  73%|███████▎  | 1103/1501 [00:45<00:23, 16.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  73%|███████▎  | 1103/1501 [00:45<00:23, 16.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  74%|███████▎  | 1104/1501 [00:45<00:23, 16.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:45<00:16, 16.96s/ url]

Dl Size...:  74%|███████▎  | 1105/1501 [00:45<00:23, 16.86 MiB/s]


Dl Size...:  74%|███████▎  | 1106/1501 [00:46<00:22, 17.32 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▎  | 1106/1501 [00:46<00:22, 17.32 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1107/1501 [00:46<00:22, 17.32 MiB/s]


Dl Size...:  74%|███████▍  | 1108/1501 [00:46<00:22, 17.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1108/1501 [00:46<00:22, 17.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1109/1501 [00:46<00:22, 17.74 MiB/s]


Dl Size...:  74%|███████▍  | 1110/1501 [00:46<00:23, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1110/1501 [00:46<00:23, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1111/1501 [00:46<00:23, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1112/1501 [00:46<00:23, 16.84 MiB/s]


Dl Size...:  74%|███████▍  | 1113/1501 [00:46<00:22, 17.31 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1113/1501 [00:46<00:22, 17.31 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1114/1501 [00:46<00:22, 17.31 MiB/s]


Dl Size...:  74%|███████▍  | 1115/1501 [00:46<00:22, 16.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1115/1501 [00:46<00:22, 16.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1116/1501 [00:46<00:22, 16.95 MiB/s]


Dl Size...:  74%|███████▍  | 1117/1501 [00:46<00:22, 17.10 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1117/1501 [00:46<00:22, 17.10 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  74%|███████▍  | 1118/1501 [00:46<00:22, 17.10 MiB/s]


Dl Size...:  75%|███████▍  | 1119/1501 [00:46<00:24, 15.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1119/1501 [00:46<00:24, 15.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1120/1501 [00:46<00:24, 15.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:46<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1121/1501 [00:46<00:24, 15.81 MiB/s]


Dl Size...:  75%|███████▍  | 1122/1501 [00:47<00:23, 16.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1122/1501 [00:47<00:23, 16.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1123/1501 [00:47<00:23, 16.12 MiB/s]


Dl Size...:  75%|███████▍  | 1124/1501 [00:47<00:25, 14.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1124/1501 [00:47<00:25, 14.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▍  | 1125/1501 [00:47<00:25, 14.98 MiB/s]


Dl Size...:  75%|███████▌  | 1126/1501 [00:47<00:26, 14.25 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1126/1501 [00:47<00:26, 14.25 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1127/1501 [00:47<00:26, 14.25 MiB/s]


Dl Size...:  75%|███████▌  | 1128/1501 [00:47<00:27, 13.77 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1128/1501 [00:47<00:27, 13.77 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1129/1501 [00:47<00:27, 13.77 MiB/s]


Dl Size...:  75%|███████▌  | 1130/1501 [00:47<00:27, 13.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1130/1501 [00:47<00:27, 13.39 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1131/1501 [00:47<00:27, 13.39 MiB/s]


Dl Size...:  75%|███████▌  | 1132/1501 [00:47<00:27, 13.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1132/1501 [00:47<00:27, 13.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  75%|███████▌  | 1133/1501 [00:47<00:27, 13.40 MiB/s]


Dl Size...:  76%|███████▌  | 1134/1501 [00:47<00:27, 13.59 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:47<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1134/1501 [00:47<00:27, 13.59 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1135/1501 [00:48<00:26, 13.59 MiB/s]


Dl Size...:  76%|███████▌  | 1136/1501 [00:48<00:27, 13.27 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1136/1501 [00:48<00:27, 13.27 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1137/1501 [00:48<00:27, 13.27 MiB/s]


Dl Size...:  76%|███████▌  | 1138/1501 [00:48<00:25, 14.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1138/1501 [00:48<00:25, 14.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1139/1501 [00:48<00:25, 14.06 MiB/s]


Dl Size...:  76%|███████▌  | 1140/1501 [00:48<00:26, 13.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1140/1501 [00:48<00:26, 13.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1141/1501 [00:48<00:26, 13.73 MiB/s]


Dl Size...:  76%|███████▌  | 1142/1501 [00:48<00:25, 14.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1142/1501 [00:48<00:25, 14.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1143/1501 [00:48<00:25, 14.19 MiB/s]


Dl Size...:  76%|███████▌  | 1144/1501 [00:48<00:24, 14.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▌  | 1144/1501 [00:48<00:24, 14.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▋  | 1145/1501 [00:48<00:24, 14.76 MiB/s]


Dl Size...:  76%|███████▋  | 1146/1501 [00:48<00:24, 14.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▋  | 1146/1501 [00:48<00:24, 14.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▋  | 1147/1501 [00:48<00:24, 14.21 MiB/s]


Dl Size...:  76%|███████▋  | 1148/1501 [00:48<00:24, 14.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  76%|███████▋  | 1148/1501 [00:48<00:24, 14.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:48<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1149/1501 [00:48<00:24, 14.33 MiB/s]


Dl Size...:  77%|███████▋  | 1150/1501 [00:49<00:24, 14.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1150/1501 [00:49<00:24, 14.21 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1151/1501 [00:49<00:24, 14.21 MiB/s]


Dl Size...:  77%|███████▋  | 1152/1501 [00:49<00:23, 14.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1152/1501 [00:49<00:23, 14.81 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1153/1501 [00:49<00:23, 14.81 MiB/s]


Dl Size...:  77%|███████▋  | 1154/1501 [00:49<00:23, 14.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1154/1501 [00:49<00:23, 14.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1155/1501 [00:49<00:23, 14.89 MiB/s]


Dl Size...:  77%|███████▋  | 1156/1501 [00:49<00:22, 15.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1156/1501 [00:49<00:22, 15.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1157/1501 [00:49<00:22, 15.50 MiB/s]


Dl Size...:  77%|███████▋  | 1158/1501 [00:49<00:23, 14.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1158/1501 [00:49<00:23, 14.76 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1159/1501 [00:49<00:23, 14.76 MiB/s]


Dl Size...:  77%|███████▋  | 1160/1501 [00:49<00:22, 14.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1160/1501 [00:49<00:22, 14.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1161/1501 [00:49<00:22, 14.90 MiB/s]


Dl Size...:  77%|███████▋  | 1162/1501 [00:49<00:21, 15.57 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1162/1501 [00:49<00:21, 15.57 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  77%|███████▋  | 1163/1501 [00:49<00:21, 15.57 MiB/s]


Dl Size...:  78%|███████▊  | 1164/1501 [00:49<00:21, 15.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:49<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1164/1501 [00:49<00:21, 15.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1165/1501 [00:50<00:21, 15.49 MiB/s]


Dl Size...:  78%|███████▊  | 1166/1501 [00:50<00:20, 16.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1166/1501 [00:50<00:20, 16.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1167/1501 [00:50<00:20, 16.04 MiB/s]


Dl Size...:  78%|███████▊  | 1168/1501 [00:50<00:21, 15.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1168/1501 [00:50<00:21, 15.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1169/1501 [00:50<00:21, 15.34 MiB/s]


Dl Size...:  78%|███████▊  | 1170/1501 [00:50<00:20, 16.32 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1170/1501 [00:50<00:20, 16.32 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1171/1501 [00:50<00:20, 16.32 MiB/s]


Dl Size...:  78%|███████▊  | 1172/1501 [00:50<00:21, 15.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1172/1501 [00:50<00:21, 15.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1173/1501 [00:50<00:21, 15.50 MiB/s]


Dl Size...:  78%|███████▊  | 1174/1501 [00:50<00:21, 15.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1174/1501 [00:50<00:21, 15.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1175/1501 [00:50<00:21, 15.52 MiB/s]


Dl Size...:  78%|███████▊  | 1176/1501 [00:50<00:20, 15.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1176/1501 [00:50<00:20, 15.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1177/1501 [00:50<00:20, 15.96 MiB/s]


Dl Size...:  78%|███████▊  | 1178/1501 [00:50<00:20, 15.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  78%|███████▊  | 1178/1501 [00:50<00:20, 15.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  79%|███████▊  | 1179/1501 [00:50<00:20, 15.88 MiB/s]


Dl Size...:  79%|███████▊  | 1180/1501 [00:50<00:19, 16.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  79%|███████▊  | 1180/1501 [00:50<00:19, 16.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:50<00:16, 16.96s/ url]

Dl Size...:  79%|███████▊  | 1181/1501 [00:50<00:19, 16.37 MiB/s]


Dl Size...:  79%|███████▊  | 1182/1501 [00:51<00:19, 16.02 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▊  | 1182/1501 [00:51<00:19, 16.02 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1183/1501 [00:51<00:19, 16.02 MiB/s]


Dl Size...:  79%|███████▉  | 1184/1501 [00:51<00:19, 16.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1184/1501 [00:51<00:19, 16.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1185/1501 [00:51<00:18, 16.64 MiB/s]


Dl Size...:  79%|███████▉  | 1186/1501 [00:51<00:19, 16.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1186/1501 [00:51<00:19, 16.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1187/1501 [00:51<00:19, 16.35 MiB/s]


Dl Size...:  79%|███████▉  | 1188/1501 [00:51<00:18, 16.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1188/1501 [00:51<00:18, 16.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1189/1501 [00:51<00:18, 16.72 MiB/s]


Dl Size...:  79%|███████▉  | 1190/1501 [00:51<00:19, 16.10 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1190/1501 [00:51<00:19, 16.10 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1191/1501 [00:51<00:19, 16.10 MiB/s]


Dl Size...:  79%|███████▉  | 1192/1501 [00:51<00:18, 16.87 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1192/1501 [00:51<00:18, 16.87 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  79%|███████▉  | 1193/1501 [00:51<00:18, 16.87 MiB/s]


Dl Size...:  80%|███████▉  | 1194/1501 [00:51<00:18, 16.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1194/1501 [00:51<00:18, 16.20 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1195/1501 [00:51<00:18, 16.20 MiB/s]


Dl Size...:  80%|███████▉  | 1196/1501 [00:51<00:17, 16.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1196/1501 [00:51<00:17, 16.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:51<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1197/1501 [00:51<00:17, 16.95 MiB/s]


Dl Size...:  80%|███████▉  | 1198/1501 [00:52<00:17, 17.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1198/1501 [00:52<00:17, 17.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1199/1501 [00:52<00:17, 17.14 MiB/s]


Dl Size...:  80%|███████▉  | 1200/1501 [00:52<00:17, 17.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|███████▉  | 1200/1501 [00:52<00:17, 17.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1201/1501 [00:52<00:17, 17.09 MiB/s]


Dl Size...:  80%|████████  | 1202/1501 [00:52<00:17, 17.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1202/1501 [00:52<00:17, 17.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1203/1501 [00:52<00:17, 17.29 MiB/s]


Dl Size...:  80%|████████  | 1204/1501 [00:52<00:17, 17.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1204/1501 [00:52<00:17, 17.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1205/1501 [00:52<00:17, 17.03 MiB/s]


Dl Size...:  80%|████████  | 1206/1501 [00:52<00:17, 17.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1206/1501 [00:52<00:17, 17.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1207/1501 [00:52<00:17, 17.03 MiB/s]


Dl Size...:  80%|████████  | 1208/1501 [00:52<00:17, 16.85 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  80%|████████  | 1208/1501 [00:52<00:17, 16.85 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1209/1501 [00:52<00:17, 16.85 MiB/s]


Dl Size...:  81%|████████  | 1210/1501 [00:52<00:16, 17.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1210/1501 [00:52<00:16, 17.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1211/1501 [00:52<00:16, 17.34 MiB/s]


Dl Size...:  81%|████████  | 1212/1501 [00:52<00:17, 16.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1212/1501 [00:52<00:17, 16.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1213/1501 [00:52<00:17, 16.53 MiB/s]


Dl Size...:  81%|████████  | 1214/1501 [00:52<00:16, 17.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:52<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1214/1501 [00:52<00:16, 17.18 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1215/1501 [00:53<00:16, 17.18 MiB/s]


Dl Size...:  81%|████████  | 1216/1501 [00:53<00:17, 16.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1216/1501 [00:53<00:17, 16.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1217/1501 [00:53<00:17, 16.55 MiB/s]


Dl Size...:  81%|████████  | 1218/1501 [00:53<00:16, 17.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1218/1501 [00:53<00:16, 17.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████  | 1219/1501 [00:53<00:16, 17.12 MiB/s]


Dl Size...:  81%|████████▏ | 1220/1501 [00:53<00:16, 17.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████▏ | 1220/1501 [00:53<00:16, 17.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████▏ | 1221/1501 [00:53<00:16, 17.34 MiB/s]


Dl Size...:  81%|████████▏ | 1222/1501 [00:53<00:15, 17.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████▏ | 1222/1501 [00:53<00:15, 17.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  81%|████████▏ | 1223/1501 [00:53<00:15, 17.50 MiB/s]


Dl Size...:  82%|████████▏ | 1224/1501 [00:53<00:15, 17.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1224/1501 [00:53<00:15, 17.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1225/1501 [00:53<00:15, 17.45 MiB/s]


Dl Size...:  82%|████████▏ | 1226/1501 [00:53<00:16, 17.07 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1226/1501 [00:53<00:16, 17.07 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1227/1501 [00:53<00:16, 17.07 MiB/s]


Dl Size...:  82%|████████▏ | 1228/1501 [00:53<00:15, 17.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1228/1501 [00:53<00:15, 17.35 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1229/1501 [00:53<00:15, 17.35 MiB/s]


Dl Size...:  82%|████████▏ | 1230/1501 [00:53<00:16, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1230/1501 [00:53<00:16, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:53<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1231/1501 [00:53<00:16, 16.84 MiB/s]


Dl Size...:  82%|████████▏ | 1232/1501 [00:54<00:15, 17.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1232/1501 [00:54<00:15, 17.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1233/1501 [00:54<00:15, 17.29 MiB/s]


Dl Size...:  82%|████████▏ | 1234/1501 [00:54<00:15, 16.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1234/1501 [00:54<00:15, 16.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1235/1501 [00:54<00:15, 16.89 MiB/s]


Dl Size...:  82%|████████▏ | 1236/1501 [00:54<00:15, 17.27 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1236/1501 [00:54<00:15, 17.27 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1237/1501 [00:54<00:15, 17.27 MiB/s]


Dl Size...:  82%|████████▏ | 1238/1501 [00:54<00:14, 17.83 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  82%|████████▏ | 1238/1501 [00:54<00:14, 17.83 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1239/1501 [00:54<00:14, 17.83 MiB/s]


Dl Size...:  83%|████████▎ | 1240/1501 [00:54<00:15, 17.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1240/1501 [00:54<00:15, 17.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1241/1501 [00:54<00:14, 17.38 MiB/s]


Dl Size...:  83%|████████▎ | 1242/1501 [00:54<00:14, 17.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1242/1501 [00:54<00:14, 17.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1243/1501 [00:54<00:14, 17.49 MiB/s]


Dl Size...:  83%|████████▎ | 1244/1501 [00:54<00:15, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1244/1501 [00:54<00:15, 16.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1245/1501 [00:54<00:15, 16.84 MiB/s]


Dl Size...:  83%|████████▎ | 1246/1501 [00:54<00:14, 17.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1246/1501 [00:54<00:14, 17.04 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1247/1501 [00:54<00:14, 17.04 MiB/s]


Dl Size...:  83%|████████▎ | 1248/1501 [00:54<00:16, 15.43 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:54<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1248/1501 [00:54<00:16, 15.43 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1249/1501 [00:55<00:16, 15.43 MiB/s]


Dl Size...:  83%|████████▎ | 1250/1501 [00:55<00:17, 14.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1250/1501 [00:55<00:17, 14.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1251/1501 [00:55<00:17, 14.30 MiB/s]


Dl Size...:  83%|████████▎ | 1252/1501 [00:55<00:18, 13.71 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1252/1501 [00:55<00:18, 13.71 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  83%|████████▎ | 1253/1501 [00:55<00:18, 13.71 MiB/s]


Dl Size...:  84%|████████▎ | 1254/1501 [00:55<00:18, 13.48 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▎ | 1254/1501 [00:55<00:18, 13.48 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▎ | 1255/1501 [00:55<00:18, 13.48 MiB/s]


Dl Size...:  84%|████████▎ | 1256/1501 [00:55<00:18, 13.17 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▎ | 1256/1501 [00:55<00:18, 13.17 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▎ | 1257/1501 [00:55<00:18, 13.17 MiB/s]


Dl Size...:  84%|████████▍ | 1258/1501 [00:55<00:18, 13.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1258/1501 [00:55<00:18, 13.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1259/1501 [00:55<00:18, 13.05 MiB/s]


Dl Size...:  84%|████████▍ | 1260/1501 [00:55<00:18, 12.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:55<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1260/1501 [00:55<00:18, 12.89 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1261/1501 [00:56<00:18, 12.89 MiB/s]


Dl Size...:  84%|████████▍ | 1262/1501 [00:56<00:18, 12.97 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1262/1501 [00:56<00:18, 12.97 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1263/1501 [00:56<00:18, 12.97 MiB/s]


Dl Size...:  84%|████████▍ | 1264/1501 [00:56<00:18, 12.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1264/1501 [00:56<00:18, 12.95 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1265/1501 [00:56<00:18, 12.95 MiB/s]


Dl Size...:  84%|████████▍ | 1266/1501 [00:56<00:18, 13.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1266/1501 [00:56<00:18, 13.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1267/1501 [00:56<00:17, 13.05 MiB/s]


Dl Size...:  84%|████████▍ | 1268/1501 [00:56<00:18, 12.91 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  84%|████████▍ | 1268/1501 [00:56<00:18, 12.91 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1269/1501 [00:56<00:17, 12.91 MiB/s]


Dl Size...:  85%|████████▍ | 1270/1501 [00:56<00:17, 13.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1270/1501 [00:56<00:17, 13.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1271/1501 [00:56<00:16, 13.54 MiB/s]


Dl Size...:  85%|████████▍ | 1272/1501 [00:56<00:16, 13.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1272/1501 [00:56<00:16, 13.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1273/1501 [00:56<00:16, 13.73 MiB/s]


Dl Size...:  85%|████████▍ | 1274/1501 [00:56<00:16, 13.43 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:56<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1274/1501 [00:56<00:16, 13.43 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▍ | 1275/1501 [00:57<00:16, 13.43 MiB/s]


Dl Size...:  85%|████████▌ | 1276/1501 [00:57<00:16, 13.48 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1276/1501 [00:57<00:16, 13.48 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1277/1501 [00:57<00:16, 13.48 MiB/s]


Dl Size...:  85%|████████▌ | 1278/1501 [00:57<00:16, 13.44 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1278/1501 [00:57<00:16, 13.44 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1279/1501 [00:57<00:16, 13.44 MiB/s]


Dl Size...:  85%|████████▌ | 1280/1501 [00:57<00:15, 14.00 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1280/1501 [00:57<00:15, 14.00 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1281/1501 [00:57<00:15, 14.00 MiB/s]


Dl Size...:  85%|████████▌ | 1282/1501 [00:57<00:15, 14.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1282/1501 [00:57<00:15, 14.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  85%|████████▌ | 1283/1501 [00:57<00:15, 14.05 MiB/s]


Dl Size...:  86%|████████▌ | 1284/1501 [00:57<00:15, 13.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1284/1501 [00:57<00:15, 13.88 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1285/1501 [00:57<00:15, 13.88 MiB/s]


Dl Size...:  86%|████████▌ | 1286/1501 [00:57<00:15, 13.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1286/1501 [00:57<00:15, 13.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1287/1501 [00:57<00:15, 13.79 MiB/s]


Dl Size...:  86%|████████▌ | 1288/1501 [00:57<00:15, 13.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:57<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1288/1501 [00:57<00:15, 13.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1289/1501 [00:58<00:15, 13.86 MiB/s]


Dl Size...:  86%|████████▌ | 1290/1501 [00:58<00:14, 14.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1290/1501 [00:58<00:14, 14.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1291/1501 [00:58<00:14, 14.38 MiB/s]


Dl Size...:  86%|████████▌ | 1292/1501 [00:58<00:14, 14.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1292/1501 [00:58<00:14, 14.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1293/1501 [00:58<00:14, 14.05 MiB/s]


Dl Size...:  86%|████████▌ | 1294/1501 [00:58<00:14, 14.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▌ | 1294/1501 [00:58<00:14, 14.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▋ | 1295/1501 [00:58<00:14, 14.08 MiB/s]


Dl Size...:  86%|████████▋ | 1296/1501 [00:58<00:14, 14.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▋ | 1296/1501 [00:58<00:14, 14.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▋ | 1297/1501 [00:58<00:14, 14.06 MiB/s]


Dl Size...:  86%|████████▋ | 1298/1501 [00:58<00:13, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  86%|████████▋ | 1298/1501 [00:58<00:13, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1299/1501 [00:58<00:13, 14.51 MiB/s]


Dl Size...:  87%|████████▋ | 1300/1501 [00:58<00:14, 14.28 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1300/1501 [00:58<00:14, 14.28 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1301/1501 [00:58<00:14, 14.28 MiB/s]


Dl Size...:  87%|████████▋ | 1302/1501 [00:58<00:14, 14.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:58<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1302/1501 [00:58<00:14, 14.14 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1303/1501 [00:59<00:14, 14.14 MiB/s]


Dl Size...:  87%|████████▋ | 1304/1501 [00:59<00:13, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1304/1501 [00:59<00:13, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1305/1501 [00:59<00:13, 14.52 MiB/s]


Dl Size...:  87%|████████▋ | 1306/1501 [00:59<00:13, 14.44 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1306/1501 [00:59<00:13, 14.44 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1307/1501 [00:59<00:13, 14.44 MiB/s]


Dl Size...:  87%|████████▋ | 1308/1501 [00:59<00:13, 14.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1308/1501 [00:59<00:13, 14.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1309/1501 [00:59<00:13, 14.34 MiB/s]


Dl Size...:  87%|████████▋ | 1310/1501 [00:59<00:13, 14.41 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1310/1501 [00:59<00:13, 14.41 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1311/1501 [00:59<00:13, 14.41 MiB/s]


Dl Size...:  87%|████████▋ | 1312/1501 [00:59<00:12, 14.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1312/1501 [00:59<00:12, 14.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  87%|████████▋ | 1313/1501 [00:59<00:12, 14.80 MiB/s]


Dl Size...:  88%|████████▊ | 1314/1501 [00:59<00:12, 14.57 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1314/1501 [00:59<00:12, 14.57 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1315/1501 [00:59<00:12, 14.57 MiB/s]


Dl Size...:  88%|████████▊ | 1316/1501 [00:59<00:12, 14.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1316/1501 [00:59<00:12, 14.33 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [00:59<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1317/1501 [00:59<00:12, 14.33 MiB/s]


Dl Size...:  88%|████████▊ | 1318/1501 [01:00<00:12, 14.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1318/1501 [01:00<00:12, 14.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1319/1501 [01:00<00:12, 14.68 MiB/s]


Dl Size...:  88%|████████▊ | 1320/1501 [01:00<00:12, 14.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1320/1501 [01:00<00:12, 14.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1321/1501 [01:00<00:12, 14.69 MiB/s]


Dl Size...:  88%|████████▊ | 1322/1501 [01:00<00:12, 14.27 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1322/1501 [01:00<00:12, 14.27 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1323/1501 [01:00<00:12, 14.27 MiB/s]


Dl Size...:  88%|████████▊ | 1324/1501 [01:00<00:12, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1324/1501 [01:00<00:12, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1325/1501 [01:00<00:12, 14.51 MiB/s]


Dl Size...:  88%|████████▊ | 1326/1501 [01:00<00:11, 14.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1326/1501 [01:00<00:11, 14.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1327/1501 [01:00<00:11, 14.80 MiB/s]


Dl Size...:  88%|████████▊ | 1328/1501 [01:00<00:11, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  88%|████████▊ | 1328/1501 [01:00<00:11, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  89%|████████▊ | 1329/1501 [01:00<00:11, 14.51 MiB/s]


Dl Size...:  89%|████████▊ | 1330/1501 [01:00<00:11, 14.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  89%|████████▊ | 1330/1501 [01:00<00:11, 14.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:00<00:16, 16.96s/ url]

Dl Size...:  89%|████████▊ | 1331/1501 [01:00<00:11, 14.38 MiB/s]


Dl Size...:  89%|████████▊ | 1332/1501 [01:01<00:11, 14.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▊ | 1332/1501 [01:01<00:11, 14.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1333/1501 [01:01<00:11, 14.74 MiB/s]


Dl Size...:  89%|████████▉ | 1334/1501 [01:01<00:11, 14.59 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1334/1501 [01:01<00:11, 14.59 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1335/1501 [01:01<00:11, 14.59 MiB/s]


Dl Size...:  89%|████████▉ | 1336/1501 [01:01<00:11, 14.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1336/1501 [01:01<00:11, 14.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1337/1501 [01:01<00:11, 14.58 MiB/s]


Dl Size...:  89%|████████▉ | 1338/1501 [01:01<00:10, 14.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1338/1501 [01:01<00:10, 14.86 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1339/1501 [01:01<00:10, 14.86 MiB/s]


Dl Size...:  89%|████████▉ | 1340/1501 [01:01<00:11, 14.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1340/1501 [01:01<00:11, 14.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1341/1501 [01:01<00:10, 14.55 MiB/s]


Dl Size...:  89%|████████▉ | 1342/1501 [01:01<00:11, 14.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1342/1501 [01:01<00:11, 14.45 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  89%|████████▉ | 1343/1501 [01:01<00:10, 14.45 MiB/s]


Dl Size...:  90%|████████▉ | 1344/1501 [01:01<00:10, 14.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1344/1501 [01:01<00:10, 14.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1345/1501 [01:01<00:10, 14.30 MiB/s]


Dl Size...:  90%|████████▉ | 1346/1501 [01:01<00:10, 14.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:01<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1346/1501 [01:01<00:10, 14.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1347/1501 [01:02<00:10, 14.55 MiB/s]


Dl Size...:  90%|████████▉ | 1348/1501 [01:02<00:10, 14.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1348/1501 [01:02<00:10, 14.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1349/1501 [01:02<00:10, 14.79 MiB/s]


Dl Size...:  90%|████████▉ | 1350/1501 [01:02<00:10, 14.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|████████▉ | 1350/1501 [01:02<00:10, 14.50 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1351/1501 [01:02<00:10, 14.50 MiB/s]


Dl Size...:  90%|█████████ | 1352/1501 [01:02<00:10, 14.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1352/1501 [01:02<00:10, 14.73 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1353/1501 [01:02<00:10, 14.73 MiB/s]


Dl Size...:  90%|█████████ | 1354/1501 [01:02<00:10, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1354/1501 [01:02<00:10, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1355/1501 [01:02<00:10, 14.52 MiB/s]


Dl Size...:  90%|█████████ | 1356/1501 [01:02<00:09, 14.56 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1356/1501 [01:02<00:09, 14.56 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1357/1501 [01:02<00:09, 14.56 MiB/s]


Dl Size...:  90%|█████████ | 1358/1501 [01:02<00:09, 14.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  90%|█████████ | 1358/1501 [01:02<00:09, 14.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1359/1501 [01:02<00:09, 14.64 MiB/s]


Dl Size...:  91%|█████████ | 1360/1501 [01:02<00:09, 14.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:02<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1360/1501 [01:02<00:09, 14.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1361/1501 [01:03<00:09, 14.72 MiB/s]


Dl Size...:  91%|█████████ | 1362/1501 [01:03<00:09, 14.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1362/1501 [01:03<00:09, 14.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1363/1501 [01:03<00:09, 14.58 MiB/s]


Dl Size...:  91%|█████████ | 1364/1501 [01:03<00:09, 14.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1364/1501 [01:03<00:09, 14.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1365/1501 [01:03<00:09, 14.40 MiB/s]


Dl Size...:  91%|█████████ | 1366/1501 [01:03<00:09, 14.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1366/1501 [01:03<00:09, 14.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1367/1501 [01:03<00:09, 14.68 MiB/s]


Dl Size...:  91%|█████████ | 1368/1501 [01:03<00:09, 14.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1368/1501 [01:03<00:09, 14.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████ | 1369/1501 [01:03<00:09, 14.49 MiB/s]


Dl Size...:  91%|█████████▏| 1370/1501 [01:03<00:09, 14.48 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████▏| 1370/1501 [01:03<00:09, 14.48 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████▏| 1371/1501 [01:03<00:08, 14.48 MiB/s]


Dl Size...:  91%|█████████▏| 1372/1501 [01:03<00:08, 14.66 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████▏| 1372/1501 [01:03<00:08, 14.66 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  91%|█████████▏| 1373/1501 [01:03<00:08, 14.66 MiB/s]


Dl Size...:  92%|█████████▏| 1374/1501 [01:03<00:08, 14.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1374/1501 [01:03<00:08, 14.72 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:03<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1375/1501 [01:03<00:08, 14.72 MiB/s]


Dl Size...:  92%|█████████▏| 1376/1501 [01:04<00:08, 14.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1376/1501 [01:04<00:08, 14.54 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1377/1501 [01:04<00:08, 14.54 MiB/s]


Dl Size...:  92%|█████████▏| 1378/1501 [01:04<00:08, 14.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1378/1501 [01:04<00:08, 14.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1379/1501 [01:04<00:08, 14.78 MiB/s]


Dl Size...:  92%|█████████▏| 1380/1501 [01:04<00:08, 14.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1380/1501 [01:04<00:08, 14.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1381/1501 [01:04<00:08, 14.80 MiB/s]


Dl Size...:  92%|█████████▏| 1382/1501 [01:04<00:08, 14.65 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1382/1501 [01:04<00:08, 14.65 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1383/1501 [01:04<00:08, 14.65 MiB/s]


Dl Size...:  92%|█████████▏| 1384/1501 [01:04<00:08, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1384/1501 [01:04<00:08, 14.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1385/1501 [01:04<00:07, 14.51 MiB/s]


Dl Size...:  92%|█████████▏| 1386/1501 [01:04<00:07, 14.87 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1386/1501 [01:04<00:07, 14.87 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1387/1501 [01:04<00:07, 14.87 MiB/s]


Dl Size...:  92%|█████████▏| 1388/1501 [01:04<00:07, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  92%|█████████▏| 1388/1501 [01:04<00:07, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1389/1501 [01:04<00:07, 14.52 MiB/s]


Dl Size...:  93%|█████████▎| 1390/1501 [01:04<00:07, 14.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:04<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1390/1501 [01:04<00:07, 14.68 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1391/1501 [01:05<00:07, 14.68 MiB/s]


Dl Size...:  93%|█████████▎| 1392/1501 [01:05<00:07, 14.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1392/1501 [01:05<00:07, 14.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1393/1501 [01:05<00:07, 14.98 MiB/s]


Dl Size...:  93%|█████████▎| 1394/1501 [01:05<00:07, 14.61 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1394/1501 [01:05<00:07, 14.61 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1395/1501 [01:05<00:07, 14.61 MiB/s]


Dl Size...:  93%|█████████▎| 1396/1501 [01:05<00:07, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1396/1501 [01:05<00:07, 14.52 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1397/1501 [01:05<00:07, 14.52 MiB/s]


Dl Size...:  93%|█████████▎| 1398/1501 [01:05<00:06, 15.22 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1398/1501 [01:05<00:06, 15.22 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1399/1501 [01:05<00:06, 15.22 MiB/s]


Dl Size...:  93%|█████████▎| 1400/1501 [01:05<00:06, 14.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1400/1501 [01:05<00:06, 14.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1401/1501 [01:05<00:06, 14.69 MiB/s]


Dl Size...:  93%|█████████▎| 1402/1501 [01:05<00:06, 14.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1402/1501 [01:05<00:06, 14.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  93%|█████████▎| 1403/1501 [01:05<00:06, 14.55 MiB/s]


Dl Size...:  94%|█████████▎| 1404/1501 [01:05<00:06, 15.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▎| 1404/1501 [01:05<00:06, 15.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:05<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▎| 1405/1501 [01:05<00:06, 15.37 MiB/s]


Dl Size...:  94%|█████████▎| 1406/1501 [01:06<00:06, 14.92 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▎| 1406/1501 [01:06<00:06, 14.92 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▎| 1407/1501 [01:06<00:06, 14.92 MiB/s]


Dl Size...:  94%|█████████▍| 1408/1501 [01:06<00:06, 15.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1408/1501 [01:06<00:06, 15.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1409/1501 [01:06<00:06, 15.06 MiB/s]


Dl Size...:  94%|█████████▍| 1410/1501 [01:06<00:05, 15.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1410/1501 [01:06<00:05, 15.38 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1411/1501 [01:06<00:05, 15.38 MiB/s]


Dl Size...:  94%|█████████▍| 1412/1501 [01:06<00:05, 14.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1412/1501 [01:06<00:05, 14.90 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1413/1501 [01:06<00:05, 14.90 MiB/s]


Dl Size...:  94%|█████████▍| 1414/1501 [01:06<00:05, 14.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1414/1501 [01:06<00:05, 14.93 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1415/1501 [01:06<00:05, 14.93 MiB/s]


Dl Size...:  94%|█████████▍| 1416/1501 [01:06<00:05, 15.32 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1416/1501 [01:06<00:05, 15.32 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1417/1501 [01:06<00:05, 15.32 MiB/s]


Dl Size...:  94%|█████████▍| 1418/1501 [01:06<00:05, 14.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  94%|█████████▍| 1418/1501 [01:06<00:05, 14.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1419/1501 [01:06<00:05, 14.96 MiB/s]


Dl Size...:  95%|█████████▍| 1420/1501 [01:06<00:05, 14.99 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:06<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1420/1501 [01:06<00:05, 14.99 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1421/1501 [01:07<00:05, 14.99 MiB/s]


Dl Size...:  95%|█████████▍| 1422/1501 [01:07<00:05, 15.28 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1422/1501 [01:07<00:05, 15.28 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1423/1501 [01:07<00:05, 15.28 MiB/s]


Dl Size...:  95%|█████████▍| 1424/1501 [01:07<00:05, 15.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1424/1501 [01:07<00:05, 15.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▍| 1425/1501 [01:07<00:04, 15.29 MiB/s]


Dl Size...:  95%|█████████▌| 1426/1501 [01:07<00:04, 15.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1426/1501 [01:07<00:04, 15.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1427/1501 [01:07<00:04, 15.75 MiB/s]


Dl Size...:  95%|█████████▌| 1428/1501 [01:07<00:04, 15.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1428/1501 [01:07<00:04, 15.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1429/1501 [01:07<00:04, 15.34 MiB/s]


Dl Size...:  95%|█████████▌| 1430/1501 [01:07<00:04, 14.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1430/1501 [01:07<00:04, 14.49 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1431/1501 [01:07<00:04, 14.49 MiB/s]


Dl Size...:  95%|█████████▌| 1432/1501 [01:07<00:05, 12.97 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1432/1501 [01:07<00:05, 12.97 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:07<00:16, 16.96s/ url]

Dl Size...:  95%|█████████▌| 1433/1501 [01:07<00:05, 12.97 MiB/s]


Dl Size...:  96%|█████████▌| 1434/1501 [01:08<00:05, 11.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1434/1501 [01:08<00:05, 11.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1435/1501 [01:08<00:05, 11.75 MiB/s]


Dl Size...:  96%|█████████▌| 1436/1501 [01:08<00:05, 11.36 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1436/1501 [01:08<00:05, 11.36 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1437/1501 [01:08<00:05, 11.36 MiB/s]


Dl Size...:  96%|█████████▌| 1438/1501 [01:08<00:05, 10.97 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1438/1501 [01:08<00:05, 10.97 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1439/1501 [01:08<00:05, 10.97 MiB/s]


Dl Size...:  96%|█████████▌| 1440/1501 [01:08<00:05, 11.00 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1440/1501 [01:08<00:05, 11.00 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1441/1501 [01:08<00:05, 11.00 MiB/s]


Dl Size...:  96%|█████████▌| 1442/1501 [01:08<00:05, 10.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1442/1501 [01:08<00:05, 10.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1443/1501 [01:08<00:05, 10.96 MiB/s]


Dl Size...:  96%|█████████▌| 1444/1501 [01:08<00:05, 10.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:08<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▌| 1444/1501 [01:08<00:05, 10.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▋| 1445/1501 [01:09<00:05, 10.84 MiB/s]


Dl Size...:  96%|█████████▋| 1446/1501 [01:09<00:05, 10.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▋| 1446/1501 [01:09<00:05, 10.78 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▋| 1447/1501 [01:09<00:05, 10.78 MiB/s]


Dl Size...:  96%|█████████▋| 1448/1501 [01:09<00:05,  9.67 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  96%|█████████▋| 1448/1501 [01:09<00:05,  9.67 MiB/s]


Dl Size...:  97%|█████████▋| 1449/1501 [01:09<00:05,  9.19 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1449/1501 [01:09<00:05,  9.19 MiB/s]


Dl Size...:  97%|█████████▋| 1450/1501 [01:09<00:05,  9.09 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1450/1501 [01:09<00:05,  9.09 MiB/s]


Dl Size...:  97%|█████████▋| 1451/1501 [01:09<00:05,  8.75 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1451/1501 [01:09<00:05,  8.75 MiB/s]


Dl Size...:  97%|█████████▋| 1452/1501 [01:09<00:05,  8.69 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:09<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1452/1501 [01:09<00:05,  8.69 MiB/s]


Dl Size...:  97%|█████████▋| 1453/1501 [01:10<00:05,  8.46 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1453/1501 [01:10<00:05,  8.46 MiB/s]


Dl Size...:  97%|█████████▋| 1454/1501 [01:10<00:05,  8.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1454/1501 [01:10<00:05,  8.55 MiB/s]


Dl Size...:  97%|█████████▋| 1455/1501 [01:10<00:05,  8.44 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1455/1501 [01:10<00:05,  8.44 MiB/s]


Dl Size...:  97%|█████████▋| 1456/1501 [01:10<00:05,  8.64 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1456/1501 [01:10<00:05,  8.64 MiB/s]


Dl Size...:  97%|█████████▋| 1457/1501 [01:10<00:05,  8.23 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1457/1501 [01:10<00:05,  8.23 MiB/s]


Dl Size...:  97%|█████████▋| 1458/1501 [01:10<00:05,  8.58 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1458/1501 [01:10<00:05,  8.58 MiB/s]


Dl Size...:  97%|█████████▋| 1459/1501 [01:10<00:04,  8.65 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1459/1501 [01:10<00:04,  8.65 MiB/s]


Dl Size...:  97%|█████████▋| 1460/1501 [01:10<00:04,  8.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1460/1501 [01:10<00:04,  8.79 MiB/s]


Dl Size...:  97%|█████████▋| 1461/1501 [01:10<00:04,  8.79 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:10<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1461/1501 [01:10<00:04,  8.79 MiB/s]


Dl Size...:  97%|█████████▋| 1462/1501 [01:11<00:04,  8.56 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1462/1501 [01:11<00:04,  8.56 MiB/s]


Dl Size...:  97%|█████████▋| 1463/1501 [01:11<00:04,  8.66 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  97%|█████████▋| 1463/1501 [01:11<00:04,  8.66 MiB/s]


Dl Size...:  98%|█████████▊| 1464/1501 [01:11<00:04,  8.43 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1464/1501 [01:11<00:04,  8.43 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1465/1501 [01:11<00:04,  8.43 MiB/s]


Dl Size...:  98%|█████████▊| 1466/1501 [01:11<00:03,  9.06 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1466/1501 [01:11<00:03,  9.06 MiB/s]


Dl Size...:  98%|█████████▊| 1467/1501 [01:11<00:03,  8.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1467/1501 [01:11<00:03,  8.80 MiB/s]


Dl Size...:  98%|█████████▊| 1468/1501 [01:11<00:03,  9.07 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1468/1501 [01:11<00:03,  9.07 MiB/s]


Dl Size...:  98%|█████████▊| 1469/1501 [01:11<00:03,  8.98 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1469/1501 [01:11<00:03,  8.98 MiB/s]


Dl Size...:  98%|█████████▊| 1470/1501 [01:11<00:03,  9.03 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:11<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1470/1501 [01:11<00:03,  9.03 MiB/s]


Dl Size...:  98%|█████████▊| 1471/1501 [01:12<00:03,  9.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1471/1501 [01:12<00:03,  9.05 MiB/s]


Dl Size...:  98%|█████████▊| 1472/1501 [01:12<00:03,  8.56 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1472/1501 [01:12<00:03,  8.56 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1473/1501 [01:12<00:03,  8.56 MiB/s]


Dl Size...:  98%|█████████▊| 1474/1501 [01:12<00:02,  9.30 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1474/1501 [01:12<00:02,  9.30 MiB/s]


Dl Size...:  98%|█████████▊| 1475/1501 [01:12<00:02,  8.82 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1475/1501 [01:12<00:02,  8.82 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1476/1501 [01:12<00:02,  8.82 MiB/s]


Dl Size...:  98%|█████████▊| 1477/1501 [01:12<00:02,  9.40 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1477/1501 [01:12<00:02,  9.40 MiB/s]


Dl Size...:  98%|█████████▊| 1478/1501 [01:12<00:02,  8.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  98%|█████████▊| 1478/1501 [01:12<00:02,  8.84 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:12<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▊| 1479/1501 [01:12<00:02,  8.84 MiB/s]


Dl Size...:  99%|█████████▊| 1480/1501 [01:13<00:02,  9.31 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▊| 1480/1501 [01:13<00:02,  9.31 MiB/s]


Dl Size...:  99%|█████████▊| 1481/1501 [01:13<00:02,  8.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▊| 1481/1501 [01:13<00:02,  8.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▊| 1482/1501 [01:13<00:02,  8.96 MiB/s]


Dl Size...:  99%|█████████▉| 1483/1501 [01:13<00:01,  9.37 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1483/1501 [01:13<00:01,  9.37 MiB/s]


Dl Size...:  99%|█████████▉| 1484/1501 [01:13<00:01,  9.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1484/1501 [01:13<00:01,  9.08 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1485/1501 [01:13<00:01,  9.08 MiB/s]


Dl Size...:  99%|█████████▉| 1486/1501 [01:13<00:01,  9.51 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1486/1501 [01:13<00:01,  9.51 MiB/s]


Dl Size...:  99%|█████████▉| 1487/1501 [01:13<00:01,  9.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1487/1501 [01:13<00:01,  9.12 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:13<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1488/1501 [01:13<00:01,  9.12 MiB/s]


Dl Size...:  99%|█████████▉| 1489/1501 [01:14<00:01,  9.53 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1489/1501 [01:14<00:01,  9.53 MiB/s]


Dl Size...:  99%|█████████▉| 1490/1501 [01:14<00:01,  8.96 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1490/1501 [01:14<00:01,  8.96 MiB/s]


Dl Size...:  99%|█████████▉| 1491/1501 [01:14<00:01,  8.87 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1491/1501 [01:14<00:01,  8.87 MiB/s]


Dl Size...:  99%|█████████▉| 1492/1501 [01:14<00:01,  8.29 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1492/1501 [01:14<00:01,  8.29 MiB/s]


Dl Size...:  99%|█████████▉| 1493/1501 [01:14<00:01,  7.74 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...:  99%|█████████▉| 1493/1501 [01:14<00:01,  7.74 MiB/s]


Dl Size...: 100%|█████████▉| 1494/1501 [01:14<00:00,  7.34 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1494/1501 [01:14<00:00,  7.34 MiB/s]


Dl Size...: 100%|█████████▉| 1495/1501 [01:14<00:00,  7.05 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:14<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1495/1501 [01:14<00:00,  7.05 MiB/s]


Dl Size...: 100%|█████████▉| 1496/1501 [01:15<00:00,  7.63 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:15<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1496/1501 [01:15<00:00,  7.63 MiB/s]


Dl Size...: 100%|█████████▉| 1497/1501 [01:15<00:00,  7.41 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:15<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1497/1501 [01:15<00:00,  7.41 MiB/s]


Dl Size...: 100%|█████████▉| 1498/1501 [01:15<00:00,  7.10 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:15<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1498/1501 [01:15<00:00,  7.10 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:15<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1499/1501 [01:15<00:00,  7.10 MiB/s]


Dl Size...: 100%|█████████▉| 1500/1501 [01:15<00:00,  7.55 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:15<00:16, 16.96s/ url]

Dl Size...: 100%|█████████▉| 1500/1501 [01:15<00:00,  7.55 MiB/s]


Dl Size...: 100%|██████████| 1501/1501 [01:15<00:00,  7.80 MiB/s]

Dl Completed...:  67%|██████▋   | 2/3 [01:15<00:16, 16.96s/ url]

Dl Size...: 100%|██████████| 1501/1501 [01:15<00:00,  7.80 MiB/s]

Dl Completed...: 100%|██████████| 3/3 [01:15<00:00, 29.83s/ url]
Dl Completed...: 100%|██████████| 3/3 [01:15<00:00, 29.83s/ url]

Dl Size...: 100%|██████████| 1501/1501 [01:15<00:00,  7.80 MiB/s]

Dl Size...: 100%|██████████| 1501/1501 [01:15<00:00, 19.81 MiB/s]
Dl Completed...: 100%|██████████| 3/3 [01:15<00:00, 25.26s/ url]

Generating splits...:   0%|          | 0/3 [00:00<?, ? splits/s]

Generating train examples...: 0 examples [00:00, ? examples/s]

2024-09-05 18:39:03.629872: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Generating train examples...: 1 examples [00:01,  1.25s/ examples]


Generating train examples...: 314 examples [00:01, 322.66 examples/s]


Generating train examples...: 634 examples [00:01, 691.15 examples/s]


Generating train examples...: 951 examples [00:01, 1074.35 examples/s]


Generating train examples...: 1269 examples [00:01, 1454.65 examples/s]


Generating train examples...: 1589 examples [00:01, 1812.25 examples/s]


Generating train examples...: 1912 examples [00:01, 2133.62 examples/s]


Generating train examples...: 2230 examples [00:01, 2388.93 examples/s]


Generating train examples...: 2550 examples [00:02, 2598.35 examples/s]


Generating train examples...: 2873 examples [00:02, 2768.73 examples/s]


Generating train examples...: 3194 examples [00:02, 2891.48 examples/s]


Generating train examples...: 3515 examples [00:02, 2979.57 examples/s]


Generating train examples...: 3834 examples [00:02, 3039.58 examples/s]


Generating train examples...: 4153 examples [00:02, 3077.46 examples/s]


Generating train examples...: 4472 examples [00:02, 3093.91 examples/s]


Generating train examples...: 4789 examples [00:02, 3109.22 examples/s]


Generating train examples...: 5106 examples [00:02, 3125.82 examples/s]


Generating train examples...: 5423 examples [00:02, 3135.81 examples/s]


Generating train examples...: 5740 examples [00:03, 3134.07 examples/s]


Generating train examples...: 6056 examples [00:03, 3137.84 examples/s]


Generating train examples...: 6374 examples [00:03, 3147.79 examples/s]


Generating train examples...: 6692 examples [00:03, 3154.80 examples/s]


Generating train examples...: 7009 examples [00:03, 3157.52 examples/s]


Generating train examples...: 7326 examples [00:03, 3155.86 examples/s]


Generating train examples...: 7645 examples [00:03, 3165.17 examples/s]


Generating train examples...: 7964 examples [00:03, 3171.83 examples/s]


Generating train examples...: 8282 examples [00:03, 3172.01 examples/s]


Generating train examples...: 8600 examples [00:03, 3174.17 examples/s]


Generating train examples...: 8918 examples [00:04, 3164.69 examples/s]


Generating train examples...: 9238 examples [00:04, 3174.83 examples/s]


Generating train examples...: 9556 examples [00:04, 3174.47 examples/s]


Generating train examples...: 9874 examples [00:04, 3160.75 examples/s]


Generating train examples...: 10191 examples [00:04, 3162.71 examples/s]


Generating train examples...: 10508 examples [00:04, 3160.53 examples/s]


Generating train examples...: 10825 examples [00:04, 3158.50 examples/s]


Generating train examples...: 11146 examples [00:04, 3173.75 examples/s]


Generating train examples...: 11464 examples [00:04, 3173.02 examples/s]


Generating train examples...: 11782 examples [00:04, 3167.34 examples/s]


Generating train examples...: 12105 examples [00:05, 3184.68 examples/s]


Generating train examples...: 12424 examples [00:05, 3158.82 examples/s]


Generating train examples...: 12742 examples [00:05, 3162.26 examples/s]


Generating train examples...: 13060 examples [00:05, 3166.89 examples/s]


Generating train examples...: 13377 examples [00:05, 3160.75 examples/s]


Generating train examples...: 13697 examples [00:05, 3169.54 examples/s]


Generating train examples...: 14014 examples [00:05, 3160.19 examples/s]


Generating train examples...: 14331 examples [00:05, 3162.89 examples/s]


Generating train examples...: 14648 examples [00:05, 3158.77 examples/s]


Generating train examples...: 14965 examples [00:05, 3159.11 examples/s]


Generating train examples...: 15284 examples [00:06, 3167.85 examples/s]


Generating train examples...: 15602 examples [00:06, 3171.28 examples/s]


Generating train examples...: 15920 examples [00:06, 3169.57 examples/s]


Generating train examples...: 16238 examples [00:06, 3169.04 examples/s]


Generating train examples...: 16555 examples [00:06, 3153.58 examples/s]


Generating train examples...: 16871 examples [00:06, 3146.00 examples/s]


Generating train examples...: 17186 examples [00:06, 3142.91 examples/s]


Generating train examples...: 17504 examples [00:06, 3153.77 examples/s]


Generating train examples...: 17820 examples [00:06, 3152.73 examples/s]


Generating train examples...: 18136 examples [00:06, 3146.59 examples/s]


Generating train examples...: 18451 examples [00:07, 3147.11 examples/s]


Generating train examples...: 18766 examples [00:07, 3144.53 examples/s]


Generating train examples...: 19082 examples [00:07, 3148.50 examples/s]


Generating train examples...: 19401 examples [00:07, 3159.57 examples/s]


Generating train examples...: 19719 examples [00:07, 3163.03 examples/s]


Generating train examples...: 20036 examples [00:07, 3138.01 examples/s]


Generating train examples...: 20350 examples [00:07, 3116.29 examples/s]


Generating train examples...: 20662 examples [00:07, 3116.79 examples/s]


Generating train examples...: 20977 examples [00:07, 3124.03 examples/s]


Generating train examples...: 21294 examples [00:07, 3137.41 examples/s]


Generating train examples...: 21608 examples [00:08, 3128.56 examples/s]


Generating train examples...: 21921 examples [00:08, 3124.36 examples/s]


Generating train examples...: 22234 examples [00:08, 3102.05 examples/s]


Generating train examples...: 22545 examples [00:08, 3104.11 examples/s]


Generating train examples...: 22861 examples [00:08, 3119.34 examples/s]


Generating train examples...: 23173 examples [00:08, 3106.02 examples/s]


Generating train examples...: 23484 examples [00:08, 3104.63 examples/s]


Generating train examples...: 23798 examples [00:08, 3113.92 examples/s]


Generating train examples...: 24110 examples [00:08, 3111.46 examples/s]


Generating train examples...: 24423 examples [00:08, 3116.50 examples/s]


Generating train examples...: 24735 examples [00:09, 3111.52 examples/s]


Generating train examples...: 25047 examples [00:09, 3092.65 examples/s]


Generating train examples...: 25359 examples [00:09, 3100.35 examples/s]


Generating train examples...: 25672 examples [00:09, 3108.94 examples/s]


Generating train examples...: 25987 examples [00:09, 3121.16 examples/s]


Generating train examples...: 26302 examples [00:09, 3128.60 examples/s]


Generating train examples...: 26620 examples [00:09, 3142.46 examples/s]


Generating train examples...: 26936 examples [00:09, 3147.65 examples/s]


Generating train examples...: 27251 examples [00:09, 3142.23 examples/s]


Generating train examples...: 27573 examples [00:09, 3162.57 examples/s]


Generating train examples...: 27890 examples [00:10, 3161.00 examples/s]


Generating train examples...: 28207 examples [00:10, 3157.99 examples/s]


Generating train examples...: 28523 examples [00:10, 3151.97 examples/s]


Generating train examples...: 28839 examples [00:10, 3141.16 examples/s]


Generating train examples...: 29155 examples [00:10, 3145.64 examples/s]


Generating train examples...: 29476 examples [00:10, 3162.28 examples/s]


Generating train examples...: 29793 examples [00:10, 3161.96 examples/s]


Generating train examples...: 30110 examples [00:10, 3160.48 examples/s]


Generating train examples...: 30427 examples [00:10, 3148.09 examples/s]


Generating train examples...: 30744 examples [00:10, 3152.15 examples/s]


Generating train examples...: 31061 examples [00:11, 3157.43 examples/s]


Generating train examples...: 31377 examples [00:11, 3151.08 examples/s]


Generating train examples...: 31696 examples [00:11, 3160.05 examples/s]


Generating train examples...: 32017 examples [00:11, 3173.78 examples/s]


Generating train examples...: 32335 examples [00:11, 3169.88 examples/s]


Generating train examples...: 32652 examples [00:11, 3169.37 examples/s]


Generating train examples...: 32969 examples [00:11, 3161.22 examples/s]


Generating train examples...: 33286 examples [00:11, 3162.51 examples/s]


Generating train examples...: 33604 examples [00:11, 3165.30 examples/s]


Generating train examples...: 33921 examples [00:12, 3157.03 examples/s]


Generating train examples...: 34237 examples [00:12, 3137.52 examples/s]


Generating train examples...: 34551 examples [00:12, 3120.90 examples/s]


Generating train examples...: 34864 examples [00:12, 3111.53 examples/s]


Generating train examples...: 35179 examples [00:12, 3122.01 examples/s]


Generating train examples...: 35492 examples [00:12, 3119.85 examples/s]


Generating train examples...: 35808 examples [00:12, 3131.29 examples/s]


Generating train examples...: 36122 examples [00:12, 3109.62 examples/s]


Generating train examples...: 36434 examples [00:12, 3105.79 examples/s]


Generating train examples...: 36747 examples [00:12, 3110.39 examples/s]


Generating train examples...: 37059 examples [00:13, 3113.06 examples/s]


Generating train examples...: 37371 examples [00:13, 3107.99 examples/s]


Generating train examples...: 37684 examples [00:13, 3111.34 examples/s]


Generating train examples...: 37996 examples [00:13, 3106.97 examples/s]


Generating train examples...: 38310 examples [00:13, 3116.63 examples/s]


Generating train examples...: 38622 examples [00:13, 3114.58 examples/s]


Generating train examples...: 38934 examples [00:13, 3113.72 examples/s]


Generating train examples...: 39246 examples [00:13, 3099.90 examples/s]


Generating train examples...: 39557 examples [00:13, 3089.48 examples/s]


Generating train examples...: 39867 examples [00:13, 3090.37 examples/s]


Generating train examples...: 40181 examples [00:14, 3102.17 examples/s]


Generating train examples...: 40492 examples [00:14, 3097.34 examples/s]


Generating train examples...: 40806 examples [00:14, 3107.85 examples/s]


Generating train examples...: 41118 examples [00:14, 3109.63 examples/s]


Generating train examples...: 41429 examples [00:14, 3098.72 examples/s]


Generating train examples...: 41740 examples [00:14, 3099.75 examples/s]


Generating train examples...: 42051 examples [00:14, 3102.40 examples/s]


Generating train examples...: 42365 examples [00:14, 3111.09 examples/s]


Generating train examples...: 42678 examples [00:14, 3112.62 examples/s]


Generating train examples...: 42990 examples [00:14, 3113.13 examples/s]


Generating train examples...: 43303 examples [00:15, 3117.94 examples/s]


Generating train examples...: 43616 examples [00:15, 3118.53 examples/s]


Generating train examples...: 43928 examples [00:15, 3116.50 examples/s]


Generating train examples...: 44240 examples [00:15, 3105.63 examples/s]


Generating train examples...: 44555 examples [00:15, 3116.54 examples/s]


Generating train examples...: 44870 examples [00:15, 3123.88 examples/s]


Generating train examples...: 45183 examples [00:15, 3123.08 examples/s]


Generating train examples...: 45496 examples [00:15, 3117.08 examples/s]


Generating train examples...: 45814 examples [00:15, 3133.19 examples/s]


Generating train examples...: 46133 examples [00:15, 3149.36 examples/s]


Generating train examples...: 46453 examples [00:16, 3163.65 examples/s]


Generating train examples...: 46770 examples [00:16, 3148.47 examples/s]


Generating train examples...: 47087 examples [00:16, 3152.23 examples/s]


Generating train examples...: 47406 examples [00:16, 3161.16 examples/s]


Generating train examples...: 47723 examples [00:16, 3160.12 examples/s]


Generating train examples...: 48041 examples [00:16, 3162.86 examples/s]


Generating train examples...: 48358 examples [00:16, 3154.70 examples/s]


Generating train examples...: 48675 examples [00:16, 3158.19 examples/s]


Generating train examples...: 48991 examples [00:16, 3136.28 examples/s]


Generating train examples...: 49307 examples [00:16, 3141.67 examples/s]


Generating train examples...: 49623 examples [00:17, 3146.73 examples/s]


Generating train examples...: 49938 examples [00:17, 3142.98 examples/s]


Generating train examples...: 50253 examples [00:17, 3124.95 examples/s]


Generating train examples...: 50566 examples [00:17, 3124.18 examples/s]


Generating train examples...: 50881 examples [00:17, 3129.33 examples/s]


Generating train examples...: 51195 examples [00:17, 3131.66 examples/s]


Generating train examples...: 51509 examples [00:17, 3133.43 examples/s]


Generating train examples...: 51823 examples [00:17, 3133.05 examples/s]


Generating train examples...: 52141 examples [00:17, 3145.29 examples/s]


Generating train examples...: 52456 examples [00:17, 3144.23 examples/s]


Generating train examples...: 52771 examples [00:18, 3137.62 examples/s]


Generating train examples...: 53086 examples [00:18, 3139.20 examples/s]


Generating train examples...: 53400 examples [00:18, 3130.34 examples/s]


Generating train examples...: 53714 examples [00:18, 3130.58 examples/s]


Generating train examples...: 54028 examples [00:18, 3119.14 examples/s]


Generating train examples...: 54340 examples [00:18, 3078.34 examples/s]


Generating train examples...: 54648 examples [00:18, 3075.93 examples/s]


Generating train examples...: 54961 examples [00:18, 3090.01 examples/s]


Generating train examples...: 55271 examples [00:18, 3087.37 examples/s]


Generating train examples...: 55581 examples [00:18, 3090.75 examples/s]


Generating train examples...: 55891 examples [00:19, 3090.88 examples/s]


Generating train examples...: 56201 examples [00:19, 3090.74 examples/s]


Generating train examples...: 56511 examples [00:19, 3082.66 examples/s]


Generating train examples...: 56820 examples [00:19, 3073.04 examples/s]


Generating train examples...: 57135 examples [00:19, 3092.89 examples/s]


Generating train examples...: 57451 examples [00:19, 3111.91 examples/s]


Generating train examples...: 57763 examples [00:19, 3096.78 examples/s]


Generating train examples...: 58077 examples [00:19, 3106.32 examples/s]


Generating train examples...: 58388 examples [00:19, 3090.45 examples/s]


Generating train examples...: 58698 examples [00:19, 3077.67 examples/s]


Generating train examples...: 59010 examples [00:20, 3087.11 examples/s]


Generating train examples...: 59320 examples [00:20, 3089.23 examples/s]


Generating train examples...: 59629 examples [00:20, 3086.99 examples/s]


Generating train examples...: 59940 examples [00:20, 3092.66 examples/s]


Generating train examples...: 60250 examples [00:20, 3083.41 examples/s]


Generating train examples...: 60565 examples [00:20, 3101.01 examples/s]


Generating train examples...: 60876 examples [00:20, 3080.83 examples/s]


Generating train examples...: 61186 examples [00:20, 3085.54 examples/s]


Generating train examples...: 61498 examples [00:20, 3095.33 examples/s]


Generating train examples...: 61809 examples [00:20, 3098.99 examples/s]


Generating train examples...: 62119 examples [00:21, 3095.74 examples/s]


Generating train examples...: 62430 examples [00:21, 3097.59 examples/s]


Generating train examples...: 62747 examples [00:21, 3118.13 examples/s]


Generating train examples...: 63059 examples [00:21, 3108.32 examples/s]


Generating train examples...: 63370 examples [00:21, 3106.79 examples/s]


Generating train examples...: 63681 examples [00:21, 3099.16 examples/s]


Generating train examples...: 63993 examples [00:21, 3103.41 examples/s]


Generating train examples...: 64305 examples [00:21, 3107.39 examples/s]


Generating train examples...: 64617 examples [00:21, 3110.46 examples/s]


Generating train examples...: 64933 examples [00:21, 3122.54 examples/s]


Generating train examples...: 65246 examples [00:22, 3122.85 examples/s]


Generating train examples...: 65562 examples [00:22, 3132.73 examples/s]


Generating train examples...: 65877 examples [00:22, 3135.33 examples/s]


Generating train examples...: 66191 examples [00:22, 3136.30 examples/s]


Generating train examples...: 66505 examples [00:22, 3117.20 examples/s]


Generating train examples...: 66817 examples [00:22, 3099.86 examples/s]


Generating train examples...: 67128 examples [00:22, 3099.12 examples/s]


Generating train examples...: 67442 examples [00:22, 3108.70 examples/s]


Generating train examples...: 67753 examples [00:22, 3087.32 examples/s]


Generating train examples...: 68063 examples [00:22, 3088.30 examples/s]


Generating train examples...: 68380 examples [00:23, 3112.43 examples/s]


Generating train examples...: 68698 examples [00:23, 3131.82 examples/s]


Generating train examples...: 69020 examples [00:23, 3156.95 examples/s]


Generating train examples...: 69341 examples [00:23, 3172.67 examples/s]


Generating train examples...: 69667 examples [00:23, 3196.27 examples/s]


Generating train examples...: 69990 examples [00:23, 3205.83 examples/s]


Generating train examples...: 70311 examples [00:23, 3196.11 examples/s]


Generating train examples...: 70636 examples [00:23, 3210.08 examples/s]


Generating train examples...: 70958 examples [00:23, 3197.72 examples/s]


Generating train examples...: 71278 examples [00:23, 3196.83 examples/s]


Generating train examples...: 71598 examples [00:24, 3184.63 examples/s]


Generating train examples...: 71917 examples [00:24, 3161.75 examples/s]


Generating train examples...: 72234 examples [00:24, 3147.72 examples/s]


Generating train examples...: 72556 examples [00:24, 3167.15 examples/s]


Generating train examples...: 72873 examples [00:24, 3165.91 examples/s]


Generating train examples...: 73190 examples [00:24, 3151.25 examples/s]


                                                                        


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-train.tfrecord*...:   0%|          | 0/73257 [00:00<?, ? examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-train.tfrecord*...:  24%|██▍       | 17583/73257 [00:00<00:00, 175811.72 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-train.tfrecord*...:  58%|█████▊    | 42529/73257 [00:00<00:00, 219122.37 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-train.tfrecord*...:  92%|█████████▏| 67688/73257 [00:00<00:00, 233940.03 examples/s]


                                                                                                                                                                                

Generating splits...:  33%|███▎      | 1/3 [00:24<00:49, 24.95s/ splits]

Generating test examples...: 0 examples [00:00, ? examples/s]


Generating test examples...: 1 examples [00:00,  2.31 examples/s]


Generating test examples...: 315 examples [00:00, 780.31 examples/s]


Generating test examples...: 631 examples [00:00, 1401.85 examples/s]


Generating test examples...: 940 examples [00:00, 1859.42 examples/s]


Generating test examples...: 1249 examples [00:00, 2203.46 examples/s]


Generating test examples...: 1560 examples [00:00, 2462.10 examples/s]


Generating test examples...: 1869 examples [00:01, 2642.96 examples/s]


Generating test examples...: 2185 examples [00:01, 2792.50 examples/s]


Generating test examples...: 2497 examples [00:01, 2886.56 examples/s]


Generating test examples...: 2810 examples [00:01, 2957.09 examples/s]


Generating test examples...: 3120 examples [00:01, 2998.11 examples/s]


Generating test examples...: 3438 examples [00:01, 3051.23 examples/s]


Generating test examples...: 3754 examples [00:01, 3083.12 examples/s]


Generating test examples...: 4073 examples [00:01, 3114.74 examples/s]


Generating test examples...: 4391 examples [00:01, 3133.70 examples/s]


Generating test examples...: 4709 examples [00:01, 3146.85 examples/s]


Generating test examples...: 5027 examples [00:02, 3155.76 examples/s]


Generating test examples...: 5349 examples [00:02, 3173.01 examples/s]


Generating test examples...: 5668 examples [00:02, 3173.93 examples/s]


Generating test examples...: 5988 examples [00:02, 3178.93 examples/s]


Generating test examples...: 6307 examples [00:02, 3166.20 examples/s]


Generating test examples...: 6625 examples [00:02, 3168.51 examples/s]


Generating test examples...: 6943 examples [00:02, 3154.14 examples/s]


Generating test examples...: 7259 examples [00:02, 3147.62 examples/s]


Generating test examples...: 7577 examples [00:02, 3155.11 examples/s]


Generating test examples...: 7893 examples [00:02, 3135.67 examples/s]


Generating test examples...: 8207 examples [00:03, 3126.70 examples/s]


Generating test examples...: 8523 examples [00:03, 3133.33 examples/s]


Generating test examples...: 8837 examples [00:03, 3127.06 examples/s]


Generating test examples...: 9151 examples [00:03, 3130.27 examples/s]


Generating test examples...: 9465 examples [00:03, 3121.74 examples/s]


Generating test examples...: 9778 examples [00:03, 3106.55 examples/s]


Generating test examples...: 10089 examples [00:03, 3106.48 examples/s]


Generating test examples...: 10401 examples [00:03, 3109.96 examples/s]


Generating test examples...: 10715 examples [00:03, 3116.38 examples/s]


Generating test examples...: 11027 examples [00:03, 3104.82 examples/s]


Generating test examples...: 11339 examples [00:04, 3107.10 examples/s]


Generating test examples...: 11653 examples [00:04, 3115.03 examples/s]


Generating test examples...: 11965 examples [00:04, 3083.26 examples/s]


Generating test examples...: 12276 examples [00:04, 3090.36 examples/s]


Generating test examples...: 12587 examples [00:04, 3095.19 examples/s]


Generating test examples...: 12897 examples [00:04, 3091.15 examples/s]


Generating test examples...: 13207 examples [00:04, 3074.73 examples/s]


Generating test examples...: 13515 examples [00:04, 3074.05 examples/s]


Generating test examples...: 13828 examples [00:04, 3087.81 examples/s]


Generating test examples...: 14139 examples [00:04, 3094.36 examples/s]


Generating test examples...: 14449 examples [00:05, 3034.36 examples/s]


Generating test examples...: 14757 examples [00:05, 3047.58 examples/s]


Generating test examples...: 15070 examples [00:05, 3069.68 examples/s]


Generating test examples...: 15381 examples [00:05, 3079.11 examples/s]


Generating test examples...: 15690 examples [00:05, 3079.55 examples/s]


Generating test examples...: 15999 examples [00:05, 3071.50 examples/s]


Generating test examples...: 16307 examples [00:05, 3073.76 examples/s]


Generating test examples...: 16620 examples [00:05, 3088.84 examples/s]


Generating test examples...: 16935 examples [00:05, 3105.64 examples/s]


Generating test examples...: 17247 examples [00:05, 3109.06 examples/s]


Generating test examples...: 17558 examples [00:06, 3107.86 examples/s]


Generating test examples...: 17869 examples [00:06, 3103.90 examples/s]


Generating test examples...: 18183 examples [00:06, 3111.96 examples/s]


Generating test examples...: 18495 examples [00:06, 3099.71 examples/s]


Generating test examples...: 18805 examples [00:06, 3091.64 examples/s]


Generating test examples...: 19115 examples [00:06, 3086.63 examples/s]


Generating test examples...: 19424 examples [00:06, 3077.79 examples/s]


Generating test examples...: 19732 examples [00:06, 3077.30 examples/s]


Generating test examples...: 20041 examples [00:06, 3080.56 examples/s]


Generating test examples...: 20350 examples [00:06, 3063.38 examples/s]


Generating test examples...: 20661 examples [00:07, 3074.56 examples/s]


Generating test examples...: 20970 examples [00:07, 3078.32 examples/s]


Generating test examples...: 21278 examples [00:07, 3073.63 examples/s]


Generating test examples...: 21586 examples [00:07, 3067.74 examples/s]


Generating test examples...: 21893 examples [00:07, 3053.48 examples/s]


Generating test examples...: 22199 examples [00:07, 3037.32 examples/s]


Generating test examples...: 22508 examples [00:07, 3052.19 examples/s]


Generating test examples...: 22814 examples [00:07, 3049.78 examples/s]


Generating test examples...: 23119 examples [00:07, 3049.79 examples/s]


Generating test examples...: 23424 examples [00:07, 3047.62 examples/s]


Generating test examples...: 23729 examples [00:08, 3046.31 examples/s]


Generating test examples...: 24034 examples [00:08, 3038.82 examples/s]


Generating test examples...: 24339 examples [00:08, 3041.28 examples/s]


Generating test examples...: 24648 examples [00:08, 3055.10 examples/s]


Generating test examples...: 24954 examples [00:08, 3053.95 examples/s]


Generating test examples...: 25264 examples [00:08, 3066.37 examples/s]


Generating test examples...: 25573 examples [00:08, 3071.32 examples/s]


Generating test examples...: 25881 examples [00:08, 3073.24 examples/s]


                                                                       


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-test.tfrecord*...:   0%|          | 0/26032 [00:00<?, ? examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-test.tfrecord*...:  89%|████████▉ | 23201/26032 [00:00<00:00, 231995.84 examples/s]


                                                                                                                                                                               

Generating splits...:  67%|██████▋   | 2/3 [00:33<00:15, 15.55s/ splits]

Generating extra examples...: 0 examples [00:00, ? examples/s]


Generating extra examples...: 1 examples [00:08,  8.79s/ examples]


Generating extra examples...: 319 examples [00:08, 50.95 examples/s]


Generating extra examples...: 641 examples [00:08, 121.71 examples/s]


Generating extra examples...: 961 examples [00:09, 216.86 examples/s]


Generating extra examples...: 1292 examples [00:09, 347.63 examples/s]


Generating extra examples...: 1614 examples [00:09, 511.23 examples/s]


Generating extra examples...: 1940 examples [00:09, 718.05 examples/s]


Generating extra examples...: 2261 examples [00:09, 959.83 examples/s]


Generating extra examples...: 2586 examples [00:09, 1238.51 examples/s]


Generating extra examples...: 2912 examples [00:09, 1537.80 examples/s]


Generating extra examples...: 3236 examples [00:09, 1834.52 examples/s]


Generating extra examples...: 3558 examples [00:09, 2110.81 examples/s]


Generating extra examples...: 3881 examples [00:09, 2358.37 examples/s]


Generating extra examples...: 4204 examples [00:10, 2567.07 examples/s]


Generating extra examples...: 4526 examples [00:10, 2731.69 examples/s]


Generating extra examples...: 4848 examples [00:10, 2855.14 examples/s]


Generating extra examples...: 5169 examples [00:10, 2950.73 examples/s]


Generating extra examples...: 5490 examples [00:10, 3017.68 examples/s]


Generating extra examples...: 5811 examples [00:10, 3070.57 examples/s]


Generating extra examples...: 6132 examples [00:10, 3089.90 examples/s]


Generating extra examples...: 6453 examples [00:10, 3123.51 examples/s]


Generating extra examples...: 6779 examples [00:10, 3163.41 examples/s]


Generating extra examples...: 7100 examples [00:11, 3169.79 examples/s]


Generating extra examples...: 7421 examples [00:11, 3180.10 examples/s]


Generating extra examples...: 7742 examples [00:11, 3180.77 examples/s]


Generating extra examples...: 8062 examples [00:11, 3169.09 examples/s]


Generating extra examples...: 8381 examples [00:11, 3167.71 examples/s]


Generating extra examples...: 8700 examples [00:11, 3172.44 examples/s]


Generating extra examples...: 9018 examples [00:11, 3172.10 examples/s]


Generating extra examples...: 9339 examples [00:11, 3182.93 examples/s]


Generating extra examples...: 9659 examples [00:11, 3185.99 examples/s]


Generating extra examples...: 9983 examples [00:11, 3199.53 examples/s]


Generating extra examples...: 10304 examples [00:12, 3193.66 examples/s]


Generating extra examples...: 10624 examples [00:12, 3183.40 examples/s]


Generating extra examples...: 10943 examples [00:12, 3177.28 examples/s]


Generating extra examples...: 11261 examples [00:12, 3170.30 examples/s]


Generating extra examples...: 11583 examples [00:12, 3182.85 examples/s]


Generating extra examples...: 11903 examples [00:12, 3187.65 examples/s]


Generating extra examples...: 12222 examples [00:12, 3175.28 examples/s]


Generating extra examples...: 12540 examples [00:12, 3169.87 examples/s]


Generating extra examples...: 12858 examples [00:12, 3160.12 examples/s]


Generating extra examples...: 13175 examples [00:12, 3152.08 examples/s]


Generating extra examples...: 13491 examples [00:13, 3120.43 examples/s]


Generating extra examples...: 13805 examples [00:13, 3123.68 examples/s]


Generating extra examples...: 14118 examples [00:13, 3113.97 examples/s]


Generating extra examples...: 14435 examples [00:13, 3130.45 examples/s]


Generating extra examples...: 14752 examples [00:13, 3140.69 examples/s]


Generating extra examples...: 15069 examples [00:13, 3148.45 examples/s]


Generating extra examples...: 15384 examples [00:13, 3145.25 examples/s]


Generating extra examples...: 15701 examples [00:13, 3151.91 examples/s]


Generating extra examples...: 16021 examples [00:13, 3165.91 examples/s]


Generating extra examples...: 16340 examples [00:13, 3171.50 examples/s]


Generating extra examples...: 16658 examples [00:14, 3169.81 examples/s]


Generating extra examples...: 16979 examples [00:14, 3180.34 examples/s]


Generating extra examples...: 17298 examples [00:14, 3154.31 examples/s]


Generating extra examples...: 17618 examples [00:14, 3166.25 examples/s]


Generating extra examples...: 17936 examples [00:14, 3168.82 examples/s]


Generating extra examples...: 18260 examples [00:14, 3187.84 examples/s]


Generating extra examples...: 18584 examples [00:14, 3201.25 examples/s]


Generating extra examples...: 18907 examples [00:14, 3208.48 examples/s]


Generating extra examples...: 19229 examples [00:14, 3209.45 examples/s]


Generating extra examples...: 19551 examples [00:14, 3212.17 examples/s]


Generating extra examples...: 19873 examples [00:15, 3193.31 examples/s]


Generating extra examples...: 20193 examples [00:15, 3187.72 examples/s]


Generating extra examples...: 20512 examples [00:15, 3175.84 examples/s]


Generating extra examples...: 20830 examples [00:15, 3174.65 examples/s]


Generating extra examples...: 21148 examples [00:15, 3175.17 examples/s]


Generating extra examples...: 21467 examples [00:15, 3178.91 examples/s]


Generating extra examples...: 21785 examples [00:15, 3177.35 examples/s]


Generating extra examples...: 22109 examples [00:15, 3193.07 examples/s]


Generating extra examples...: 22430 examples [00:15, 3196.22 examples/s]


Generating extra examples...: 22750 examples [00:15, 3181.93 examples/s]


Generating extra examples...: 23072 examples [00:16, 3190.46 examples/s]


Generating extra examples...: 23394 examples [00:16, 3196.37 examples/s]


Generating extra examples...: 23715 examples [00:16, 3197.44 examples/s]


Generating extra examples...: 24035 examples [00:16, 3184.61 examples/s]


Generating extra examples...: 24357 examples [00:16, 3192.36 examples/s]


Generating extra examples...: 24681 examples [00:16, 3204.99 examples/s]


Generating extra examples...: 25006 examples [00:16, 3215.32 examples/s]


Generating extra examples...: 25328 examples [00:16, 3208.56 examples/s]


Generating extra examples...: 25650 examples [00:16, 3208.89 examples/s]


Generating extra examples...: 25971 examples [00:16, 3198.91 examples/s]


Generating extra examples...: 26291 examples [00:17, 3198.41 examples/s]


Generating extra examples...: 26611 examples [00:17, 3187.41 examples/s]


Generating extra examples...: 26930 examples [00:17, 3173.95 examples/s]


Generating extra examples...: 27248 examples [00:17, 3139.21 examples/s]


Generating extra examples...: 27566 examples [00:17, 3149.80 examples/s]


Generating extra examples...: 27883 examples [00:17, 3155.30 examples/s]


Generating extra examples...: 28203 examples [00:17, 3165.77 examples/s]


Generating extra examples...: 28520 examples [00:17, 3164.75 examples/s]


Generating extra examples...: 28839 examples [00:17, 3169.59 examples/s]


Generating extra examples...: 29156 examples [00:17, 3156.62 examples/s]


Generating extra examples...: 29472 examples [00:18, 3155.95 examples/s]


Generating extra examples...: 29794 examples [00:18, 3172.22 examples/s]


Generating extra examples...: 30112 examples [00:18, 3163.74 examples/s]


Generating extra examples...: 30429 examples [00:18, 3141.96 examples/s]


Generating extra examples...: 30744 examples [00:18, 3140.09 examples/s]


Generating extra examples...: 31060 examples [00:18, 3145.90 examples/s]


Generating extra examples...: 31375 examples [00:18, 3141.71 examples/s]


Generating extra examples...: 31692 examples [00:18, 3147.44 examples/s]


Generating extra examples...: 32007 examples [00:18, 3137.58 examples/s]


Generating extra examples...: 32326 examples [00:18, 3152.28 examples/s]


Generating extra examples...: 32642 examples [00:19, 3142.67 examples/s]


Generating extra examples...: 32957 examples [00:19, 3139.03 examples/s]


Generating extra examples...: 33275 examples [00:19, 3150.65 examples/s]


Generating extra examples...: 33594 examples [00:19, 3160.40 examples/s]


Generating extra examples...: 33917 examples [00:19, 3177.87 examples/s]


Generating extra examples...: 34235 examples [00:19, 3171.54 examples/s]


Generating extra examples...: 34553 examples [00:19, 3155.06 examples/s]


Generating extra examples...: 34874 examples [00:19, 3169.66 examples/s]


Generating extra examples...: 35191 examples [00:19, 3163.32 examples/s]


Generating extra examples...: 35510 examples [00:19, 3168.70 examples/s]


Generating extra examples...: 35827 examples [00:20, 3165.87 examples/s]


Generating extra examples...: 36144 examples [00:20, 3164.00 examples/s]


Generating extra examples...: 36462 examples [00:20, 3166.51 examples/s]


Generating extra examples...: 36779 examples [00:20, 3147.05 examples/s]


Generating extra examples...: 37104 examples [00:20, 3175.12 examples/s]


Generating extra examples...: 37431 examples [00:20, 3202.83 examples/s]


Generating extra examples...: 37757 examples [00:20, 3218.56 examples/s]


Generating extra examples...: 38083 examples [00:20, 3229.95 examples/s]


Generating extra examples...: 38411 examples [00:20, 3242.17 examples/s]


Generating extra examples...: 38739 examples [00:20, 3252.48 examples/s]


Generating extra examples...: 39067 examples [00:21, 3260.61 examples/s]


Generating extra examples...: 39394 examples [00:21, 3249.50 examples/s]


Generating extra examples...: 39719 examples [00:21, 3247.62 examples/s]


Generating extra examples...: 40044 examples [00:21, 3242.43 examples/s]


Generating extra examples...: 40369 examples [00:21, 3227.41 examples/s]


Generating extra examples...: 40692 examples [00:21, 3219.48 examples/s]


Generating extra examples...: 41014 examples [00:21, 3209.65 examples/s]


Generating extra examples...: 41338 examples [00:21, 3218.58 examples/s]


Generating extra examples...: 41660 examples [00:21, 3204.51 examples/s]


Generating extra examples...: 41981 examples [00:21, 3189.42 examples/s]


Generating extra examples...: 42300 examples [00:22, 3186.71 examples/s]


Generating extra examples...: 42627 examples [00:22, 3210.69 examples/s]


Generating extra examples...: 42952 examples [00:22, 3221.03 examples/s]


Generating extra examples...: 43275 examples [00:22, 3213.85 examples/s]


Generating extra examples...: 43601 examples [00:22, 3225.44 examples/s]


Generating extra examples...: 43930 examples [00:22, 3242.06 examples/s]


Generating extra examples...: 44255 examples [00:22, 3230.72 examples/s]


Generating extra examples...: 44579 examples [00:22, 3211.72 examples/s]


Generating extra examples...: 44901 examples [00:22, 3205.34 examples/s]


Generating extra examples...: 45228 examples [00:22, 3223.76 examples/s]


Generating extra examples...: 45551 examples [00:23, 3198.78 examples/s]


Generating extra examples...: 45871 examples [00:23, 3177.44 examples/s]


Generating extra examples...: 46189 examples [00:23, 3167.46 examples/s]


Generating extra examples...: 46508 examples [00:23, 3172.53 examples/s]


Generating extra examples...: 46826 examples [00:23, 3170.16 examples/s]


Generating extra examples...: 47144 examples [00:23, 3161.67 examples/s]


Generating extra examples...: 47463 examples [00:23, 3170.00 examples/s]


Generating extra examples...: 47781 examples [00:23, 3164.81 examples/s]


Generating extra examples...: 48098 examples [00:23, 3161.91 examples/s]


Generating extra examples...: 48417 examples [00:23, 3167.80 examples/s]


Generating extra examples...: 48736 examples [00:24, 3170.90 examples/s]


Generating extra examples...: 49054 examples [00:24, 3173.45 examples/s]


Generating extra examples...: 49372 examples [00:24, 3161.32 examples/s]


Generating extra examples...: 49689 examples [00:24, 3161.19 examples/s]


Generating extra examples...: 50006 examples [00:24, 3159.53 examples/s]


Generating extra examples...: 50322 examples [00:24, 3147.26 examples/s]


Generating extra examples...: 50637 examples [00:24, 3141.28 examples/s]


Generating extra examples...: 50952 examples [00:24, 3136.65 examples/s]


Generating extra examples...: 51266 examples [00:24, 3134.55 examples/s]


Generating extra examples...: 51580 examples [00:24, 3126.38 examples/s]


Generating extra examples...: 51899 examples [00:25, 3143.76 examples/s]


Generating extra examples...: 52214 examples [00:25, 3143.08 examples/s]


Generating extra examples...: 52530 examples [00:25, 3147.85 examples/s]


Generating extra examples...: 52845 examples [00:25, 3139.85 examples/s]


Generating extra examples...: 53163 examples [00:25, 3150.33 examples/s]


Generating extra examples...: 53479 examples [00:25, 3146.47 examples/s]


Generating extra examples...: 53795 examples [00:25, 3149.07 examples/s]


Generating extra examples...: 54110 examples [00:25, 3146.79 examples/s]


Generating extra examples...: 54425 examples [00:25, 3025.80 examples/s]


Generating extra examples...: 54741 examples [00:26, 3063.63 examples/s]


Generating extra examples...: 55057 examples [00:26, 3091.22 examples/s]


Generating extra examples...: 55374 examples [00:26, 3112.07 examples/s]


Generating extra examples...: 55688 examples [00:26, 3119.64 examples/s]


Generating extra examples...: 56001 examples [00:26, 3114.82 examples/s]


Generating extra examples...: 56317 examples [00:26, 3126.53 examples/s]


Generating extra examples...: 56638 examples [00:26, 3150.34 examples/s]


Generating extra examples...: 56956 examples [00:26, 3157.04 examples/s]


Generating extra examples...: 57273 examples [00:26, 3160.39 examples/s]


Generating extra examples...: 57596 examples [00:26, 3178.51 examples/s]


Generating extra examples...: 57914 examples [00:27, 3175.89 examples/s]


Generating extra examples...: 58232 examples [00:27, 3175.21 examples/s]


Generating extra examples...: 58550 examples [00:27, 3170.68 examples/s]


Generating extra examples...: 58873 examples [00:27, 3186.48 examples/s]


Generating extra examples...: 59194 examples [00:27, 3192.25 examples/s]


Generating extra examples...: 59514 examples [00:27, 3177.81 examples/s]


Generating extra examples...: 59833 examples [00:27, 3179.14 examples/s]


Generating extra examples...: 60151 examples [00:27, 3174.41 examples/s]


Generating extra examples...: 60469 examples [00:27, 3175.48 examples/s]


Generating extra examples...: 60787 examples [00:27, 3172.63 examples/s]


Generating extra examples...: 61107 examples [00:28, 3178.17 examples/s]


Generating extra examples...: 61426 examples [00:28, 3179.25 examples/s]


Generating extra examples...: 61744 examples [00:28, 3176.47 examples/s]


Generating extra examples...: 62065 examples [00:28, 3185.97 examples/s]


Generating extra examples...: 62384 examples [00:28, 3148.93 examples/s]


Generating extra examples...: 62707 examples [00:28, 3170.54 examples/s]


Generating extra examples...: 63027 examples [00:28, 3177.38 examples/s]


Generating extra examples...: 63346 examples [00:28, 3179.77 examples/s]


Generating extra examples...: 63665 examples [00:28, 3179.51 examples/s]


Generating extra examples...: 63983 examples [00:28, 3176.63 examples/s]


Generating extra examples...: 64301 examples [00:29, 3163.30 examples/s]


Generating extra examples...: 64618 examples [00:29, 3156.95 examples/s]


Generating extra examples...: 64934 examples [00:29, 3147.75 examples/s]


Generating extra examples...: 65249 examples [00:29, 3147.49 examples/s]


Generating extra examples...: 65564 examples [00:29, 3137.83 examples/s]


Generating extra examples...: 65878 examples [00:29, 3138.16 examples/s]


Generating extra examples...: 66192 examples [00:29, 3137.28 examples/s]


Generating extra examples...: 66506 examples [00:29, 3126.38 examples/s]


Generating extra examples...: 66823 examples [00:29, 3138.12 examples/s]


Generating extra examples...: 67137 examples [00:29, 3128.33 examples/s]


Generating extra examples...: 67451 examples [00:30, 3130.35 examples/s]


Generating extra examples...: 67765 examples [00:30, 3125.60 examples/s]


Generating extra examples...: 68079 examples [00:30, 3129.26 examples/s]


Generating extra examples...: 68394 examples [00:30, 3134.36 examples/s]


Generating extra examples...: 68708 examples [00:30, 3118.42 examples/s]


Generating extra examples...: 69029 examples [00:30, 3144.15 examples/s]


Generating extra examples...: 69347 examples [00:30, 3154.57 examples/s]


Generating extra examples...: 69663 examples [00:30, 3134.20 examples/s]


Generating extra examples...: 69984 examples [00:30, 3153.15 examples/s]


Generating extra examples...: 70307 examples [00:30, 3175.16 examples/s]


Generating extra examples...: 70626 examples [00:31, 3178.27 examples/s]


Generating extra examples...: 70944 examples [00:31, 3165.26 examples/s]


Generating extra examples...: 71262 examples [00:31, 3166.47 examples/s]


Generating extra examples...: 71579 examples [00:31, 3166.21 examples/s]


Generating extra examples...: 71899 examples [00:31, 3174.55 examples/s]


Generating extra examples...: 72218 examples [00:31, 3178.25 examples/s]


Generating extra examples...: 72536 examples [00:31, 3177.68 examples/s]


Generating extra examples...: 72859 examples [00:31, 3191.49 examples/s]


Generating extra examples...: 73179 examples [00:31, 3176.52 examples/s]


Generating extra examples...: 73497 examples [00:31, 3168.68 examples/s]


Generating extra examples...: 73814 examples [00:32, 3161.69 examples/s]


Generating extra examples...: 74131 examples [00:32, 3152.25 examples/s]


Generating extra examples...: 74447 examples [00:32, 3145.63 examples/s]


Generating extra examples...: 74764 examples [00:32, 3152.11 examples/s]


Generating extra examples...: 75080 examples [00:32, 3122.03 examples/s]


Generating extra examples...: 75397 examples [00:32, 3136.06 examples/s]


Generating extra examples...: 75715 examples [00:32, 3147.20 examples/s]


Generating extra examples...: 76030 examples [00:32, 3146.59 examples/s]


Generating extra examples...: 76345 examples [00:32, 3145.66 examples/s]


Generating extra examples...: 76660 examples [00:32, 3131.02 examples/s]


Generating extra examples...: 76974 examples [00:33, 3124.19 examples/s]


Generating extra examples...: 77288 examples [00:33, 3127.28 examples/s]


Generating extra examples...: 77601 examples [00:33, 3113.81 examples/s]


Generating extra examples...: 77913 examples [00:33, 3103.70 examples/s]


Generating extra examples...: 78224 examples [00:33, 3061.54 examples/s]


Generating extra examples...: 78531 examples [00:33, 3063.13 examples/s]


Generating extra examples...: 78845 examples [00:33, 3084.61 examples/s]


Generating extra examples...: 79156 examples [00:33, 3091.88 examples/s]


Generating extra examples...: 79466 examples [00:33, 3089.79 examples/s]


Generating extra examples...: 79776 examples [00:33, 3089.09 examples/s]


Generating extra examples...: 80089 examples [00:34, 3100.59 examples/s]


Generating extra examples...: 80403 examples [00:34, 3110.69 examples/s]


Generating extra examples...: 80715 examples [00:34, 3100.13 examples/s]


Generating extra examples...: 81027 examples [00:34, 3105.08 examples/s]


Generating extra examples...: 81338 examples [00:34, 3087.28 examples/s]


Generating extra examples...: 81647 examples [00:34, 3083.84 examples/s]


Generating extra examples...: 81956 examples [00:34, 3072.66 examples/s]


Generating extra examples...: 82264 examples [00:34, 3069.94 examples/s]


Generating extra examples...: 82572 examples [00:34, 3065.60 examples/s]


Generating extra examples...: 82879 examples [00:34, 3062.99 examples/s]


Generating extra examples...: 83186 examples [00:35, 3062.34 examples/s]


Generating extra examples...: 83496 examples [00:35, 3071.95 examples/s]


Generating extra examples...: 83806 examples [00:35, 3080.29 examples/s]


Generating extra examples...: 84115 examples [00:35, 3081.88 examples/s]


Generating extra examples...: 84424 examples [00:35, 3038.53 examples/s]


Generating extra examples...: 84736 examples [00:35, 3062.27 examples/s]


Generating extra examples...: 85048 examples [00:35, 3079.03 examples/s]


Generating extra examples...: 85357 examples [00:35, 3075.35 examples/s]


Generating extra examples...: 85668 examples [00:35, 3084.89 examples/s]


Generating extra examples...: 85978 examples [00:35, 3087.64 examples/s]


Generating extra examples...: 86287 examples [00:36, 3080.87 examples/s]


Generating extra examples...: 86596 examples [00:36, 3082.93 examples/s]


Generating extra examples...: 86905 examples [00:36, 3082.74 examples/s]


Generating extra examples...: 87214 examples [00:36, 3081.68 examples/s]


Generating extra examples...: 87523 examples [00:36, 3048.10 examples/s]


Generating extra examples...: 87835 examples [00:36, 3068.02 examples/s]


Generating extra examples...: 88144 examples [00:36, 3072.50 examples/s]


Generating extra examples...: 88453 examples [00:36, 3075.82 examples/s]


Generating extra examples...: 88761 examples [00:36, 3077.00 examples/s]


Generating extra examples...: 89070 examples [00:36, 3080.75 examples/s]


Generating extra examples...: 89379 examples [00:37, 3066.49 examples/s]


Generating extra examples...: 89694 examples [00:37, 3089.02 examples/s]


Generating extra examples...: 90006 examples [00:37, 3094.97 examples/s]


Generating extra examples...: 90325 examples [00:37, 3120.90 examples/s]


Generating extra examples...: 90638 examples [00:37, 3099.96 examples/s]


Generating extra examples...: 90954 examples [00:37, 3117.54 examples/s]


Generating extra examples...: 91269 examples [00:37, 3124.79 examples/s]


Generating extra examples...: 91585 examples [00:37, 3133.29 examples/s]


Generating extra examples...: 91899 examples [00:37, 3128.91 examples/s]


Generating extra examples...: 92212 examples [00:37, 3124.62 examples/s]


Generating extra examples...: 92525 examples [00:38, 3112.17 examples/s]


Generating extra examples...: 92838 examples [00:38, 3114.34 examples/s]


Generating extra examples...: 93152 examples [00:38, 3120.82 examples/s]


Generating extra examples...: 93471 examples [00:38, 3138.99 examples/s]


Generating extra examples...: 93787 examples [00:38, 3142.54 examples/s]


Generating extra examples...: 94102 examples [00:38, 3114.35 examples/s]


Generating extra examples...: 94415 examples [00:38, 3118.64 examples/s]


Generating extra examples...: 94728 examples [00:38, 3120.99 examples/s]


Generating extra examples...: 95044 examples [00:38, 3132.24 examples/s]


Generating extra examples...: 95358 examples [00:38, 3123.08 examples/s]


Generating extra examples...: 95674 examples [00:39, 3132.72 examples/s]


Generating extra examples...: 95988 examples [00:39, 3131.63 examples/s]


Generating extra examples...: 96305 examples [00:39, 3141.71 examples/s]


Generating extra examples...: 96620 examples [00:39, 3140.46 examples/s]


Generating extra examples...: 96935 examples [00:39, 3137.04 examples/s]


Generating extra examples...: 97249 examples [00:39, 3101.65 examples/s]


Generating extra examples...: 97568 examples [00:39, 3125.20 examples/s]


Generating extra examples...: 97881 examples [00:39, 3092.55 examples/s]


Generating extra examples...: 98191 examples [00:39, 3086.61 examples/s]


Generating extra examples...: 98500 examples [00:40, 3080.15 examples/s]


Generating extra examples...: 98811 examples [00:40, 3088.84 examples/s]


Generating extra examples...: 99123 examples [00:40, 3096.54 examples/s]


Generating extra examples...: 99434 examples [00:40, 3097.99 examples/s]


Generating extra examples...: 99746 examples [00:40, 3102.87 examples/s]


Generating extra examples...: 100057 examples [00:40, 3098.17 examples/s]


Generating extra examples...: 100367 examples [00:40, 3060.78 examples/s]


Generating extra examples...: 100678 examples [00:40, 3073.35 examples/s]


Generating extra examples...: 100986 examples [00:40, 3064.81 examples/s]


Generating extra examples...: 101298 examples [00:40, 3079.85 examples/s]


Generating extra examples...: 101609 examples [00:41, 3088.75 examples/s]


Generating extra examples...: 101918 examples [00:41, 3087.25 examples/s]


Generating extra examples...: 102229 examples [00:41, 3091.31 examples/s]


Generating extra examples...: 102539 examples [00:41, 3093.02 examples/s]


Generating extra examples...: 102849 examples [00:41, 3086.65 examples/s]


Generating extra examples...: 103158 examples [00:41, 3085.03 examples/s]


Generating extra examples...: 103467 examples [00:41, 3080.36 examples/s]


Generating extra examples...: 103776 examples [00:41, 3079.64 examples/s]


Generating extra examples...: 104085 examples [00:41, 3081.91 examples/s]


Generating extra examples...: 104396 examples [00:41, 3087.52 examples/s]


Generating extra examples...: 104710 examples [00:42, 3102.22 examples/s]


Generating extra examples...: 105029 examples [00:42, 3126.51 examples/s]


Generating extra examples...: 105343 examples [00:42, 3129.58 examples/s]


Generating extra examples...: 105657 examples [00:42, 3131.87 examples/s]


Generating extra examples...: 105971 examples [00:42, 3123.60 examples/s]


Generating extra examples...: 106286 examples [00:42, 3130.22 examples/s]


Generating extra examples...: 106600 examples [00:42, 3117.39 examples/s]


Generating extra examples...: 106921 examples [00:42, 3142.24 examples/s]


Generating extra examples...: 107237 examples [00:42, 3145.97 examples/s]


Generating extra examples...: 107552 examples [00:42, 3134.55 examples/s]


Generating extra examples...: 107866 examples [00:43, 3102.54 examples/s]


Generating extra examples...: 108177 examples [00:43, 3094.81 examples/s]


Generating extra examples...: 108490 examples [00:43, 3104.94 examples/s]


Generating extra examples...: 108807 examples [00:43, 3124.16 examples/s]


Generating extra examples...: 109120 examples [00:43, 3120.46 examples/s]


Generating extra examples...: 109435 examples [00:43, 3128.24 examples/s]


Generating extra examples...: 109748 examples [00:43, 3085.11 examples/s]


Generating extra examples...: 110064 examples [00:43, 3104.32 examples/s]


Generating extra examples...: 110378 examples [00:43, 3112.31 examples/s]


Generating extra examples...: 110695 examples [00:43, 3127.59 examples/s]


Generating extra examples...: 111008 examples [00:44, 3125.20 examples/s]


Generating extra examples...: 111321 examples [00:44, 3121.57 examples/s]


Generating extra examples...: 111634 examples [00:44, 3112.50 examples/s]


Generating extra examples...: 111946 examples [00:44, 3109.75 examples/s]


Generating extra examples...: 112257 examples [00:44, 3107.96 examples/s]


Generating extra examples...: 112568 examples [00:44, 3103.50 examples/s]


Generating extra examples...: 112879 examples [00:44, 3096.24 examples/s]


Generating extra examples...: 113191 examples [00:44, 3100.74 examples/s]


Generating extra examples...: 113502 examples [00:44, 3099.77 examples/s]


Generating extra examples...: 113812 examples [00:44, 3086.96 examples/s]


Generating extra examples...: 114121 examples [00:45, 3074.52 examples/s]


Generating extra examples...: 114430 examples [00:45, 3077.16 examples/s]


Generating extra examples...: 114738 examples [00:45, 3075.57 examples/s]


Generating extra examples...: 115046 examples [00:45, 3060.84 examples/s]


Generating extra examples...: 115358 examples [00:45, 3078.25 examples/s]


Generating extra examples...: 115667 examples [00:45, 3080.62 examples/s]


Generating extra examples...: 115976 examples [00:45, 3042.33 examples/s]


Generating extra examples...: 116285 examples [00:45, 3055.59 examples/s]


Generating extra examples...: 116594 examples [00:45, 3065.35 examples/s]


Generating extra examples...: 116901 examples [00:45, 3065.23 examples/s]


Generating extra examples...: 117209 examples [00:46, 3068.02 examples/s]


Generating extra examples...: 117516 examples [00:46, 3066.94 examples/s]


Generating extra examples...: 117826 examples [00:46, 3076.53 examples/s]


Generating extra examples...: 118134 examples [00:46, 3076.68 examples/s]


Generating extra examples...: 118444 examples [00:46, 3082.52 examples/s]


Generating extra examples...: 118753 examples [00:46, 3075.88 examples/s]


Generating extra examples...: 119061 examples [00:46, 3059.13 examples/s]


Generating extra examples...: 119370 examples [00:46, 3065.47 examples/s]


Generating extra examples...: 119682 examples [00:46, 3081.16 examples/s]


Generating extra examples...: 119997 examples [00:46, 3100.08 examples/s]


Generating extra examples...: 120312 examples [00:47, 3113.81 examples/s]


Generating extra examples...: 120630 examples [00:47, 3131.53 examples/s]


Generating extra examples...: 120947 examples [00:47, 3141.39 examples/s]


Generating extra examples...: 121263 examples [00:47, 3145.89 examples/s]


Generating extra examples...: 121581 examples [00:47, 3154.74 examples/s]


Generating extra examples...: 121900 examples [00:47, 3163.93 examples/s]


Generating extra examples...: 122217 examples [00:47, 3155.89 examples/s]


Generating extra examples...: 122538 examples [00:47, 3169.39 examples/s]


Generating extra examples...: 122859 examples [00:47, 3181.34 examples/s]


Generating extra examples...: 123178 examples [00:47, 3158.58 examples/s]


Generating extra examples...: 123494 examples [00:48, 3141.33 examples/s]


Generating extra examples...: 123815 examples [00:48, 3159.21 examples/s]


Generating extra examples...: 124134 examples [00:48, 3165.82 examples/s]


Generating extra examples...: 124451 examples [00:48, 3154.52 examples/s]


Generating extra examples...: 124767 examples [00:48, 3151.37 examples/s]


Generating extra examples...: 125086 examples [00:48, 3159.91 examples/s]


Generating extra examples...: 125406 examples [00:48, 3169.03 examples/s]


Generating extra examples...: 125723 examples [00:48, 3149.31 examples/s]


Generating extra examples...: 126043 examples [00:48, 3162.43 examples/s]


Generating extra examples...: 126363 examples [00:48, 3171.69 examples/s]


Generating extra examples...: 126683 examples [00:49, 3176.69 examples/s]


Generating extra examples...: 127006 examples [00:49, 3191.61 examples/s]


Generating extra examples...: 127326 examples [00:49, 3167.91 examples/s]


Generating extra examples...: 127643 examples [00:49, 3156.21 examples/s]


Generating extra examples...: 127959 examples [00:49, 3151.12 examples/s]


Generating extra examples...: 128275 examples [00:49, 3121.46 examples/s]


Generating extra examples...: 128588 examples [00:49, 3074.69 examples/s]


Generating extra examples...: 128898 examples [00:49, 3079.77 examples/s]


Generating extra examples...: 129207 examples [00:49, 3080.32 examples/s]


Generating extra examples...: 129519 examples [00:49, 3089.39 examples/s]


Generating extra examples...: 129836 examples [00:50, 3110.85 examples/s]


Generating extra examples...: 130149 examples [00:50, 3112.83 examples/s]


Generating extra examples...: 130462 examples [00:50, 3116.54 examples/s]


Generating extra examples...: 130774 examples [00:50, 3106.80 examples/s]


Generating extra examples...: 131085 examples [00:50, 3103.57 examples/s]


Generating extra examples...: 131396 examples [00:50, 3093.52 examples/s]


Generating extra examples...: 131706 examples [00:50, 3065.56 examples/s]


Generating extra examples...: 132014 examples [00:50, 3069.82 examples/s]


Generating extra examples...: 132323 examples [00:50, 3073.12 examples/s]


Generating extra examples...: 132633 examples [00:50, 3080.43 examples/s]


Generating extra examples...: 132942 examples [00:51, 3061.79 examples/s]


Generating extra examples...: 133249 examples [00:51, 3053.60 examples/s]


Generating extra examples...: 133557 examples [00:51, 3059.52 examples/s]


Generating extra examples...: 133866 examples [00:51, 3068.18 examples/s]


Generating extra examples...: 134177 examples [00:51, 3078.68 examples/s]


Generating extra examples...: 134489 examples [00:51, 3089.98 examples/s]


Generating extra examples...: 134802 examples [00:51, 3099.97 examples/s]


Generating extra examples...: 135114 examples [00:51, 3103.56 examples/s]


Generating extra examples...: 135426 examples [00:51, 3107.61 examples/s]


Generating extra examples...: 135737 examples [00:51, 3101.38 examples/s]


Generating extra examples...: 136049 examples [00:52, 3103.52 examples/s]


Generating extra examples...: 136364 examples [00:52, 3114.59 examples/s]


Generating extra examples...: 136679 examples [00:52, 3123.25 examples/s]


Generating extra examples...: 136993 examples [00:52, 3126.68 examples/s]


Generating extra examples...: 137306 examples [00:52, 3112.85 examples/s]


Generating extra examples...: 137618 examples [00:52, 3104.70 examples/s]


Generating extra examples...: 137929 examples [00:52, 3066.67 examples/s]


Generating extra examples...: 138236 examples [00:52, 3062.79 examples/s]


Generating extra examples...: 138548 examples [00:52, 3079.36 examples/s]


Generating extra examples...: 138856 examples [00:53, 3077.73 examples/s]


Generating extra examples...: 139164 examples [00:53, 3071.73 examples/s]


Generating extra examples...: 139474 examples [00:53, 3078.48 examples/s]


Generating extra examples...: 139786 examples [00:53, 3088.85 examples/s]


Generating extra examples...: 140096 examples [00:53, 3090.48 examples/s]


Generating extra examples...: 140409 examples [00:53, 3099.86 examples/s]


Generating extra examples...: 140719 examples [00:53, 3096.01 examples/s]


Generating extra examples...: 141029 examples [00:53, 3073.48 examples/s]


Generating extra examples...: 141342 examples [00:53, 3088.39 examples/s]


Generating extra examples...: 141655 examples [00:53, 3100.44 examples/s]


Generating extra examples...: 141966 examples [00:54, 3084.71 examples/s]


Generating extra examples...: 142275 examples [00:54, 3079.74 examples/s]


Generating extra examples...: 142583 examples [00:54, 3074.63 examples/s]


Generating extra examples...: 142894 examples [00:54, 3082.77 examples/s]


Generating extra examples...: 143207 examples [00:54, 3096.57 examples/s]


Generating extra examples...: 143523 examples [00:54, 3115.01 examples/s]


Generating extra examples...: 143835 examples [00:54, 3116.01 examples/s]


Generating extra examples...: 144147 examples [00:54, 3111.18 examples/s]


Generating extra examples...: 144462 examples [00:54, 3120.00 examples/s]


Generating extra examples...: 144778 examples [00:54, 3131.55 examples/s]


Generating extra examples...: 145092 examples [00:55, 3129.99 examples/s]


Generating extra examples...: 145406 examples [00:55, 3108.19 examples/s]


Generating extra examples...: 145722 examples [00:55, 3122.25 examples/s]


Generating extra examples...: 146035 examples [00:55, 3124.30 examples/s]


Generating extra examples...: 146348 examples [00:55, 3118.47 examples/s]


Generating extra examples...: 146660 examples [00:55, 3098.70 examples/s]


Generating extra examples...: 146970 examples [00:55, 3092.94 examples/s]


Generating extra examples...: 147284 examples [00:55, 3106.83 examples/s]


Generating extra examples...: 147595 examples [00:55, 3087.75 examples/s]


Generating extra examples...: 147904 examples [00:55, 3078.06 examples/s]


Generating extra examples...: 148218 examples [00:56, 3095.83 examples/s]


Generating extra examples...: 148529 examples [00:56, 3098.36 examples/s]


Generating extra examples...: 148840 examples [00:56, 3100.74 examples/s]


Generating extra examples...: 149156 examples [00:56, 3116.04 examples/s]


Generating extra examples...: 149469 examples [00:56, 3118.68 examples/s]


Generating extra examples...: 149783 examples [00:56, 3123.28 examples/s]


Generating extra examples...: 150097 examples [00:56, 3128.00 examples/s]


Generating extra examples...: 150412 examples [00:56, 3134.01 examples/s]


Generating extra examples...: 150726 examples [00:56, 3081.22 examples/s]


Generating extra examples...: 151037 examples [00:56, 3089.53 examples/s]


Generating extra examples...: 151347 examples [00:57, 3092.28 examples/s]


Generating extra examples...: 151657 examples [00:57, 3080.71 examples/s]


Generating extra examples...: 151966 examples [00:57, 3074.48 examples/s]


Generating extra examples...: 152277 examples [00:57, 3084.22 examples/s]


Generating extra examples...: 152587 examples [00:57, 3087.41 examples/s]


Generating extra examples...: 152896 examples [00:57, 3086.12 examples/s]


Generating extra examples...: 153205 examples [00:57, 3082.84 examples/s]


Generating extra examples...: 153516 examples [00:57, 3089.72 examples/s]


Generating extra examples...: 153825 examples [00:57, 3077.17 examples/s]


Generating extra examples...: 154135 examples [00:57, 3082.39 examples/s]


Generating extra examples...: 154446 examples [00:58, 3088.88 examples/s]


Generating extra examples...: 154755 examples [00:58, 3084.03 examples/s]


Generating extra examples...: 155067 examples [00:58, 3094.11 examples/s]


Generating extra examples...: 155378 examples [00:58, 3095.84 examples/s]


Generating extra examples...: 155688 examples [00:58, 3087.67 examples/s]


Generating extra examples...: 155997 examples [00:58, 3082.88 examples/s]


Generating extra examples...: 156306 examples [00:58, 3071.17 examples/s]


Generating extra examples...: 156618 examples [00:58, 3083.75 examples/s]


Generating extra examples...: 156927 examples [00:58, 3049.07 examples/s]


Generating extra examples...: 157235 examples [00:58, 3058.21 examples/s]


Generating extra examples...: 157541 examples [00:59, 3056.93 examples/s]


Generating extra examples...: 157849 examples [00:59, 3061.38 examples/s]


Generating extra examples...: 158156 examples [00:59, 3054.15 examples/s]


Generating extra examples...: 158465 examples [00:59, 3063.17 examples/s]


Generating extra examples...: 158772 examples [00:59, 3062.75 examples/s]


Generating extra examples...: 159085 examples [00:59, 3082.04 examples/s]


Generating extra examples...: 159394 examples [00:59, 3072.49 examples/s]


Generating extra examples...: 159702 examples [00:59, 3065.91 examples/s]


Generating extra examples...: 160009 examples [00:59, 3056.34 examples/s]


Generating extra examples...: 160317 examples [00:59, 3061.93 examples/s]


Generating extra examples...: 160626 examples [01:00, 3068.11 examples/s]


Generating extra examples...: 160936 examples [01:00, 3074.87 examples/s]


Generating extra examples...: 161244 examples [01:00, 3069.81 examples/s]


Generating extra examples...: 161551 examples [01:00, 3064.31 examples/s]


Generating extra examples...: 161859 examples [01:00, 3066.65 examples/s]


Generating extra examples...: 162168 examples [01:00, 3071.04 examples/s]


Generating extra examples...: 162478 examples [01:00, 3077.22 examples/s]


Generating extra examples...: 162786 examples [01:00, 3059.52 examples/s]


Generating extra examples...: 163092 examples [01:00, 3033.17 examples/s]


Generating extra examples...: 163404 examples [01:00, 3057.89 examples/s]


Generating extra examples...: 163710 examples [01:01, 3047.32 examples/s]


Generating extra examples...: 164017 examples [01:01, 3051.33 examples/s]


Generating extra examples...: 164333 examples [01:01, 3082.90 examples/s]


Generating extra examples...: 164645 examples [01:01, 3091.33 examples/s]


Generating extra examples...: 164962 examples [01:01, 3112.23 examples/s]


Generating extra examples...: 165279 examples [01:01, 3126.19 examples/s]


Generating extra examples...: 165597 examples [01:01, 3139.69 examples/s]


Generating extra examples...: 165915 examples [01:01, 3151.37 examples/s]


Generating extra examples...: 166231 examples [01:01, 3099.90 examples/s]


Generating extra examples...: 166542 examples [01:01, 3100.80 examples/s]


Generating extra examples...: 166856 examples [01:02, 3109.21 examples/s]


Generating extra examples...: 167168 examples [01:02, 3091.26 examples/s]


Generating extra examples...: 167478 examples [01:02, 3078.34 examples/s]


Generating extra examples...: 167793 examples [01:02, 3098.50 examples/s]


Generating extra examples...: 168107 examples [01:02, 3110.72 examples/s]


Generating extra examples...: 168420 examples [01:02, 3113.93 examples/s]


Generating extra examples...: 168732 examples [01:02, 3107.86 examples/s]


Generating extra examples...: 169043 examples [01:02, 3099.84 examples/s]


Generating extra examples...: 169354 examples [01:02, 3067.24 examples/s]


Generating extra examples...: 169669 examples [01:02, 3088.74 examples/s]


Generating extra examples...: 169989 examples [01:03, 3120.27 examples/s]


Generating extra examples...: 170302 examples [01:03, 3112.68 examples/s]


Generating extra examples...: 170618 examples [01:03, 3124.82 examples/s]


Generating extra examples...: 170931 examples [01:03, 3126.17 examples/s]


Generating extra examples...: 171244 examples [01:03, 3120.95 examples/s]


Generating extra examples...: 171557 examples [01:03, 3104.07 examples/s]


Generating extra examples...: 171870 examples [01:03, 3109.94 examples/s]


Generating extra examples...: 172182 examples [01:03, 3106.66 examples/s]


Generating extra examples...: 172493 examples [01:03, 3091.03 examples/s]


Generating extra examples...: 172803 examples [01:03, 3086.00 examples/s]


Generating extra examples...: 173112 examples [01:04, 3069.60 examples/s]


Generating extra examples...: 173422 examples [01:04, 3078.11 examples/s]


Generating extra examples...: 173731 examples [01:04, 3081.16 examples/s]


Generating extra examples...: 174041 examples [01:04, 3084.66 examples/s]


Generating extra examples...: 174350 examples [01:04, 3078.63 examples/s]


Generating extra examples...: 174658 examples [01:04, 3075.89 examples/s]


Generating extra examples...: 174966 examples [01:04, 3072.22 examples/s]


Generating extra examples...: 175274 examples [01:04, 3060.10 examples/s]


Generating extra examples...: 175581 examples [01:04, 3056.00 examples/s]


Generating extra examples...: 175889 examples [01:04, 3061.04 examples/s]


Generating extra examples...: 176196 examples [01:05, 3054.77 examples/s]


Generating extra examples...: 176506 examples [01:05, 3066.00 examples/s]


Generating extra examples...: 176813 examples [01:05, 3066.76 examples/s]


Generating extra examples...: 177122 examples [01:05, 3072.79 examples/s]


Generating extra examples...: 177430 examples [01:05, 3063.82 examples/s]


Generating extra examples...: 177737 examples [01:05, 3063.44 examples/s]


Generating extra examples...: 178047 examples [01:05, 3071.62 examples/s]


Generating extra examples...: 178356 examples [01:05, 3075.60 examples/s]


Generating extra examples...: 178664 examples [01:05, 3046.40 examples/s]


Generating extra examples...: 178972 examples [01:05, 3053.75 examples/s]


Generating extra examples...: 179278 examples [01:06, 3053.61 examples/s]


Generating extra examples...: 179588 examples [01:06, 3064.63 examples/s]


Generating extra examples...: 179900 examples [01:06, 3079.18 examples/s]


Generating extra examples...: 180212 examples [01:06, 3089.89 examples/s]


Generating extra examples...: 180528 examples [01:06, 3110.08 examples/s]


Generating extra examples...: 180847 examples [01:06, 3133.63 examples/s]


Generating extra examples...: 181165 examples [01:06, 3145.31 examples/s]


Generating extra examples...: 181480 examples [01:06, 3144.84 examples/s]


Generating extra examples...: 181795 examples [01:06, 3142.79 examples/s]


Generating extra examples...: 182113 examples [01:07, 3153.31 examples/s]


Generating extra examples...: 182429 examples [01:07, 3134.82 examples/s]


Generating extra examples...: 182743 examples [01:07, 3130.62 examples/s]


Generating extra examples...: 183057 examples [01:07, 3128.14 examples/s]


Generating extra examples...: 183370 examples [01:07, 3120.50 examples/s]


Generating extra examples...: 183683 examples [01:07, 3113.06 examples/s]


Generating extra examples...: 183995 examples [01:07, 3103.12 examples/s]


Generating extra examples...: 184306 examples [01:07, 3103.26 examples/s]


Generating extra examples...: 184618 examples [01:07, 3106.16 examples/s]


Generating extra examples...: 184929 examples [01:07, 3091.94 examples/s]


Generating extra examples...: 185239 examples [01:08, 3093.15 examples/s]


Generating extra examples...: 185550 examples [01:08, 3097.55 examples/s]


Generating extra examples...: 185860 examples [01:08, 3091.24 examples/s]


Generating extra examples...: 186175 examples [01:08, 3106.43 examples/s]


Generating extra examples...: 186488 examples [01:08, 3111.20 examples/s]


Generating extra examples...: 186800 examples [01:08, 3111.02 examples/s]


Generating extra examples...: 187112 examples [01:08, 3107.91 examples/s]


Generating extra examples...: 187423 examples [01:08, 3098.30 examples/s]


Generating extra examples...: 187733 examples [01:08, 3080.08 examples/s]


Generating extra examples...: 188042 examples [01:08, 3030.24 examples/s]


Generating extra examples...: 188348 examples [01:09, 3037.71 examples/s]


Generating extra examples...: 188654 examples [01:09, 3043.67 examples/s]


Generating extra examples...: 188961 examples [01:09, 3050.02 examples/s]


Generating extra examples...: 189267 examples [01:09, 3039.39 examples/s]


Generating extra examples...: 189573 examples [01:09, 3044.56 examples/s]


Generating extra examples...: 189879 examples [01:09, 3047.58 examples/s]


Generating extra examples...: 190185 examples [01:09, 3048.31 examples/s]


Generating extra examples...: 190490 examples [01:09, 3043.15 examples/s]


Generating extra examples...: 190795 examples [01:09, 3034.82 examples/s]


Generating extra examples...: 191099 examples [01:09, 3035.39 examples/s]


Generating extra examples...: 191410 examples [01:10, 3055.39 examples/s]


Generating extra examples...: 191716 examples [01:10, 3056.18 examples/s]


Generating extra examples...: 192022 examples [01:10, 3056.97 examples/s]


Generating extra examples...: 192328 examples [01:10, 3053.15 examples/s]


Generating extra examples...: 192634 examples [01:10, 3052.23 examples/s]


Generating extra examples...: 192941 examples [01:10, 3055.26 examples/s]


Generating extra examples...: 193247 examples [01:10, 3050.12 examples/s]


Generating extra examples...: 193553 examples [01:10, 3048.06 examples/s]


Generating extra examples...: 193858 examples [01:10, 3047.60 examples/s]


Generating extra examples...: 194163 examples [01:10, 3021.29 examples/s]


Generating extra examples...: 194466 examples [01:11, 3023.79 examples/s]


Generating extra examples...: 194775 examples [01:11, 3041.02 examples/s]


Generating extra examples...: 195081 examples [01:11, 3045.69 examples/s]


Generating extra examples...: 195389 examples [01:11, 3054.92 examples/s]


Generating extra examples...: 195695 examples [01:11, 3052.23 examples/s]


Generating extra examples...: 196006 examples [01:11, 3066.18 examples/s]


Generating extra examples...: 196314 examples [01:11, 3067.55 examples/s]


Generating extra examples...: 196627 examples [01:11, 3083.65 examples/s]


Generating extra examples...: 196936 examples [01:11, 3075.20 examples/s]


Generating extra examples...: 197244 examples [01:11, 3070.01 examples/s]


Generating extra examples...: 197552 examples [01:12, 3066.98 examples/s]


Generating extra examples...: 197863 examples [01:12, 3078.94 examples/s]


Generating extra examples...: 198172 examples [01:12, 3081.24 examples/s]


Generating extra examples...: 198481 examples [01:12, 3072.46 examples/s]


Generating extra examples...: 198790 examples [01:12, 3076.12 examples/s]


Generating extra examples...: 199100 examples [01:12, 3079.87 examples/s]


Generating extra examples...: 199408 examples [01:12, 3076.68 examples/s]


Generating extra examples...: 199716 examples [01:12, 3075.78 examples/s]


Generating extra examples...: 200026 examples [01:12, 3082.72 examples/s]


Generating extra examples...: 200335 examples [01:12, 3078.01 examples/s]


Generating extra examples...: 200643 examples [01:13, 3066.31 examples/s]


Generating extra examples...: 200950 examples [01:13, 3062.37 examples/s]


Generating extra examples...: 201257 examples [01:13, 3063.06 examples/s]


Generating extra examples...: 201566 examples [01:13, 3069.62 examples/s]


Generating extra examples...: 201873 examples [01:13, 3060.83 examples/s]


Generating extra examples...: 202180 examples [01:13, 3056.76 examples/s]


Generating extra examples...: 202490 examples [01:13, 3068.12 examples/s]


Generating extra examples...: 202797 examples [01:13, 3065.15 examples/s]


Generating extra examples...: 203104 examples [01:13, 3064.53 examples/s]


Generating extra examples...: 203416 examples [01:13, 3078.08 examples/s]


Generating extra examples...: 203724 examples [01:14, 3068.93 examples/s]


Generating extra examples...: 204037 examples [01:14, 3085.12 examples/s]


Generating extra examples...: 204346 examples [01:14, 3082.54 examples/s]


Generating extra examples...: 204655 examples [01:14, 3080.03 examples/s]


Generating extra examples...: 204964 examples [01:14, 3079.57 examples/s]


Generating extra examples...: 205273 examples [01:14, 3081.98 examples/s]


Generating extra examples...: 205582 examples [01:14, 3079.13 examples/s]


Generating extra examples...: 205891 examples [01:14, 3081.15 examples/s]


Generating extra examples...: 206200 examples [01:14, 3070.17 examples/s]


Generating extra examples...: 206508 examples [01:14, 3060.39 examples/s]


Generating extra examples...: 206815 examples [01:15, 3035.36 examples/s]


Generating extra examples...: 207125 examples [01:15, 3052.26 examples/s]


Generating extra examples...: 207435 examples [01:15, 3064.94 examples/s]


Generating extra examples...: 207742 examples [01:15, 3065.57 examples/s]


Generating extra examples...: 208052 examples [01:15, 3075.23 examples/s]


Generating extra examples...: 208360 examples [01:15, 3071.49 examples/s]


Generating extra examples...: 208668 examples [01:15, 3069.75 examples/s]


Generating extra examples...: 208975 examples [01:15, 3067.86 examples/s]


Generating extra examples...: 209284 examples [01:15, 3073.84 examples/s]


Generating extra examples...: 209592 examples [01:15, 3073.51 examples/s]


Generating extra examples...: 209900 examples [01:16, 3041.93 examples/s]


Generating extra examples...: 210207 examples [01:16, 3049.18 examples/s]


Generating extra examples...: 210515 examples [01:16, 3056.03 examples/s]


Generating extra examples...: 210824 examples [01:16, 3064.00 examples/s]


Generating extra examples...: 211133 examples [01:16, 3071.47 examples/s]


Generating extra examples...: 211442 examples [01:16, 3075.91 examples/s]


Generating extra examples...: 211750 examples [01:16, 3065.18 examples/s]


Generating extra examples...: 212059 examples [01:16, 3071.77 examples/s]


Generating extra examples...: 212369 examples [01:16, 3078.53 examples/s]


Generating extra examples...: 212680 examples [01:16, 3085.41 examples/s]


Generating extra examples...: 212989 examples [01:17, 3080.72 examples/s]


Generating extra examples...: 213298 examples [01:17, 3079.05 examples/s]


Generating extra examples...: 213609 examples [01:17, 3087.25 examples/s]


Generating extra examples...: 213918 examples [01:17, 3080.51 examples/s]


Generating extra examples...: 214227 examples [01:17, 3081.57 examples/s]


Generating extra examples...: 214536 examples [01:17, 3080.83 examples/s]


Generating extra examples...: 214845 examples [01:17, 3075.98 examples/s]


Generating extra examples...: 215153 examples [01:17, 3074.23 examples/s]


Generating extra examples...: 215465 examples [01:17, 3086.11 examples/s]


Generating extra examples...: 215777 examples [01:17, 3093.72 examples/s]


Generating extra examples...: 216087 examples [01:18, 3071.47 examples/s]


Generating extra examples...: 216396 examples [01:18, 3076.69 examples/s]


Generating extra examples...: 216704 examples [01:18, 3076.02 examples/s]


Generating extra examples...: 217013 examples [01:18, 3079.99 examples/s]


Generating extra examples...: 217323 examples [01:18, 3083.38 examples/s]


Generating extra examples...: 217634 examples [01:18, 3089.30 examples/s]


Generating extra examples...: 217945 examples [01:18, 3094.29 examples/s]


Generating extra examples...: 218255 examples [01:18, 3089.95 examples/s]


Generating extra examples...: 218568 examples [01:18, 3098.37 examples/s]


Generating extra examples...: 218880 examples [01:18, 3103.99 examples/s]


Generating extra examples...: 219191 examples [01:19, 3034.45 examples/s]


Generating extra examples...: 219495 examples [01:19, 3017.02 examples/s]


Generating extra examples...: 219802 examples [01:19, 3031.11 examples/s]


Generating extra examples...: 220109 examples [01:19, 3039.73 examples/s]


Generating extra examples...: 220418 examples [01:19, 3052.76 examples/s]


Generating extra examples...: 220725 examples [01:19, 3056.28 examples/s]


Generating extra examples...: 221031 examples [01:19, 3055.83 examples/s]


Generating extra examples...: 221337 examples [01:19, 3051.20 examples/s]


Generating extra examples...: 221648 examples [01:19, 3064.87 examples/s]


Generating extra examples...: 221956 examples [01:19, 3068.56 examples/s]


Generating extra examples...: 222265 examples [01:20, 3073.09 examples/s]


Generating extra examples...: 222574 examples [01:20, 3076.64 examples/s]


Generating extra examples...: 222882 examples [01:20, 3067.30 examples/s]


Generating extra examples...: 223189 examples [01:20, 3057.06 examples/s]


Generating extra examples...: 223498 examples [01:20, 3063.75 examples/s]


Generating extra examples...: 223807 examples [01:20, 3069.42 examples/s]


Generating extra examples...: 224118 examples [01:20, 3081.06 examples/s]


Generating extra examples...: 224427 examples [01:20, 3081.00 examples/s]


Generating extra examples...: 224736 examples [01:20, 3078.88 examples/s]


Generating extra examples...: 225044 examples [01:20, 3075.77 examples/s]


Generating extra examples...: 225352 examples [01:21, 3042.00 examples/s]


Generating extra examples...: 225660 examples [01:21, 3052.28 examples/s]


Generating extra examples...: 225966 examples [01:21, 3041.34 examples/s]


Generating extra examples...: 226271 examples [01:21, 3043.87 examples/s]


Generating extra examples...: 226582 examples [01:21, 3061.34 examples/s]


Generating extra examples...: 226894 examples [01:21, 3077.72 examples/s]


Generating extra examples...: 227206 examples [01:21, 3088.32 examples/s]


Generating extra examples...: 227518 examples [01:21, 3096.87 examples/s]


Generating extra examples...: 227831 examples [01:21, 3104.10 examples/s]


Generating extra examples...: 228142 examples [01:21, 3097.18 examples/s]


Generating extra examples...: 228452 examples [01:22, 3049.70 examples/s]


Generating extra examples...: 228767 examples [01:22, 3079.10 examples/s]


Generating extra examples...: 229078 examples [01:22, 3088.18 examples/s]


Generating extra examples...: 229390 examples [01:22, 3097.00 examples/s]


Generating extra examples...: 229700 examples [01:22, 3071.37 examples/s]


Generating extra examples...: 230008 examples [01:22, 3067.59 examples/s]


Generating extra examples...: 230319 examples [01:22, 3078.05 examples/s]


Generating extra examples...: 230627 examples [01:22, 3069.73 examples/s]


Generating extra examples...: 230938 examples [01:22, 3081.21 examples/s]


Generating extra examples...: 231248 examples [01:23, 3083.24 examples/s]


Generating extra examples...: 231557 examples [01:23, 3049.35 examples/s]


Generating extra examples...: 231863 examples [01:23, 3047.88 examples/s]


Generating extra examples...: 232171 examples [01:23, 3055.67 examples/s]


Generating extra examples...: 232482 examples [01:23, 3070.33 examples/s]


Generating extra examples...: 232790 examples [01:23, 3068.91 examples/s]


Generating extra examples...: 233100 examples [01:23, 3077.06 examples/s]


Generating extra examples...: 233411 examples [01:23, 3085.50 examples/s]


Generating extra examples...: 233722 examples [01:23, 3091.94 examples/s]


Generating extra examples...: 234033 examples [01:23, 3095.82 examples/s]


Generating extra examples...: 234344 examples [01:24, 3098.93 examples/s]


Generating extra examples...: 234654 examples [01:24, 3050.13 examples/s]


Generating extra examples...: 234964 examples [01:24, 3062.96 examples/s]


Generating extra examples...: 235271 examples [01:24, 3064.20 examples/s]


Generating extra examples...: 235578 examples [01:24, 3065.06 examples/s]


Generating extra examples...: 235886 examples [01:24, 3067.05 examples/s]


Generating extra examples...: 236193 examples [01:24, 3058.54 examples/s]


Generating extra examples...: 236500 examples [01:24, 3058.82 examples/s]


Generating extra examples...: 236808 examples [01:24, 3062.29 examples/s]


Generating extra examples...: 237115 examples [01:24, 3060.43 examples/s]


Generating extra examples...: 237422 examples [01:25, 3054.62 examples/s]


Generating extra examples...: 237728 examples [01:25, 3052.86 examples/s]


Generating extra examples...: 238034 examples [01:25, 3047.65 examples/s]


Generating extra examples...: 238339 examples [01:25, 3048.19 examples/s]


Generating extra examples...: 238649 examples [01:25, 3062.46 examples/s]


Generating extra examples...: 238956 examples [01:25, 3059.15 examples/s]


Generating extra examples...: 239265 examples [01:25, 3066.49 examples/s]


Generating extra examples...: 239575 examples [01:25, 3075.66 examples/s]


Generating extra examples...: 239883 examples [01:25, 3028.92 examples/s]


Generating extra examples...: 240187 examples [01:25, 2981.29 examples/s]


Generating extra examples...: 240494 examples [01:26, 3007.08 examples/s]


Generating extra examples...: 240804 examples [01:26, 3032.42 examples/s]


Generating extra examples...: 241108 examples [01:26, 3009.01 examples/s]


Generating extra examples...: 241416 examples [01:26, 3029.31 examples/s]


Generating extra examples...: 241724 examples [01:26, 3042.00 examples/s]


Generating extra examples...: 242029 examples [01:26, 3040.82 examples/s]


Generating extra examples...: 242335 examples [01:26, 3046.01 examples/s]


Generating extra examples...: 242646 examples [01:26, 3062.45 examples/s]


Generating extra examples...: 242958 examples [01:26, 3076.77 examples/s]


Generating extra examples...: 243269 examples [01:26, 3083.53 examples/s]


Generating extra examples...: 243578 examples [01:27, 3081.18 examples/s]


Generating extra examples...: 243887 examples [01:27, 3076.19 examples/s]


Generating extra examples...: 244195 examples [01:27, 3023.15 examples/s]


Generating extra examples...: 244502 examples [01:27, 3035.61 examples/s]


Generating extra examples...: 244809 examples [01:27, 3045.01 examples/s]


Generating extra examples...: 245116 examples [01:27, 3050.64 examples/s]


Generating extra examples...: 245422 examples [01:27, 3050.14 examples/s]


Generating extra examples...: 245733 examples [01:27, 3066.13 examples/s]


Generating extra examples...: 246041 examples [01:27, 3068.78 examples/s]


Generating extra examples...: 246352 examples [01:27, 3080.97 examples/s]


Generating extra examples...: 246661 examples [01:28, 3078.26 examples/s]


Generating extra examples...: 246969 examples [01:28, 3071.53 examples/s]


Generating extra examples...: 247277 examples [01:28, 3068.94 examples/s]


Generating extra examples...: 247585 examples [01:28, 3071.31 examples/s]


Generating extra examples...: 247895 examples [01:28, 3078.75 examples/s]


Generating extra examples...: 248203 examples [01:28, 3074.16 examples/s]


Generating extra examples...: 248517 examples [01:28, 3092.11 examples/s]


Generating extra examples...: 248827 examples [01:28, 3087.34 examples/s]


Generating extra examples...: 249136 examples [01:28, 3073.80 examples/s]


Generating extra examples...: 249445 examples [01:28, 3077.59 examples/s]


Generating extra examples...: 249753 examples [01:29, 3070.36 examples/s]


Generating extra examples...: 250064 examples [01:29, 3081.24 examples/s]


Generating extra examples...: 250373 examples [01:29, 3060.59 examples/s]


Generating extra examples...: 250686 examples [01:29, 3079.67 examples/s]


Generating extra examples...: 250995 examples [01:29, 3067.63 examples/s]


Generating extra examples...: 251302 examples [01:29, 3051.75 examples/s]


Generating extra examples...: 251608 examples [01:29, 3051.16 examples/s]


Generating extra examples...: 251918 examples [01:29, 3065.03 examples/s]


Generating extra examples...: 252227 examples [01:29, 3069.70 examples/s]


Generating extra examples...: 252535 examples [01:29, 3071.30 examples/s]


Generating extra examples...: 252845 examples [01:30, 3077.39 examples/s]


Generating extra examples...: 253153 examples [01:30, 3067.96 examples/s]


Generating extra examples...: 253460 examples [01:30, 2997.10 examples/s]


Generating extra examples...: 253767 examples [01:30, 3015.97 examples/s]


Generating extra examples...: 254076 examples [01:30, 3037.31 examples/s]


Generating extra examples...: 254382 examples [01:30, 3044.00 examples/s]


Generating extra examples...: 254689 examples [01:30, 3051.09 examples/s]


Generating extra examples...: 254997 examples [01:30, 3059.17 examples/s]


Generating extra examples...: 255307 examples [01:30, 3070.71 examples/s]


Generating extra examples...: 255615 examples [01:30, 3068.43 examples/s]


Generating extra examples...: 255923 examples [01:31, 3071.43 examples/s]


Generating extra examples...: 256237 examples [01:31, 3091.36 examples/s]


Generating extra examples...: 256547 examples [01:31, 3030.93 examples/s]


Generating extra examples...: 256855 examples [01:31, 3044.03 examples/s]


Generating extra examples...: 257162 examples [01:31, 3051.01 examples/s]


Generating extra examples...: 257470 examples [01:31, 3057.85 examples/s]


Generating extra examples...: 257779 examples [01:31, 3066.26 examples/s]


Generating extra examples...: 258086 examples [01:31, 3064.70 examples/s]


Generating extra examples...: 258393 examples [01:31, 3066.10 examples/s]


Generating extra examples...: 258700 examples [01:31, 3063.26 examples/s]


Generating extra examples...: 259008 examples [01:32, 3067.38 examples/s]


Generating extra examples...: 259315 examples [01:32, 3061.58 examples/s]


Generating extra examples...: 259622 examples [01:32, 3031.06 examples/s]


Generating extra examples...: 259927 examples [01:32, 3033.96 examples/s]


Generating extra examples...: 260234 examples [01:32, 3043.42 examples/s]


Generating extra examples...: 260541 examples [01:32, 3049.05 examples/s]


Generating extra examples...: 260849 examples [01:32, 3057.16 examples/s]


Generating extra examples...: 261156 examples [01:32, 3058.40 examples/s]


Generating extra examples...: 261463 examples [01:32, 3061.49 examples/s]


Generating extra examples...: 261770 examples [01:32, 3063.88 examples/s]


Generating extra examples...: 262077 examples [01:33, 3061.82 examples/s]


Generating extra examples...: 262384 examples [01:33, 3053.15 examples/s]


Generating extra examples...: 262690 examples [01:33, 3041.51 examples/s]


Generating extra examples...: 263003 examples [01:33, 3065.85 examples/s]


Generating extra examples...: 263311 examples [01:33, 3067.81 examples/s]


Generating extra examples...: 263618 examples [01:33, 3066.90 examples/s]


Generating extra examples...: 263926 examples [01:33, 3068.23 examples/s]


Generating extra examples...: 264233 examples [01:33, 3065.22 examples/s]


Generating extra examples...: 264540 examples [01:33, 3001.90 examples/s]


Generating extra examples...: 264846 examples [01:33, 3016.49 examples/s]


Generating extra examples...: 265152 examples [01:34, 3027.95 examples/s]


Generating extra examples...: 265460 examples [01:34, 3040.17 examples/s]


Generating extra examples...: 265765 examples [01:34, 3015.27 examples/s]


Generating extra examples...: 266072 examples [01:34, 3029.12 examples/s]


Generating extra examples...: 266376 examples [01:34, 3030.41 examples/s]


Generating extra examples...: 266685 examples [01:34, 3047.34 examples/s]


Generating extra examples...: 266990 examples [01:34, 3046.34 examples/s]


Generating extra examples...: 267296 examples [01:34, 3049.37 examples/s]


Generating extra examples...: 267605 examples [01:34, 3059.60 examples/s]


Generating extra examples...: 267911 examples [01:35, 3056.41 examples/s]


Generating extra examples...: 268217 examples [01:35, 3047.41 examples/s]


Generating extra examples...: 268522 examples [01:35, 3043.80 examples/s]


Generating extra examples...: 268827 examples [01:35, 3010.40 examples/s]


Generating extra examples...: 269136 examples [01:35, 3031.75 examples/s]


Generating extra examples...: 269445 examples [01:35, 3048.30 examples/s]


Generating extra examples...: 269751 examples [01:35, 3051.30 examples/s]


Generating extra examples...: 270057 examples [01:35, 3047.47 examples/s]


Generating extra examples...: 270365 examples [01:35, 3054.31 examples/s]


Generating extra examples...: 270673 examples [01:35, 3061.52 examples/s]


Generating extra examples...: 270981 examples [01:36, 3066.26 examples/s]


Generating extra examples...: 271288 examples [01:36, 3051.31 examples/s]


Generating extra examples...: 271599 examples [01:36, 3066.53 examples/s]


Generating extra examples...: 271907 examples [01:36, 3068.89 examples/s]


Generating extra examples...: 272214 examples [01:36, 3065.65 examples/s]


Generating extra examples...: 272522 examples [01:36, 3068.12 examples/s]


Generating extra examples...: 272830 examples [01:36, 3069.80 examples/s]


Generating extra examples...: 273138 examples [01:36, 3069.92 examples/s]


Generating extra examples...: 273445 examples [01:36, 3065.54 examples/s]


Generating extra examples...: 273754 examples [01:36, 3071.14 examples/s]


Generating extra examples...: 274062 examples [01:37, 3051.99 examples/s]


Generating extra examples...: 274368 examples [01:37, 3045.25 examples/s]


Generating extra examples...: 274673 examples [01:37, 3023.08 examples/s]


Generating extra examples...: 274978 examples [01:37, 3029.96 examples/s]


Generating extra examples...: 275287 examples [01:37, 3047.09 examples/s]


Generating extra examples...: 275593 examples [01:37, 3048.28 examples/s]


Generating extra examples...: 275898 examples [01:37, 3044.99 examples/s]


Generating extra examples...: 276205 examples [01:37, 3052.02 examples/s]


Generating extra examples...: 276514 examples [01:37, 3062.87 examples/s]


Generating extra examples...: 276824 examples [01:37, 3071.97 examples/s]


Generating extra examples...: 277134 examples [01:38, 3077.52 examples/s]


Generating extra examples...: 277442 examples [01:38, 3065.08 examples/s]


Generating extra examples...: 277749 examples [01:38, 3059.64 examples/s]


Generating extra examples...: 278055 examples [01:38, 3051.81 examples/s]


Generating extra examples...: 278361 examples [01:38, 3041.12 examples/s]


Generating extra examples...: 278666 examples [01:38, 3042.65 examples/s]


Generating extra examples...: 278971 examples [01:38, 3039.77 examples/s]


Generating extra examples...: 279277 examples [01:38, 3045.14 examples/s]


Generating extra examples...: 279588 examples [01:38, 3061.86 examples/s]


Generating extra examples...: 279895 examples [01:38, 3060.39 examples/s]


Generating extra examples...: 280203 examples [01:39, 3063.87 examples/s]


Generating extra examples...: 280511 examples [01:39, 3066.62 examples/s]


Generating extra examples...: 280818 examples [01:39, 3066.66 examples/s]


Generating extra examples...: 281128 examples [01:39, 3074.56 examples/s]


Generating extra examples...: 281436 examples [01:39, 3068.18 examples/s]


Generating extra examples...: 281743 examples [01:39, 3068.21 examples/s]


Generating extra examples...: 282053 examples [01:39, 3075.60 examples/s]


Generating extra examples...: 282361 examples [01:39, 3075.40 examples/s]


Generating extra examples...: 282669 examples [01:39, 3073.66 examples/s]


Generating extra examples...: 282980 examples [01:39, 3083.98 examples/s]


Generating extra examples...: 283289 examples [01:40, 3072.47 examples/s]


Generating extra examples...: 283597 examples [01:40, 3072.94 examples/s]


Generating extra examples...: 283906 examples [01:40, 3076.32 examples/s]


Generating extra examples...: 284214 examples [01:40, 3075.95 examples/s]


Generating extra examples...: 284522 examples [01:40, 3075.04 examples/s]


Generating extra examples...: 284830 examples [01:40, 3063.80 examples/s]


Generating extra examples...: 285137 examples [01:40, 3059.27 examples/s]


Generating extra examples...: 285445 examples [01:40, 3064.52 examples/s]


Generating extra examples...: 285752 examples [01:40, 3064.80 examples/s]


Generating extra examples...: 286059 examples [01:40, 3053.46 examples/s]


Generating extra examples...: 286369 examples [01:41, 3066.54 examples/s]


Generating extra examples...: 286677 examples [01:41, 3069.19 examples/s]


Generating extra examples...: 286984 examples [01:41, 3059.68 examples/s]


Generating extra examples...: 287290 examples [01:41, 3040.66 examples/s]


Generating extra examples...: 287595 examples [01:41, 3025.06 examples/s]


Generating extra examples...: 287900 examples [01:41, 3030.47 examples/s]


Generating extra examples...: 288207 examples [01:41, 3041.90 examples/s]


Generating extra examples...: 288515 examples [01:41, 3052.18 examples/s]


Generating extra examples...: 288821 examples [01:41, 3050.62 examples/s]


Generating extra examples...: 289127 examples [01:41, 3040.44 examples/s]


Generating extra examples...: 289433 examples [01:42, 3045.08 examples/s]


Generating extra examples...: 289745 examples [01:42, 3067.31 examples/s]


Generating extra examples...: 290057 examples [01:42, 3080.74 examples/s]


Generating extra examples...: 290366 examples [01:42, 3080.31 examples/s]


Generating extra examples...: 290675 examples [01:42, 3062.63 examples/s]


Generating extra examples...: 290982 examples [01:42, 3053.00 examples/s]


Generating extra examples...: 291288 examples [01:42, 3049.51 examples/s]


Generating extra examples...: 291597 examples [01:42, 3060.91 examples/s]


Generating extra examples...: 291904 examples [01:42, 3049.55 examples/s]


Generating extra examples...: 292209 examples [01:42, 3033.65 examples/s]


Generating extra examples...: 292514 examples [01:43, 3036.31 examples/s]


Generating extra examples...: 292818 examples [01:43, 3036.26 examples/s]


Generating extra examples...: 293122 examples [01:43, 3013.53 examples/s]


Generating extra examples...: 293429 examples [01:43, 3029.01 examples/s]


Generating extra examples...: 293732 examples [01:43, 3001.70 examples/s]


Generating extra examples...: 294039 examples [01:43, 3021.86 examples/s]


Generating extra examples...: 294344 examples [01:43, 3026.85 examples/s]


Generating extra examples...: 294648 examples [01:43, 3029.49 examples/s]


Generating extra examples...: 294957 examples [01:43, 3046.31 examples/s]


Generating extra examples...: 295264 examples [01:43, 3052.89 examples/s]


Generating extra examples...: 295570 examples [01:44, 3054.90 examples/s]


Generating extra examples...: 295876 examples [01:44, 3045.13 examples/s]


Generating extra examples...: 296181 examples [01:44, 3044.52 examples/s]


Generating extra examples...: 296487 examples [01:44, 3048.97 examples/s]


Generating extra examples...: 296792 examples [01:44, 2998.79 examples/s]


Generating extra examples...: 297094 examples [01:44, 3004.52 examples/s]


Generating extra examples...: 297400 examples [01:44, 3018.54 examples/s]


Generating extra examples...: 297708 examples [01:44, 3033.62 examples/s]


Generating extra examples...: 298018 examples [01:44, 3052.84 examples/s]


Generating extra examples...: 298327 examples [01:44, 3063.64 examples/s]


Generating extra examples...: 298634 examples [01:45, 3046.99 examples/s]


Generating extra examples...: 298940 examples [01:45, 3049.03 examples/s]


Generating extra examples...: 299248 examples [01:45, 3055.54 examples/s]


Generating extra examples...: 299554 examples [01:45, 3055.02 examples/s]


Generating extra examples...: 299860 examples [01:45, 3055.62 examples/s]


Generating extra examples...: 300166 examples [01:45, 3046.33 examples/s]


Generating extra examples...: 300475 examples [01:45, 3056.77 examples/s]


Generating extra examples...: 300782 examples [01:45, 3058.41 examples/s]


Generating extra examples...: 301088 examples [01:45, 3057.02 examples/s]


Generating extra examples...: 301394 examples [01:45, 3044.27 examples/s]


Generating extra examples...: 301699 examples [01:46, 3043.21 examples/s]


Generating extra examples...: 302004 examples [01:46, 3042.68 examples/s]


Generating extra examples...: 302309 examples [01:46, 3039.72 examples/s]


Generating extra examples...: 302615 examples [01:46, 3044.42 examples/s]


Generating extra examples...: 302920 examples [01:46, 3032.08 examples/s]


Generating extra examples...: 303225 examples [01:46, 3036.55 examples/s]


Generating extra examples...: 303529 examples [01:46, 3035.43 examples/s]


Generating extra examples...: 303836 examples [01:46, 3044.35 examples/s]


Generating extra examples...: 304144 examples [01:46, 3052.43 examples/s]


Generating extra examples...: 304450 examples [01:46, 3053.78 examples/s]


Generating extra examples...: 304756 examples [01:47, 3055.32 examples/s]


Generating extra examples...: 305065 examples [01:47, 3065.19 examples/s]


Generating extra examples...: 305372 examples [01:47, 3064.40 examples/s]


Generating extra examples...: 305684 examples [01:47, 3078.36 examples/s]


Generating extra examples...: 305992 examples [01:47, 3068.49 examples/s]


Generating extra examples...: 306299 examples [01:47, 3059.46 examples/s]


Generating extra examples...: 306608 examples [01:47, 3067.61 examples/s]


Generating extra examples...: 306915 examples [01:47, 3067.13 examples/s]


Generating extra examples...: 307226 examples [01:47, 3077.52 examples/s]


Generating extra examples...: 307536 examples [01:47, 3083.18 examples/s]


Generating extra examples...: 307845 examples [01:48, 3077.02 examples/s]


Generating extra examples...: 308153 examples [01:48, 3072.56 examples/s]


Generating extra examples...: 308461 examples [01:48, 3067.36 examples/s]


Generating extra examples...: 308768 examples [01:48, 3066.82 examples/s]


Generating extra examples...: 309075 examples [01:48, 3053.16 examples/s]


Generating extra examples...: 309386 examples [01:48, 3069.70 examples/s]


Generating extra examples...: 309693 examples [01:48, 3065.53 examples/s]


Generating extra examples...: 310003 examples [01:48, 3074.33 examples/s]


Generating extra examples...: 310311 examples [01:48, 3075.13 examples/s]


Generating extra examples...: 310620 examples [01:48, 3077.54 examples/s]


Generating extra examples...: 310931 examples [01:49, 3084.14 examples/s]


Generating extra examples...: 311243 examples [01:49, 3092.42 examples/s]


Generating extra examples...: 311553 examples [01:49, 3089.20 examples/s]


Generating extra examples...: 311863 examples [01:49, 3090.32 examples/s]


Generating extra examples...: 312173 examples [01:49, 3017.71 examples/s]


Generating extra examples...: 312481 examples [01:49, 3035.78 examples/s]


Generating extra examples...: 312788 examples [01:49, 3045.59 examples/s]


Generating extra examples...: 313093 examples [01:49, 3044.27 examples/s]


Generating extra examples...: 313402 examples [01:49, 3057.54 examples/s]


Generating extra examples...: 313710 examples [01:49, 3063.12 examples/s]


Generating extra examples...: 314018 examples [01:50, 3065.52 examples/s]


Generating extra examples...: 314326 examples [01:50, 3068.39 examples/s]


Generating extra examples...: 314633 examples [01:50, 3065.01 examples/s]


Generating extra examples...: 314943 examples [01:50, 3073.61 examples/s]


Generating extra examples...: 315251 examples [01:50, 3071.99 examples/s]


Generating extra examples...: 315559 examples [01:50, 3053.58 examples/s]


Generating extra examples...: 315865 examples [01:50, 3050.09 examples/s]


Generating extra examples...: 316176 examples [01:50, 3066.76 examples/s]


Generating extra examples...: 316483 examples [01:50, 3062.91 examples/s]


Generating extra examples...: 316790 examples [01:51, 3060.32 examples/s]


Generating extra examples...: 317098 examples [01:51, 3063.79 examples/s]


Generating extra examples...: 317406 examples [01:51, 3066.98 examples/s]


Generating extra examples...: 317713 examples [01:51, 3052.24 examples/s]


Generating extra examples...: 318024 examples [01:51, 3068.75 examples/s]


Generating extra examples...: 318332 examples [01:51, 3071.99 examples/s]


Generating extra examples...: 318640 examples [01:51, 3062.31 examples/s]


Generating extra examples...: 318949 examples [01:51, 3068.60 examples/s]


Generating extra examples...: 319257 examples [01:51, 3069.25 examples/s]


Generating extra examples...: 319567 examples [01:51, 3075.42 examples/s]


Generating extra examples...: 319875 examples [01:52, 3075.98 examples/s]


Generating extra examples...: 320184 examples [01:52, 3077.59 examples/s]


Generating extra examples...: 320492 examples [01:52, 3074.49 examples/s]


Generating extra examples...: 320800 examples [01:52, 3073.87 examples/s]


Generating extra examples...: 321109 examples [01:52, 3075.92 examples/s]


Generating extra examples...: 321417 examples [01:52, 3071.41 examples/s]


Generating extra examples...: 321725 examples [01:52, 3060.65 examples/s]


Generating extra examples...: 322035 examples [01:52, 3069.29 examples/s]


Generating extra examples...: 322347 examples [01:52, 3082.91 examples/s]


Generating extra examples...: 322658 examples [01:52, 3088.56 examples/s]


Generating extra examples...: 322969 examples [01:53, 3094.25 examples/s]


Generating extra examples...: 323280 examples [01:53, 3097.55 examples/s]


Generating extra examples...: 323590 examples [01:53, 3089.68 examples/s]


Generating extra examples...: 323900 examples [01:53, 3089.48 examples/s]


Generating extra examples...: 324209 examples [01:53, 3087.23 examples/s]


Generating extra examples...: 324521 examples [01:53, 3095.93 examples/s]


Generating extra examples...: 324831 examples [01:53, 3083.32 examples/s]


Generating extra examples...: 325140 examples [01:53, 3082.41 examples/s]


Generating extra examples...: 325449 examples [01:53, 3079.00 examples/s]


Generating extra examples...: 325765 examples [01:53, 3100.41 examples/s]


Generating extra examples...: 326076 examples [01:54, 3096.89 examples/s]


Generating extra examples...: 326386 examples [01:54, 3087.29 examples/s]


Generating extra examples...: 326698 examples [01:54, 3096.97 examples/s]


Generating extra examples...: 327008 examples [01:54, 3089.36 examples/s]


Generating extra examples...: 327317 examples [01:54, 3079.44 examples/s]


Generating extra examples...: 327627 examples [01:54, 3085.00 examples/s]


Generating extra examples...: 327936 examples [01:54, 3043.93 examples/s]


Generating extra examples...: 328243 examples [01:54, 3051.45 examples/s]


Generating extra examples...: 328549 examples [01:54, 3052.07 examples/s]


Generating extra examples...: 328858 examples [01:54, 3061.83 examples/s]


Generating extra examples...: 329167 examples [01:55, 3068.67 examples/s]


Generating extra examples...: 329474 examples [01:55, 3056.03 examples/s]


Generating extra examples...: 329780 examples [01:55, 3048.52 examples/s]


Generating extra examples...: 330085 examples [01:55, 3041.63 examples/s]


Generating extra examples...: 330394 examples [01:55, 3053.48 examples/s]


Generating extra examples...: 330700 examples [01:55, 3051.91 examples/s]


Generating extra examples...: 331006 examples [01:55, 3034.62 examples/s]


Generating extra examples...: 331312 examples [01:55, 3039.67 examples/s]


Generating extra examples...: 331616 examples [01:55, 3038.71 examples/s]


Generating extra examples...: 331923 examples [01:55, 3046.97 examples/s]


Generating extra examples...: 332228 examples [01:56, 3043.81 examples/s]


Generating extra examples...: 332533 examples [01:56, 2985.15 examples/s]


Generating extra examples...: 332843 examples [01:56, 3018.48 examples/s]


Generating extra examples...: 333148 examples [01:56, 3024.72 examples/s]


Generating extra examples...: 333456 examples [01:56, 3038.75 examples/s]


Generating extra examples...: 333761 examples [01:56, 3033.92 examples/s]


Generating extra examples...: 334065 examples [01:56, 3009.47 examples/s]


Generating extra examples...: 334375 examples [01:56, 3035.09 examples/s]


Generating extra examples...: 334681 examples [01:56, 3041.80 examples/s]


Generating extra examples...: 334986 examples [01:56, 2957.10 examples/s]


Generating extra examples...: 335294 examples [01:57, 2990.70 examples/s]


Generating extra examples...: 335600 examples [01:57, 3008.28 examples/s]


Generating extra examples...: 335908 examples [01:57, 3027.95 examples/s]


Generating extra examples...: 336217 examples [01:57, 3046.23 examples/s]


Generating extra examples...: 336522 examples [01:57, 3038.62 examples/s]


Generating extra examples...: 336830 examples [01:57, 3049.85 examples/s]


Generating extra examples...: 337136 examples [01:57, 3034.82 examples/s]


Generating extra examples...: 337444 examples [01:57, 3046.76 examples/s]


Generating extra examples...: 337750 examples [01:57, 3048.13 examples/s]


Generating extra examples...: 338055 examples [01:57, 3043.28 examples/s]


Generating extra examples...: 338362 examples [01:58, 3051.15 examples/s]


Generating extra examples...: 338669 examples [01:58, 3055.09 examples/s]


Generating extra examples...: 338977 examples [01:58, 3059.87 examples/s]


Generating extra examples...: 339284 examples [01:58, 3062.68 examples/s]


Generating extra examples...: 339591 examples [01:58, 3060.41 examples/s]


Generating extra examples...: 339900 examples [01:58, 3068.48 examples/s]


Generating extra examples...: 340207 examples [01:58, 3064.19 examples/s]


Generating extra examples...: 340514 examples [01:58, 3064.37 examples/s]


Generating extra examples...: 340822 examples [01:58, 3067.27 examples/s]


Generating extra examples...: 341129 examples [01:58, 3061.03 examples/s]


Generating extra examples...: 341436 examples [01:59, 3061.74 examples/s]


Generating extra examples...: 341745 examples [01:59, 3069.45 examples/s]


Generating extra examples...: 342055 examples [01:59, 3078.20 examples/s]


Generating extra examples...: 342363 examples [01:59, 3062.61 examples/s]


Generating extra examples...: 342670 examples [01:59, 3064.32 examples/s]


Generating extra examples...: 342980 examples [01:59, 3074.74 examples/s]


Generating extra examples...: 343288 examples [01:59, 3075.93 examples/s]


Generating extra examples...: 343599 examples [01:59, 3084.50 examples/s]


Generating extra examples...: 343909 examples [01:59, 3089.01 examples/s]


Generating extra examples...: 344218 examples [01:59, 3082.53 examples/s]


Generating extra examples...: 344527 examples [02:00, 3069.45 examples/s]


Generating extra examples...: 344834 examples [02:00, 3065.40 examples/s]


Generating extra examples...: 345145 examples [02:00, 3077.55 examples/s]


Generating extra examples...: 345453 examples [02:00, 3069.00 examples/s]


Generating extra examples...: 345763 examples [02:00, 3075.01 examples/s]


Generating extra examples...: 346071 examples [02:00, 3074.22 examples/s]


Generating extra examples...: 346379 examples [02:00, 3067.40 examples/s]


Generating extra examples...: 346687 examples [02:00, 3070.79 examples/s]


Generating extra examples...: 346995 examples [02:00, 3068.99 examples/s]


Generating extra examples...: 347307 examples [02:00, 3083.11 examples/s]


Generating extra examples...: 347616 examples [02:01, 3076.30 examples/s]


Generating extra examples...: 347924 examples [02:01, 3058.32 examples/s]


Generating extra examples...: 348231 examples [02:01, 3060.20 examples/s]


Generating extra examples...: 348538 examples [02:01, 3037.21 examples/s]


Generating extra examples...: 348842 examples [02:01, 3036.04 examples/s]


Generating extra examples...: 349149 examples [02:01, 3045.04 examples/s]


Generating extra examples...: 349457 examples [02:01, 3053.68 examples/s]


Generating extra examples...: 349763 examples [02:01, 3045.98 examples/s]


Generating extra examples...: 350068 examples [02:01, 3040.44 examples/s]


Generating extra examples...: 350373 examples [02:01, 3043.13 examples/s]


Generating extra examples...: 350678 examples [02:02, 3043.65 examples/s]


Generating extra examples...: 350983 examples [02:02, 3042.56 examples/s]


Generating extra examples...: 351293 examples [02:02, 3058.85 examples/s]


Generating extra examples...: 351602 examples [02:02, 3067.86 examples/s]


Generating extra examples...: 351913 examples [02:02, 3080.32 examples/s]


Generating extra examples...: 352222 examples [02:02, 3081.71 examples/s]


Generating extra examples...: 352531 examples [02:02, 3074.62 examples/s]


Generating extra examples...: 352839 examples [02:02, 3029.27 examples/s]


Generating extra examples...: 353143 examples [02:02, 3029.59 examples/s]


Generating extra examples...: 353451 examples [02:02, 3042.02 examples/s]


Generating extra examples...: 353756 examples [02:03, 3044.24 examples/s]


Generating extra examples...: 354065 examples [02:03, 3054.70 examples/s]


Generating extra examples...: 354374 examples [02:03, 3062.39 examples/s]


Generating extra examples...: 354681 examples [02:03, 3061.38 examples/s]


Generating extra examples...: 354988 examples [02:03, 3050.39 examples/s]


Generating extra examples...: 355296 examples [02:03, 3057.69 examples/s]


Generating extra examples...: 355603 examples [02:03, 3059.67 examples/s]


Generating extra examples...: 355909 examples [02:03, 3057.12 examples/s]


Generating extra examples...: 356215 examples [02:03, 3049.72 examples/s]


Generating extra examples...: 356520 examples [02:03, 3044.36 examples/s]


Generating extra examples...: 356826 examples [02:04, 3046.78 examples/s]


Generating extra examples...: 357136 examples [02:04, 3060.93 examples/s]


Generating extra examples...: 357446 examples [02:04, 3070.60 examples/s]


Generating extra examples...: 357758 examples [02:04, 3084.81 examples/s]


Generating extra examples...: 358073 examples [02:04, 3102.55 examples/s]


Generating extra examples...: 358389 examples [02:04, 3117.93 examples/s]


Generating extra examples...: 358702 examples [02:04, 3119.35 examples/s]


Generating extra examples...: 359014 examples [02:04, 3052.53 examples/s]


Generating extra examples...: 359323 examples [02:04, 3062.45 examples/s]


Generating extra examples...: 359637 examples [02:04, 3083.39 examples/s]


Generating extra examples...: 359950 examples [02:05, 3095.99 examples/s]


Generating extra examples...: 360260 examples [02:05, 3094.58 examples/s]


Generating extra examples...: 360570 examples [02:05, 3085.20 examples/s]


Generating extra examples...: 360882 examples [02:05, 3094.62 examples/s]


Generating extra examples...: 361192 examples [02:05, 3094.81 examples/s]


Generating extra examples...: 361502 examples [02:05, 3095.69 examples/s]


Generating extra examples...: 361812 examples [02:05, 3088.19 examples/s]


Generating extra examples...: 362121 examples [02:05, 3076.20 examples/s]


Generating extra examples...: 362429 examples [02:05, 3073.14 examples/s]


Generating extra examples...: 362740 examples [02:06, 3080.94 examples/s]


Generating extra examples...: 363053 examples [02:06, 3093.99 examples/s]


Generating extra examples...: 363364 examples [02:06, 3098.07 examples/s]


Generating extra examples...: 363674 examples [02:06, 3095.46 examples/s]


Generating extra examples...: 363984 examples [02:06, 3096.57 examples/s]


Generating extra examples...: 364294 examples [02:06, 3094.32 examples/s]


Generating extra examples...: 364604 examples [02:06, 3078.81 examples/s]


Generating extra examples...: 364916 examples [02:06, 3089.61 examples/s]


Generating extra examples...: 365225 examples [02:06, 3087.02 examples/s]


Generating extra examples...: 365534 examples [02:06, 3084.57 examples/s]


Generating extra examples...: 365843 examples [02:07, 3064.61 examples/s]


Generating extra examples...: 366155 examples [02:07, 3080.89 examples/s]


Generating extra examples...: 366464 examples [02:07, 3082.02 examples/s]


Generating extra examples...: 366773 examples [02:07, 3075.85 examples/s]


Generating extra examples...: 367081 examples [02:07, 3068.54 examples/s]


Generating extra examples...: 367388 examples [02:07, 3054.24 examples/s]


Generating extra examples...: 367694 examples [02:07, 3046.98 examples/s]


Generating extra examples...: 367999 examples [02:07, 3045.04 examples/s]


Generating extra examples...: 368304 examples [02:07, 2975.50 examples/s]


Generating extra examples...: 368609 examples [02:07, 2995.23 examples/s]


Generating extra examples...: 368918 examples [02:08, 3021.07 examples/s]


Generating extra examples...: 369227 examples [02:08, 3040.52 examples/s]


Generating extra examples...: 369532 examples [02:08, 3039.79 examples/s]


Generating extra examples...: 369837 examples [02:08, 3036.28 examples/s]


Generating extra examples...: 370142 examples [02:08, 3039.01 examples/s]


Generating extra examples...: 370446 examples [02:08, 3038.84 examples/s]


Generating extra examples...: 370750 examples [02:08, 3036.80 examples/s]


Generating extra examples...: 371055 examples [02:08, 3038.20 examples/s]


Generating extra examples...: 371360 examples [02:08, 3040.93 examples/s]


Generating extra examples...: 371666 examples [02:08, 3043.77 examples/s]


Generating extra examples...: 371971 examples [02:09, 3043.29 examples/s]


Generating extra examples...: 372276 examples [02:09, 3041.99 examples/s]


Generating extra examples...: 372581 examples [02:09, 3038.38 examples/s]


Generating extra examples...: 372885 examples [02:09, 3035.99 examples/s]


Generating extra examples...: 373195 examples [02:09, 3051.75 examples/s]


Generating extra examples...: 373502 examples [02:09, 3054.57 examples/s]


Generating extra examples...: 373808 examples [02:09, 3050.41 examples/s]


Generating extra examples...: 374117 examples [02:09, 3061.22 examples/s]


Generating extra examples...: 374424 examples [02:09, 3057.97 examples/s]


Generating extra examples...: 374730 examples [02:09, 3054.90 examples/s]


Generating extra examples...: 375039 examples [02:10, 3063.08 examples/s]


Generating extra examples...: 375352 examples [02:10, 3081.13 examples/s]


Generating extra examples...: 375661 examples [02:10, 3069.78 examples/s]


Generating extra examples...: 375970 examples [02:10, 3073.63 examples/s]


Generating extra examples...: 376278 examples [02:10, 3071.08 examples/s]


Generating extra examples...: 376586 examples [02:10, 3069.84 examples/s]


Generating extra examples...: 376893 examples [02:10, 3065.01 examples/s]


Generating extra examples...: 377201 examples [02:10, 3069.20 examples/s]


Generating extra examples...: 377508 examples [02:10, 3002.28 examples/s]


Generating extra examples...: 377815 examples [02:10, 3020.61 examples/s]


Generating extra examples...: 378118 examples [02:11, 3022.57 examples/s]


Generating extra examples...: 378421 examples [02:11, 3017.02 examples/s]


Generating extra examples...: 378727 examples [02:11, 3027.56 examples/s]


Generating extra examples...: 379032 examples [02:11, 3033.02 examples/s]


Generating extra examples...: 379336 examples [02:11, 3027.34 examples/s]


Generating extra examples...: 379639 examples [02:11, 3024.45 examples/s]


Generating extra examples...: 379942 examples [02:11, 3022.06 examples/s]


Generating extra examples...: 380250 examples [02:11, 3037.88 examples/s]


Generating extra examples...: 380560 examples [02:11, 3056.17 examples/s]


Generating extra examples...: 380866 examples [02:11, 3047.05 examples/s]


Generating extra examples...: 381173 examples [02:12, 3051.16 examples/s]


Generating extra examples...: 381482 examples [02:12, 3060.49 examples/s]


Generating extra examples...: 381789 examples [02:12, 3060.25 examples/s]


Generating extra examples...: 382099 examples [02:12, 3071.21 examples/s]


Generating extra examples...: 382412 examples [02:12, 3087.44 examples/s]


Generating extra examples...: 382726 examples [02:12, 3100.74 examples/s]


Generating extra examples...: 383037 examples [02:12, 3103.36 examples/s]


Generating extra examples...: 383350 examples [02:12, 3109.22 examples/s]


Generating extra examples...: 383663 examples [02:12, 3114.58 examples/s]


Generating extra examples...: 383975 examples [02:12, 3097.59 examples/s]


Generating extra examples...: 384291 examples [02:13, 3113.81 examples/s]


Generating extra examples...: 384606 examples [02:13, 3123.35 examples/s]


Generating extra examples...: 384919 examples [02:13, 3124.20 examples/s]


Generating extra examples...: 385232 examples [02:13, 3114.57 examples/s]


Generating extra examples...: 385544 examples [02:13, 3104.63 examples/s]


Generating extra examples...: 385857 examples [02:13, 3109.98 examples/s]


Generating extra examples...: 386169 examples [02:13, 3098.84 examples/s]


Generating extra examples...: 386479 examples [02:13, 3089.67 examples/s]


Generating extra examples...: 386788 examples [02:13, 3082.49 examples/s]


Generating extra examples...: 387097 examples [02:13, 3071.78 examples/s]


Generating extra examples...: 387405 examples [02:14, 3069.20 examples/s]


Generating extra examples...: 387717 examples [02:14, 3083.63 examples/s]


Generating extra examples...: 388031 examples [02:14, 3098.65 examples/s]


Generating extra examples...: 388344 examples [02:14, 3105.24 examples/s]


Generating extra examples...: 388657 examples [02:14, 3109.45 examples/s]


Generating extra examples...: 388968 examples [02:14, 3106.39 examples/s]


Generating extra examples...: 389279 examples [02:14, 3104.94 examples/s]


Generating extra examples...: 389590 examples [02:14, 3080.98 examples/s]


Generating extra examples...: 389899 examples [02:14, 3073.23 examples/s]


Generating extra examples...: 390207 examples [02:14, 2979.78 examples/s]


Generating extra examples...: 390510 examples [02:15, 2993.63 examples/s]


Generating extra examples...: 390817 examples [02:15, 3013.43 examples/s]


Generating extra examples...: 391127 examples [02:15, 3038.67 examples/s]


Generating extra examples...: 391438 examples [02:15, 3057.99 examples/s]


Generating extra examples...: 391746 examples [02:15, 3062.89 examples/s]


Generating extra examples...: 392053 examples [02:15, 3061.36 examples/s]


Generating extra examples...: 392360 examples [02:15, 3053.77 examples/s]


Generating extra examples...: 392666 examples [02:15, 3050.03 examples/s]


Generating extra examples...: 392972 examples [02:15, 3052.82 examples/s]


Generating extra examples...: 393278 examples [02:15, 3030.40 examples/s]


Generating extra examples...: 393582 examples [02:16, 3028.99 examples/s]


Generating extra examples...: 393887 examples [02:16, 3033.84 examples/s]


Generating extra examples...: 394192 examples [02:16, 3037.26 examples/s]


Generating extra examples...: 394497 examples [02:16, 3040.15 examples/s]


Generating extra examples...: 394802 examples [02:16, 3041.94 examples/s]


Generating extra examples...: 395113 examples [02:16, 3060.28 examples/s]


Generating extra examples...: 395420 examples [02:16, 3052.98 examples/s]


Generating extra examples...: 395731 examples [02:16, 3068.39 examples/s]


Generating extra examples...: 396040 examples [02:16, 3071.84 examples/s]


Generating extra examples...: 396348 examples [02:16, 3053.28 examples/s]


Generating extra examples...: 396654 examples [02:17, 3055.21 examples/s]


Generating extra examples...: 396962 examples [02:17, 3061.00 examples/s]


Generating extra examples...: 397270 examples [02:17, 3065.26 examples/s]


Generating extra examples...: 397577 examples [02:17, 3060.02 examples/s]


Generating extra examples...: 397884 examples [02:17, 3059.63 examples/s]


Generating extra examples...: 398191 examples [02:17, 3060.92 examples/s]


Generating extra examples...: 398499 examples [02:17, 3065.53 examples/s]


Generating extra examples...: 398808 examples [02:17, 3069.65 examples/s]


Generating extra examples...: 399116 examples [02:17, 3071.74 examples/s]


Generating extra examples...: 399424 examples [02:17, 3032.48 examples/s]


Generating extra examples...: 399732 examples [02:18, 3044.63 examples/s]


Generating extra examples...: 400040 examples [02:18, 3053.21 examples/s]


Generating extra examples...: 400350 examples [02:18, 3065.53 examples/s]


Generating extra examples...: 400657 examples [02:18, 3062.37 examples/s]


Generating extra examples...: 400964 examples [02:18, 3061.65 examples/s]


Generating extra examples...: 401271 examples [02:18, 3056.43 examples/s]


Generating extra examples...: 401579 examples [02:18, 3060.31 examples/s]


Generating extra examples...: 401887 examples [02:18, 3065.40 examples/s]


Generating extra examples...: 402197 examples [02:18, 3074.35 examples/s]


Generating extra examples...: 402507 examples [02:18, 3081.14 examples/s]


Generating extra examples...: 402817 examples [02:19, 3086.56 examples/s]


Generating extra examples...: 403128 examples [02:19, 3091.56 examples/s]


Generating extra examples...: 403438 examples [02:19, 3088.99 examples/s]


Generating extra examples...: 403747 examples [02:19, 3050.90 examples/s]


Generating extra examples...: 404053 examples [02:19, 3052.14 examples/s]


Generating extra examples...: 404361 examples [02:19, 3058.48 examples/s]


Generating extra examples...: 404667 examples [02:19, 3057.85 examples/s]


Generating extra examples...: 404973 examples [02:19, 3056.09 examples/s]


Generating extra examples...: 405282 examples [02:19, 3065.86 examples/s]


Generating extra examples...: 405589 examples [02:20, 3064.78 examples/s]


Generating extra examples...: 405896 examples [02:20, 3059.31 examples/s]


Generating extra examples...: 406202 examples [02:20, 3056.34 examples/s]


Generating extra examples...: 406508 examples [02:20, 3054.13 examples/s]


Generating extra examples...: 406814 examples [02:20, 3046.88 examples/s]


Generating extra examples...: 407123 examples [02:20, 3059.19 examples/s]


Generating extra examples...: 407433 examples [02:20, 3070.53 examples/s]


Generating extra examples...: 407747 examples [02:20, 3090.42 examples/s]


Generating extra examples...: 408060 examples [02:20, 3101.82 examples/s]


Generating extra examples...: 408377 examples [02:20, 3121.85 examples/s]


Generating extra examples...: 408690 examples [02:21, 3112.65 examples/s]


Generating extra examples...: 409006 examples [02:21, 3125.68 examples/s]


Generating extra examples...: 409321 examples [02:21, 3130.67 examples/s]


Generating extra examples...: 409635 examples [02:21, 3132.46 examples/s]


Generating extra examples...: 409950 examples [02:21, 3135.63 examples/s]


Generating extra examples...: 410267 examples [02:21, 3143.31 examples/s]


Generating extra examples...: 410582 examples [02:21, 3136.81 examples/s]


Generating extra examples...: 410896 examples [02:21, 3113.26 examples/s]


Generating extra examples...: 411211 examples [02:21, 3123.38 examples/s]


Generating extra examples...: 411527 examples [02:21, 3134.00 examples/s]


Generating extra examples...: 411841 examples [02:22, 3095.11 examples/s]


Generating extra examples...: 412152 examples [02:22, 3096.70 examples/s]


Generating extra examples...: 412467 examples [02:22, 3111.62 examples/s]


Generating extra examples...: 412787 examples [02:22, 3135.22 examples/s]


Generating extra examples...: 413104 examples [02:22, 3142.78 examples/s]


Generating extra examples...: 413421 examples [02:22, 3148.22 examples/s]


Generating extra examples...: 413739 examples [02:22, 3155.68 examples/s]


Generating extra examples...: 414057 examples [02:22, 3161.01 examples/s]


Generating extra examples...: 414374 examples [02:22, 3153.11 examples/s]


Generating extra examples...: 414690 examples [02:22, 3146.03 examples/s]


Generating extra examples...: 415005 examples [02:23, 3121.82 examples/s]


Generating extra examples...: 415318 examples [02:23, 3112.68 examples/s]


Generating extra examples...: 415630 examples [02:23, 3100.31 examples/s]


Generating extra examples...: 415941 examples [02:23, 3073.13 examples/s]


Generating extra examples...: 416249 examples [02:23, 3069.27 examples/s]


Generating extra examples...: 416556 examples [02:23, 3057.23 examples/s]


Generating extra examples...: 416868 examples [02:23, 3073.27 examples/s]


Generating extra examples...: 417177 examples [02:23, 3077.14 examples/s]


Generating extra examples...: 417485 examples [02:23, 3069.44 examples/s]


Generating extra examples...: 417792 examples [02:23, 3068.83 examples/s]


Generating extra examples...: 418101 examples [02:24, 3075.05 examples/s]


Generating extra examples...: 418409 examples [02:24, 3073.28 examples/s]


Generating extra examples...: 418725 examples [02:24, 3095.59 examples/s]


Generating extra examples...: 419039 examples [02:24, 3105.58 examples/s]


Generating extra examples...: 419350 examples [02:24, 3104.20 examples/s]


Generating extra examples...: 419661 examples [02:24, 3102.93 examples/s]


Generating extra examples...: 419975 examples [02:24, 3113.23 examples/s]


Generating extra examples...: 420288 examples [02:24, 3117.47 examples/s]


Generating extra examples...: 420601 examples [02:24, 3118.52 examples/s]


Generating extra examples...: 420913 examples [02:24, 3117.70 examples/s]


Generating extra examples...: 421225 examples [02:25, 3114.08 examples/s]


Generating extra examples...: 421537 examples [02:25, 3008.25 examples/s]


Generating extra examples...: 421845 examples [02:25, 3027.59 examples/s]


Generating extra examples...: 422155 examples [02:25, 3048.08 examples/s]


Generating extra examples...: 422461 examples [02:25, 3040.37 examples/s]


Generating extra examples...: 422774 examples [02:25, 3065.70 examples/s]


Generating extra examples...: 423081 examples [02:25, 3063.65 examples/s]


Generating extra examples...: 423388 examples [02:25, 3055.81 examples/s]


Generating extra examples...: 423694 examples [02:25, 3056.89 examples/s]


Generating extra examples...: 424007 examples [02:25, 3077.67 examples/s]


Generating extra examples...: 424315 examples [02:26, 3077.51 examples/s]


Generating extra examples...: 424625 examples [02:26, 3083.89 examples/s]


Generating extra examples...: 424938 examples [02:26, 3097.02 examples/s]


Generating extra examples...: 425248 examples [02:26, 3091.48 examples/s]


Generating extra examples...: 425561 examples [02:26, 3101.05 examples/s]


Generating extra examples...: 425872 examples [02:26, 3095.68 examples/s]


Generating extra examples...: 426182 examples [02:26, 3093.21 examples/s]


Generating extra examples...: 426492 examples [02:26, 3084.54 examples/s]


Generating extra examples...: 426804 examples [02:26, 3093.31 examples/s]


Generating extra examples...: 427114 examples [02:26, 3094.81 examples/s]


Generating extra examples...: 427424 examples [02:27, 3089.96 examples/s]


Generating extra examples...: 427734 examples [02:27, 3041.50 examples/s]


Generating extra examples...: 428041 examples [02:27, 3049.19 examples/s]


Generating extra examples...: 428348 examples [02:27, 3052.30 examples/s]


Generating extra examples...: 428654 examples [02:27, 3054.00 examples/s]


Generating extra examples...: 428960 examples [02:27, 3052.59 examples/s]


Generating extra examples...: 429266 examples [02:27, 3036.41 examples/s]


Generating extra examples...: 429570 examples [02:27, 3029.34 examples/s]


Generating extra examples...: 429874 examples [02:27, 3030.30 examples/s]


Generating extra examples...: 430178 examples [02:27, 3032.91 examples/s]


Generating extra examples...: 430482 examples [02:28, 3033.01 examples/s]


Generating extra examples...: 430786 examples [02:28, 2978.00 examples/s]


Generating extra examples...: 431092 examples [02:28, 2999.24 examples/s]


Generating extra examples...: 431400 examples [02:28, 3020.30 examples/s]


Generating extra examples...: 431710 examples [02:28, 3041.46 examples/s]


Generating extra examples...: 432015 examples [02:28, 3027.95 examples/s]


Generating extra examples...: 432319 examples [02:28, 3029.72 examples/s]


Generating extra examples...: 432623 examples [02:28, 3032.43 examples/s]


Generating extra examples...: 432927 examples [02:28, 3026.34 examples/s]


Generating extra examples...: 433232 examples [02:28, 3032.75 examples/s]


Generating extra examples...: 433536 examples [02:29, 3029.72 examples/s]


Generating extra examples...: 433840 examples [02:29, 3031.23 examples/s]


Generating extra examples...: 434144 examples [02:29, 3031.78 examples/s]


Generating extra examples...: 434450 examples [02:29, 3039.53 examples/s]


Generating extra examples...: 434755 examples [02:29, 3042.00 examples/s]


Generating extra examples...: 435063 examples [02:29, 3051.81 examples/s]


Generating extra examples...: 435369 examples [02:29, 3039.38 examples/s]


Generating extra examples...: 435675 examples [02:29, 3045.05 examples/s]


Generating extra examples...: 435980 examples [02:29, 3045.22 examples/s]


Generating extra examples...: 436285 examples [02:29, 3033.58 examples/s]


Generating extra examples...: 436589 examples [02:30, 3028.35 examples/s]


Generating extra examples...: 436892 examples [02:30, 2944.79 examples/s]


Generating extra examples...: 437199 examples [02:30, 2980.99 examples/s]


Generating extra examples...: 437503 examples [02:30, 2997.84 examples/s]


Generating extra examples...: 437813 examples [02:30, 3027.81 examples/s]


Generating extra examples...: 438117 examples [02:30, 3021.49 examples/s]


Generating extra examples...: 438422 examples [02:30, 3027.57 examples/s]


Generating extra examples...: 438734 examples [02:30, 3052.62 examples/s]


Generating extra examples...: 439046 examples [02:30, 3072.65 examples/s]


Generating extra examples...: 439357 examples [02:30, 3082.89 examples/s]


Generating extra examples...: 439667 examples [02:31, 3087.06 examples/s]


Generating extra examples...: 439976 examples [02:31, 3069.12 examples/s]


Generating extra examples...: 440290 examples [02:31, 3089.45 examples/s]


Generating extra examples...: 440599 examples [02:31, 3079.93 examples/s]


Generating extra examples...: 440912 examples [02:31, 3092.81 examples/s]


Generating extra examples...: 441224 examples [02:31, 3100.54 examples/s]


Generating extra examples...: 441539 examples [02:31, 3112.77 examples/s]


Generating extra examples...: 441851 examples [02:31, 3094.89 examples/s]


Generating extra examples...: 442161 examples [02:31, 3069.21 examples/s]


Generating extra examples...: 442468 examples [02:31, 3067.71 examples/s]


Generating extra examples...: 442777 examples [02:32, 3071.46 examples/s]


Generating extra examples...: 443085 examples [02:32, 3058.79 examples/s]


Generating extra examples...: 443392 examples [02:32, 3060.03 examples/s]


Generating extra examples...: 443700 examples [02:32, 3064.75 examples/s]


Generating extra examples...: 444011 examples [02:32, 3077.90 examples/s]


Generating extra examples...: 444319 examples [02:32, 3068.65 examples/s]


Generating extra examples...: 444628 examples [02:32, 3073.58 examples/s]


Generating extra examples...: 444936 examples [02:32, 3075.22 examples/s]


Generating extra examples...: 445244 examples [02:32, 3070.87 examples/s]


Generating extra examples...: 445552 examples [02:33, 3068.77 examples/s]


Generating extra examples...: 445859 examples [02:33, 3054.86 examples/s]


Generating extra examples...: 446165 examples [02:33, 3041.32 examples/s]


Generating extra examples...: 446475 examples [02:33, 3056.94 examples/s]


Generating extra examples...: 446783 examples [02:33, 3062.83 examples/s]


Generating extra examples...: 447090 examples [02:33, 3055.75 examples/s]


Generating extra examples...: 447396 examples [02:33, 3047.17 examples/s]


Generating extra examples...: 447703 examples [02:33, 3053.45 examples/s]


Generating extra examples...: 448009 examples [02:33, 3054.17 examples/s]


Generating extra examples...: 448315 examples [02:33, 3052.77 examples/s]


Generating extra examples...: 448621 examples [02:34, 3054.37 examples/s]


Generating extra examples...: 448929 examples [02:34, 3059.62 examples/s]


Generating extra examples...: 449235 examples [02:34, 3037.99 examples/s]


Generating extra examples...: 449539 examples [02:34, 3017.32 examples/s]


Generating extra examples...: 449844 examples [02:34, 3025.52 examples/s]


Generating extra examples...: 450155 examples [02:34, 3047.88 examples/s]


Generating extra examples...: 450465 examples [02:34, 3061.78 examples/s]


Generating extra examples...: 450772 examples [02:34, 3056.33 examples/s]


Generating extra examples...: 451081 examples [02:34, 3066.35 examples/s]


Generating extra examples...: 451388 examples [02:34, 3060.36 examples/s]


Generating extra examples...: 451695 examples [02:35, 3059.00 examples/s]


Generating extra examples...: 452001 examples [02:35, 3052.91 examples/s]


Generating extra examples...: 452308 examples [02:35, 3055.34 examples/s]


Generating extra examples...: 452614 examples [02:35, 2958.86 examples/s]


Generating extra examples...: 452918 examples [02:35, 2980.95 examples/s]


Generating extra examples...: 453224 examples [02:35, 3003.12 examples/s]


Generating extra examples...: 453531 examples [02:35, 3020.14 examples/s]


Generating extra examples...: 453839 examples [02:35, 3035.84 examples/s]


Generating extra examples...: 454143 examples [02:35, 3036.94 examples/s]


Generating extra examples...: 454447 examples [02:35, 3032.83 examples/s]


Generating extra examples...: 454751 examples [02:36, 3031.71 examples/s]


Generating extra examples...: 455055 examples [02:36, 3030.76 examples/s]


Generating extra examples...: 455364 examples [02:36, 3047.37 examples/s]


Generating extra examples...: 455675 examples [02:36, 3063.68 examples/s]


Generating extra examples...: 455989 examples [02:36, 3085.08 examples/s]


Generating extra examples...: 456306 examples [02:36, 3109.72 examples/s]


Generating extra examples...: 456618 examples [02:36, 3111.99 examples/s]


Generating extra examples...: 456932 examples [02:36, 3118.21 examples/s]


Generating extra examples...: 457245 examples [02:36, 3118.98 examples/s]


Generating extra examples...: 457557 examples [02:36, 3119.10 examples/s]


Generating extra examples...: 457870 examples [02:37, 3120.25 examples/s]


Generating extra examples...: 458183 examples [02:37, 3116.68 examples/s]


Generating extra examples...: 458496 examples [02:37, 3117.15 examples/s]


Generating extra examples...: 458808 examples [02:37, 3031.56 examples/s]


Generating extra examples...: 459114 examples [02:37, 3039.43 examples/s]


Generating extra examples...: 459421 examples [02:37, 3047.62 examples/s]


Generating extra examples...: 459733 examples [02:37, 3068.00 examples/s]


Generating extra examples...: 460041 examples [02:37, 3070.34 examples/s]


Generating extra examples...: 460351 examples [02:37, 3076.77 examples/s]


Generating extra examples...: 460659 examples [02:37, 3069.84 examples/s]


Generating extra examples...: 460967 examples [02:38, 3069.92 examples/s]


Generating extra examples...: 461275 examples [02:38, 3069.10 examples/s]


Generating extra examples...: 461587 examples [02:38, 3081.83 examples/s]


Generating extra examples...: 461896 examples [02:38, 2987.46 examples/s]


Generating extra examples...: 462206 examples [02:38, 3018.88 examples/s]


Generating extra examples...: 462516 examples [02:38, 3039.93 examples/s]


Generating extra examples...: 462824 examples [02:38, 3050.75 examples/s]


Generating extra examples...: 463130 examples [02:38, 3036.86 examples/s]


Generating extra examples...: 463442 examples [02:38, 3059.87 examples/s]


Generating extra examples...: 463755 examples [02:38, 3077.70 examples/s]


Generating extra examples...: 464063 examples [02:39, 3073.97 examples/s]


Generating extra examples...: 464371 examples [02:39, 3072.61 examples/s]


Generating extra examples...: 464686 examples [02:39, 3093.95 examples/s]


Generating extra examples...: 464996 examples [02:39, 3067.12 examples/s]


Generating extra examples...: 465303 examples [02:39, 3045.41 examples/s]


Generating extra examples...: 465611 examples [02:39, 3054.23 examples/s]


Generating extra examples...: 465917 examples [02:39, 3047.70 examples/s]


Generating extra examples...: 466222 examples [02:39, 3044.82 examples/s]


Generating extra examples...: 466530 examples [02:39, 3054.23 examples/s]


Generating extra examples...: 466837 examples [02:39, 3056.26 examples/s]


Generating extra examples...: 467145 examples [02:40, 3063.26 examples/s]


Generating extra examples...: 467452 examples [02:40, 3056.26 examples/s]


Generating extra examples...: 467760 examples [02:40, 3061.59 examples/s]


Generating extra examples...: 468067 examples [02:40, 2965.24 examples/s]


Generating extra examples...: 468371 examples [02:40, 2985.59 examples/s]


Generating extra examples...: 468677 examples [02:40, 3005.37 examples/s]


Generating extra examples...: 468986 examples [02:40, 3029.75 examples/s]


Generating extra examples...: 469296 examples [02:40, 3050.24 examples/s]


Generating extra examples...: 469609 examples [02:40, 3072.37 examples/s]


Generating extra examples...: 469920 examples [02:40, 3081.21 examples/s]


Generating extra examples...: 470229 examples [02:41, 3081.80 examples/s]


Generating extra examples...: 470538 examples [02:41, 3061.36 examples/s]


Generating extra examples...: 470845 examples [02:41, 3060.68 examples/s]


Generating extra examples...: 471152 examples [02:41, 3005.20 examples/s]


Generating extra examples...: 471459 examples [02:41, 3022.56 examples/s]


Generating extra examples...: 471762 examples [02:41, 3023.89 examples/s]


Generating extra examples...: 472071 examples [02:41, 3042.56 examples/s]


Generating extra examples...: 472378 examples [02:41, 3049.43 examples/s]


Generating extra examples...: 472685 examples [02:41, 3053.46 examples/s]


Generating extra examples...: 472993 examples [02:41, 3060.42 examples/s]


Generating extra examples...: 473301 examples [02:42, 3064.17 examples/s]


Generating extra examples...: 473608 examples [02:42, 3057.86 examples/s]


Generating extra examples...: 473914 examples [02:42, 3052.55 examples/s]


Generating extra examples...: 474220 examples [02:42, 3036.39 examples/s]


Generating extra examples...: 474525 examples [02:42, 3038.69 examples/s]


Generating extra examples...: 474834 examples [02:42, 3053.98 examples/s]


Generating extra examples...: 475140 examples [02:42, 3050.45 examples/s]


Generating extra examples...: 475446 examples [02:42, 3051.63 examples/s]


Generating extra examples...: 475753 examples [02:42, 3055.46 examples/s]


Generating extra examples...: 476061 examples [02:42, 3060.40 examples/s]


Generating extra examples...: 476368 examples [02:43, 3062.97 examples/s]


Generating extra examples...: 476675 examples [02:43, 3062.44 examples/s]


Generating extra examples...: 476982 examples [02:43, 3062.31 examples/s]


Generating extra examples...: 477289 examples [02:43, 2971.20 examples/s]


Generating extra examples...: 477592 examples [02:43, 2986.94 examples/s]


Generating extra examples...: 477898 examples [02:43, 3005.90 examples/s]


Generating extra examples...: 478204 examples [02:43, 3020.89 examples/s]


Generating extra examples...: 478508 examples [02:43, 3026.16 examples/s]


Generating extra examples...: 478814 examples [02:43, 3035.17 examples/s]


Generating extra examples...: 479118 examples [02:44, 3031.68 examples/s]


Generating extra examples...: 479423 examples [02:44, 3034.13 examples/s]


Generating extra examples...: 479731 examples [02:44, 3045.98 examples/s]


Generating extra examples...: 480041 examples [02:44, 3060.19 examples/s]


Generating extra examples...: 480348 examples [02:44, 3062.53 examples/s]


Generating extra examples...: 480655 examples [02:44, 3059.37 examples/s]


Generating extra examples...: 480964 examples [02:44, 3065.76 examples/s]


Generating extra examples...: 481272 examples [02:44, 3068.47 examples/s]


Generating extra examples...: 481579 examples [02:44, 3056.25 examples/s]


Generating extra examples...: 481885 examples [02:44, 3053.23 examples/s]


Generating extra examples...: 482194 examples [02:45, 3061.56 examples/s]


Generating extra examples...: 482501 examples [02:45, 3050.21 examples/s]


Generating extra examples...: 482807 examples [02:45, 3052.23 examples/s]


Generating extra examples...: 483115 examples [02:45, 3060.13 examples/s]


Generating extra examples...: 483422 examples [02:45, 3062.29 examples/s]


Generating extra examples...: 483729 examples [02:45, 2969.78 examples/s]


Generating extra examples...: 484032 examples [02:45, 2985.62 examples/s]


Generating extra examples...: 484335 examples [02:45, 2996.98 examples/s]


Generating extra examples...: 484640 examples [02:45, 3011.25 examples/s]


Generating extra examples...: 484949 examples [02:45, 3032.17 examples/s]


Generating extra examples...: 485253 examples [02:46, 3026.89 examples/s]


Generating extra examples...: 485556 examples [02:46, 3017.85 examples/s]


Generating extra examples...: 485859 examples [02:46, 3019.08 examples/s]


Generating extra examples...: 486168 examples [02:46, 3037.31 examples/s]


Generating extra examples...: 486477 examples [02:46, 3050.35 examples/s]


Generating extra examples...: 486783 examples [02:46, 3042.99 examples/s]


Generating extra examples...: 487088 examples [02:46, 3037.45 examples/s]


Generating extra examples...: 487392 examples [02:46, 3037.96 examples/s]


Generating extra examples...: 487700 examples [02:46, 3049.79 examples/s]


Generating extra examples...: 488005 examples [02:46, 3047.17 examples/s]


Generating extra examples...: 488312 examples [02:47, 3052.04 examples/s]


Generating extra examples...: 488620 examples [02:47, 3057.98 examples/s]


Generating extra examples...: 488926 examples [02:47, 3051.39 examples/s]


Generating extra examples...: 489234 examples [02:47, 3057.38 examples/s]


Generating extra examples...: 489540 examples [02:47, 3051.44 examples/s]


Generating extra examples...: 489846 examples [02:47, 3014.21 examples/s]


Generating extra examples...: 490158 examples [02:47, 3045.03 examples/s]


Generating extra examples...: 490481 examples [02:47, 3098.50 examples/s]


Generating extra examples...: 490803 examples [02:47, 3133.97 examples/s]


Generating extra examples...: 491119 examples [02:47, 3139.61 examples/s]


Generating extra examples...: 491437 examples [02:48, 3150.16 examples/s]


Generating extra examples...: 491756 examples [02:48, 3160.18 examples/s]


Generating extra examples...: 492079 examples [02:48, 3179.70 examples/s]


Generating extra examples...: 492398 examples [02:48, 3180.98 examples/s]


Generating extra examples...: 492724 examples [02:48, 3203.07 examples/s]


Generating extra examples...: 493045 examples [02:48, 3174.97 examples/s]


Generating extra examples...: 493363 examples [02:48, 3154.70 examples/s]


Generating extra examples...: 493679 examples [02:48, 3122.15 examples/s]


Generating extra examples...: 493992 examples [02:48, 3111.34 examples/s]


Generating extra examples...: 494306 examples [02:48, 3116.83 examples/s]


Generating extra examples...: 494618 examples [02:49, 3091.50 examples/s]


Generating extra examples...: 494928 examples [02:49, 3084.26 examples/s]


Generating extra examples...: 495237 examples [02:49, 3082.98 examples/s]


Generating extra examples...: 495546 examples [02:49, 3083.49 examples/s]


Generating extra examples...: 495855 examples [02:49, 3084.48 examples/s]


Generating extra examples...: 496166 examples [02:49, 3091.24 examples/s]


Generating extra examples...: 496483 examples [02:49, 3113.98 examples/s]


Generating extra examples...: 496803 examples [02:49, 3138.42 examples/s]


Generating extra examples...: 497120 examples [02:49, 3146.44 examples/s]


Generating extra examples...: 497435 examples [02:49, 3135.39 examples/s]


Generating extra examples...: 497749 examples [02:50, 3108.32 examples/s]


Generating extra examples...: 498063 examples [02:50, 3116.29 examples/s]


Generating extra examples...: 498375 examples [02:50, 3094.78 examples/s]


Generating extra examples...: 498685 examples [02:50, 3092.44 examples/s]


Generating extra examples...: 498995 examples [02:50, 3078.34 examples/s]


Generating extra examples...: 499303 examples [02:50, 2967.14 examples/s]


Generating extra examples...: 499606 examples [02:50, 2984.54 examples/s]


Generating extra examples...: 499908 examples [02:50, 2994.61 examples/s]


Generating extra examples...: 500215 examples [02:50, 3014.15 examples/s]


Generating extra examples...: 500520 examples [02:50, 3022.60 examples/s]


Generating extra examples...: 500829 examples [02:51, 3040.48 examples/s]


Generating extra examples...: 501134 examples [02:51, 3036.14 examples/s]


Generating extra examples...: 501444 examples [02:51, 3054.87 examples/s]


Generating extra examples...: 501754 examples [02:51, 3066.15 examples/s]


Generating extra examples...: 502065 examples [02:51, 3077.98 examples/s]


Generating extra examples...: 502373 examples [02:51, 3061.24 examples/s]


Generating extra examples...: 502681 examples [02:51, 3063.84 examples/s]


Generating extra examples...: 502992 examples [02:51, 3074.16 examples/s]


Generating extra examples...: 503301 examples [02:51, 3078.35 examples/s]


Generating extra examples...: 503609 examples [02:51, 3075.18 examples/s]


Generating extra examples...: 503918 examples [02:52, 3078.33 examples/s]


Generating extra examples...: 504226 examples [02:52, 3073.70 examples/s]


Generating extra examples...: 504536 examples [02:52, 3078.69 examples/s]


Generating extra examples...: 504844 examples [02:52, 3075.69 examples/s]


Generating extra examples...: 505152 examples [02:52, 3066.89 examples/s]


Generating extra examples...: 505459 examples [02:52, 3005.89 examples/s]


Generating extra examples...: 505771 examples [02:52, 3036.23 examples/s]


Generating extra examples...: 506075 examples [02:52, 3033.61 examples/s]


Generating extra examples...: 506379 examples [02:52, 3035.08 examples/s]


Generating extra examples...: 506686 examples [02:52, 3042.96 examples/s]


Generating extra examples...: 506993 examples [02:53, 3050.42 examples/s]


Generating extra examples...: 507301 examples [02:53, 3056.82 examples/s]


Generating extra examples...: 507611 examples [02:53, 3068.63 examples/s]


Generating extra examples...: 507929 examples [02:53, 3100.08 examples/s]


Generating extra examples...: 508245 examples [02:53, 3117.30 examples/s]


Generating extra examples...: 508559 examples [02:53, 3122.17 examples/s]


Generating extra examples...: 508872 examples [02:53, 3114.02 examples/s]


Generating extra examples...: 509189 examples [02:53, 3129.72 examples/s]


Generating extra examples...: 509505 examples [02:53, 3137.10 examples/s]


Generating extra examples...: 509819 examples [02:53, 3134.02 examples/s]


Generating extra examples...: 510133 examples [02:54, 3110.79 examples/s]


Generating extra examples...: 510445 examples [02:54, 3104.52 examples/s]


Generating extra examples...: 510756 examples [02:54, 3103.03 examples/s]


Generating extra examples...: 511067 examples [02:54, 3089.46 examples/s]


Generating extra examples...: 511381 examples [02:54, 3102.10 examples/s]


Generating extra examples...: 511692 examples [02:54, 3087.07 examples/s]


Generating extra examples...: 512001 examples [02:54, 3080.52 examples/s]


Generating extra examples...: 512310 examples [02:54, 3076.25 examples/s]


Generating extra examples...: 512618 examples [02:54, 3074.40 examples/s]


Generating extra examples...: 512926 examples [02:55, 3072.05 examples/s]


Generating extra examples...: 513234 examples [02:55, 3047.28 examples/s]


Generating extra examples...: 513543 examples [02:55, 3059.07 examples/s]


Generating extra examples...: 513850 examples [02:55, 3060.12 examples/s]


Generating extra examples...: 514159 examples [02:55, 3065.74 examples/s]


Generating extra examples...: 514469 examples [02:55, 3073.37 examples/s]


Generating extra examples...: 514777 examples [02:55, 3068.23 examples/s]


Generating extra examples...: 515084 examples [02:55, 3065.74 examples/s]


Generating extra examples...: 515391 examples [02:55, 3064.13 examples/s]


Generating extra examples...: 515698 examples [02:55, 3060.24 examples/s]


Generating extra examples...: 516005 examples [02:56, 3061.53 examples/s]


Generating extra examples...: 516315 examples [02:56, 3070.58 examples/s]


Generating extra examples...: 516625 examples [02:56, 3079.07 examples/s]


Generating extra examples...: 516934 examples [02:56, 3080.63 examples/s]


Generating extra examples...: 517244 examples [02:56, 3084.98 examples/s]


Generating extra examples...: 517556 examples [02:56, 3093.73 examples/s]


Generating extra examples...: 517866 examples [02:56, 3076.82 examples/s]


Generating extra examples...: 518174 examples [02:56, 3059.08 examples/s]


Generating extra examples...: 518481 examples [02:56, 3061.43 examples/s]


Generating extra examples...: 518788 examples [02:56, 3040.64 examples/s]


Generating extra examples...: 519098 examples [02:57, 3057.20 examples/s]


Generating extra examples...: 519404 examples [02:57, 3042.61 examples/s]


Generating extra examples...: 519710 examples [02:57, 3046.93 examples/s]


Generating extra examples...: 520018 examples [02:57, 3056.56 examples/s]


Generating extra examples...: 520324 examples [02:57, 3053.01 examples/s]


Generating extra examples...: 520630 examples [02:57, 3048.37 examples/s]


Generating extra examples...: 520935 examples [02:57, 3038.49 examples/s]


Generating extra examples...: 521239 examples [02:57, 3019.94 examples/s]


Generating extra examples...: 521552 examples [02:57, 3050.98 examples/s]


Generating extra examples...: 521864 examples [02:57, 3070.02 examples/s]


Generating extra examples...: 522177 examples [02:58, 3085.38 examples/s]


Generating extra examples...: 522492 examples [02:58, 3104.07 examples/s]


Generating extra examples...: 522808 examples [02:58, 3118.82 examples/s]


Generating extra examples...: 523120 examples [02:58, 3118.63 examples/s]


Generating extra examples...: 523435 examples [02:58, 3126.02 examples/s]


Generating extra examples...: 523749 examples [02:58, 3128.49 examples/s]


Generating extra examples...: 524062 examples [02:58, 3115.03 examples/s]


Generating extra examples...: 524374 examples [02:58, 3034.47 examples/s]


Generating extra examples...: 524681 examples [02:58, 3041.93 examples/s]


Generating extra examples...: 524986 examples [02:58, 3041.16 examples/s]


Generating extra examples...: 525298 examples [02:59, 3062.18 examples/s]


Generating extra examples...: 525605 examples [02:59, 3062.70 examples/s]


Generating extra examples...: 525914 examples [02:59, 3068.12 examples/s]


Generating extra examples...: 526221 examples [02:59, 3064.04 examples/s]


Generating extra examples...: 526530 examples [02:59, 3068.74 examples/s]


Generating extra examples...: 526840 examples [02:59, 3077.81 examples/s]


Generating extra examples...: 527153 examples [02:59, 3090.63 examples/s]


Generating extra examples...: 527466 examples [02:59, 3101.31 examples/s]


Generating extra examples...: 527777 examples [02:59, 3103.74 examples/s]


Generating extra examples...: 528088 examples [02:59, 3092.13 examples/s]


Generating extra examples...: 528399 examples [03:00, 3095.12 examples/s]


Generating extra examples...: 528709 examples [03:00, 3090.46 examples/s]


Generating extra examples...: 529019 examples [03:00, 3080.55 examples/s]


Generating extra examples...: 529328 examples [03:00, 3076.33 examples/s]


Generating extra examples...: 529636 examples [03:00, 3058.18 examples/s]


Generating extra examples...: 529942 examples [03:00, 3052.49 examples/s]


Generating extra examples...: 530250 examples [03:00, 3057.80 examples/s]


Generating extra examples...: 530556 examples [03:00, 2948.93 examples/s]


Generating extra examples...: 530864 examples [03:00, 2985.55 examples/s]


                                                                         


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:   0%|          | 0/531131 [00:00<?, ? examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:   0%|          | 1/531131 [00:00<72:55:03,  2.02 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:   4%|▍         | 22591/531131 [00:00<00:10, 50654.52 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:   8%|▊         | 45011/531131 [00:00<00:05, 92757.38 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  13%|█▎        | 67874/531131 [00:00<00:03, 127724.92 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  17%|█▋        | 90711/531131 [00:00<00:02, 154779.72 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  21%|██▏       | 113495/531131 [00:00<00:02, 175050.56 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  26%|██▌       | 136406/531131 [00:01<00:02, 190392.06 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  30%|███       | 159488/531131 [00:01<00:01, 202051.75 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  34%|███▍      | 182508/531131 [00:01<00:01, 210264.38 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  39%|███▊      | 205403/531131 [00:01<00:01, 215755.99 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  43%|████▎     | 228600/531131 [00:01<00:01, 220550.22 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  47%|████▋     | 252049/531131 [00:01<00:01, 224688.97 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  52%|█████▏    | 275587/531131 [00:01<00:01, 227871.19 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  56%|█████▋    | 298974/531131 [00:01<00:01, 229658.85 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  61%|██████    | 322205/531131 [00:01<00:00, 228668.24 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  65%|██████▌   | 345622/531131 [00:01<00:00, 230300.01 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  69%|██████▉   | 368975/531131 [00:02<00:00, 231259.68 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  74%|███████▍  | 392252/531131 [00:02<00:00, 231706.82 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  78%|███████▊  | 415488/531131 [00:02<00:00, 231347.66 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  83%|████████▎ | 438669/531131 [00:02<00:00, 231246.95 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  87%|████████▋ | 461826/531131 [00:02<00:00, 231168.26 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  91%|█████████▏| 485177/531131 [00:02<00:00, 231861.45 examples/s]


Shuffling /home/runner/tensorflow_datasets/svhn_cropped/3.0.0.incompleteMZ04LU/svhn_cropped-extra.tfrecord*...:  96%|█████████▌| 508496/531131 [00:02<00:00, 232253.16 examples/s]


                                                                                                                                                                                  

Generating splits...: 100%|██████████| 3/3 [03:37<00:00, 92.40s/ splits]
                                                                        

Dataset svhn_cropped downloaded and prepared to /home/runner/tensorflow_datasets/svhn_cropped/3.0.0. Subsequent calls will reuse this data.
Training on 73257 samples of input shape (32, 32, 3), belonging to 10 classes
_images/a1a9ff8db7d68905f6309d8ce2410bf567f892a55f331ffe984d8b53f422fd0f.png

We’ll use TensorFlow Dataset to prepare our datasets. We’ll fetch the training dataset as tuples, and the test dataset as numpy arrays

def preprocess(image, label, nclasses=10):
    image = tf.cast(image, tf.float32) / 255.0
    label = tf.one_hot(tf.squeeze(label), nclasses)
    return image, label
batch_size = 1024

train_data = ds_train.map(preprocess, n_classes)  # Get dataset as image and one-hot encoded labels, divided by max RGB
train_data = train_data.shuffle(4096).batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE)

for example in train_data.take(1):
    break
print("X train batch shape = {}, Y train batch shape = {} ".format(example[0].shape, example[1].shape))

val_data = ds_val.map(preprocess, n_classes)
val_data = val_data.batch(batch_size)
val_data = val_data.prefetch(tf.data.experimental.AUTOTUNE)

# For  testing, we get the full dataset in memory as it's rather small.
# We fetch it as numpy arrays to have access to labels and images separately
X_test, Y_test = tfds.as_numpy(tfds.load('svhn_cropped', split='test', batch_size=-1, as_supervised=True))
X_test, Y_test = preprocess(X_test, Y_test, nclasses=n_classes)
print("X test batch shape = {}, Y test batch shape = {} ".format(X_test.shape, Y_test.shape))
X train batch shape = (1024, 32, 32, 3), Y train batch shape = (1024, 10) 
X test batch shape = (26032, 32, 32, 3), Y test batch shape = (26032, 10) 

Defining the model#

We then need to define a model. For the lowest possible latency, each layer should have a maximum number of trainable parameters of 4096. This is due to fixed limits in the Vivado compiler, beyond which maximally unrolled (=parallel) compilation will fail. This will allow us to use strategy = 'latency' in the hls4ml part, rather than strategy = 'resource', in turn resulting in lower latency

from tensorflow.keras.layers import Input
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.regularizers import l1
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

filters_per_conv_layer = [16, 16, 24]
neurons_per_dense_layer = [42, 64]

x = x_in = Input(input_shape)

for i, f in enumerate(filters_per_conv_layer):
    print(('Adding convolutional block {} with N={} filters').format(i, f))
    x = Conv2D(
        int(f),
        kernel_size=(3, 3),
        strides=(1, 1),
        kernel_initializer='lecun_uniform',
        kernel_regularizer=l1(0.0001),
        use_bias=False,
        name='conv_{}'.format(i),
    )(x)
    x = BatchNormalization(name='bn_conv_{}'.format(i))(x)
    x = Activation('relu', name='conv_act_%i' % i)(x)
    x = MaxPooling2D(pool_size=(2, 2), name='pool_{}'.format(i))(x)
x = Flatten()(x)

for i, n in enumerate(neurons_per_dense_layer):
    print(('Adding dense block {} with N={} neurons').format(i, n))
    x = Dense(n, kernel_initializer='lecun_uniform', kernel_regularizer=l1(0.0001), name='dense_%i' % i, use_bias=False)(x)
    x = BatchNormalization(name='bn_dense_{}'.format(i))(x)
    x = Activation('relu', name='dense_act_%i' % i)(x)
x = Dense(int(n_classes), name='output_dense')(x)
x_out = Activation('softmax', name='output_softmax')(x)

model = Model(inputs=[x_in], outputs=[x_out], name='keras_baseline')

model.summary()
Adding convolutional block 0 with N=16 filters
Adding convolutional block 1 with N=16 filters
Adding convolutional block 2 with N=24 filters
Adding dense block 0 with N=42 neurons
Adding dense block 1 with N=64 neurons
Model: "keras_baseline"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 32, 32, 3)]       0         
                                                                 
 conv_0 (Conv2D)             (None, 30, 30, 16)        432       
                                                                 
 bn_conv_0 (BatchNormalizati  (None, 30, 30, 16)       64        
 on)                                                             
                                                                 
 conv_act_0 (Activation)     (None, 30, 30, 16)        0         
                                                                 
 pool_0 (MaxPooling2D)       (None, 15, 15, 16)        0         
                                                                 
 conv_1 (Conv2D)             (None, 13, 13, 16)        2304      
                                                                 
 bn_conv_1 (BatchNormalizati  (None, 13, 13, 16)       64        
 on)                                                             
                                                                 
 conv_act_1 (Activation)     (None, 13, 13, 16)        0         
                                                                 
 pool_1 (MaxPooling2D)       (None, 6, 6, 16)          0         
                                                                 
 conv_2 (Conv2D)             (None, 4, 4, 24)          3456      
                                                                 
 bn_conv_2 (BatchNormalizati  (None, 4, 4, 24)         96        
 on)                                                             
                                                                 
 conv_act_2 (Activation)     (None, 4, 4, 24)          0         
                                                                 
 pool_2 (MaxPooling2D)       (None, 2, 2, 24)          0         
                                                                 
 flatten (Flatten)           (None, 96)                0         
                                                                 
 dense_0 (Dense)             (None, 42)                4032      
                                                                 
 bn_dense_0 (BatchNormalizat  (None, 42)               168       
 ion)                                                            
                                                                 
 dense_act_0 (Activation)    (None, 42)                0         
                                                                 
 dense_1 (Dense)             (None, 64)                2688      
                                                                 
 bn_dense_1 (BatchNormalizat  (None, 64)               256       
 ion)                                                            
                                                                 
 dense_act_1 (Activation)    (None, 64)                0         
                                                                 
 output_dense (Dense)        (None, 10)                650       
                                                                 
 output_softmax (Activation)  (None, 10)               0         
                                                                 
=================================================================
Total params: 14,210
Trainable params: 13,886
Non-trainable params: 324
_________________________________________________________________

Lets check if this model can be implemented completely unrolled (=parallel)

for layer in model.layers:
    if layer.__class__.__name__ in ['Conv2D', 'Dense']:
        w = layer.get_weights()[0]
        layersize = np.prod(w.shape)
        print("{}: {}".format(layer.name, layersize))  # 0 = weights, 1 = biases
        if layersize > 4096:  # assuming that shape[0] is batch, i.e., 'None'
            print("Layer {} is too large ({}), are you sure you want to train?".format(layer.name, layersize))
conv_0: 432
conv_1: 2304
conv_2: 3456
dense_0: 4032
dense_1: 2688
output_dense: 640

Looks good! It’s below the Vivado-enforced unroll limit of 4096.

Prune dense and convolutional layers#

Since we’ve seen in the previous notebooks that pruning can be done at no accuracy cost, let’s prune the convolutional and dense layers to 50% sparsity, skipping the output layer

import tensorflow_model_optimization as tfmot
from tensorflow_model_optimization.sparsity import keras as sparsity
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_callbacks

NSTEPS = int(train_size * 0.9) // batch_size  # 90% train, 10% validation in 10-fold cross validation
print('Number of training steps per epoch is {}'.format(NSTEPS))


# Prune all convolutional and dense layers gradually from 0 to 50% sparsity every 2 epochs,
# ending by the 10th epoch
def pruneFunction(layer):
    pruning_params = {
        'pruning_schedule': sparsity.PolynomialDecay(
            initial_sparsity=0.0, final_sparsity=0.50, begin_step=NSTEPS * 2, end_step=NSTEPS * 10, frequency=NSTEPS
        )
    }
    if isinstance(layer, tf.keras.layers.Conv2D):
        return tfmot.sparsity.keras.prune_low_magnitude(layer, **pruning_params)
    if isinstance(layer, tf.keras.layers.Dense) and layer.name != 'output_dense':
        return tfmot.sparsity.keras.prune_low_magnitude(layer, **pruning_params)
    return layer


model_pruned = tf.keras.models.clone_model(model, clone_function=pruneFunction)
Number of training steps per epoch is 64
WARNING:tensorflow:From /home/runner/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089
WARNING:tensorflow:From /home/runner/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089

Train baseline#

We’re now ready to train the model! We defined the batch size and n epochs above. We won’t use callbacks that store the best weights only, since this might select a weight configuration that has not yet reached 50% sparsity.

train = True  # True if you want to retrain, false if you want to load a previsously trained model

n_epochs = 30

if train:
    LOSS = tf.keras.losses.CategoricalCrossentropy()
    OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=3e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True)

    model_pruned.compile(loss=LOSS, optimizer=OPTIMIZER, metrics=["accuracy"])

    callbacks = [
        tf.keras.callbacks.EarlyStopping(patience=10, verbose=1),
        tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1),
        pruning_callbacks.UpdatePruningStep(),
    ]

    start = time.time()
    model_pruned.fit(train_data, epochs=n_epochs, validation_data=val_data, callbacks=callbacks)
    end = time.time()

    print('It took {} minutes to train Keras model'.format((end - start) / 60.0))

    model_pruned.save('pruned_cnn_model.h5')

else:
    from qkeras.utils import _add_supported_quantized_objects
    from tensorflow_model_optimization.python.core.sparsity.keras import pruning_wrapper

    co = {}
    _add_supported_quantized_objects(co)
    co['PruneLowMagnitude'] = pruning_wrapper.PruneLowMagnitude
    model_pruned = tf.keras.models.load_model('pruned_cnn_model.h5', custom_objects=co)
Epoch 1/30
 1/65 [..............................] - ETA: 3:30 - loss: 2.9483 - accuracy: 0.0830

 2/65 [..............................] - ETA: 16s - loss: 2.8612 - accuracy: 0.0840 

 3/65 [>.............................] - ETA: 16s - loss: 2.7905 - accuracy: 0.0892

 4/65 [>.............................] - ETA: 16s - loss: 2.7489 - accuracy: 0.0916

 5/65 [=>............................] - ETA: 15s - loss: 2.7072 - accuracy: 0.0959

 6/65 [=>............................] - ETA: 15s - loss: 2.6668 - accuracy: 0.1040

 7/65 [==>...........................] - ETA: 15s - loss: 2.6295 - accuracy: 0.1123

 8/65 [==>...........................] - ETA: 14s - loss: 2.5970 - accuracy: 0.1244

 9/65 [===>..........................] - ETA: 14s - loss: 2.5680 - accuracy: 0.1373

10/65 [===>..........................] - ETA: 14s - loss: 2.5357 - accuracy: 0.1486

11/65 [====>.........................] - ETA: 13s - loss: 2.5058 - accuracy: 0.1604

12/65 [====>.........................] - ETA: 13s - loss: 2.4774 - accuracy: 0.1712

13/65 [=====>........................] - ETA: 13s - loss: 2.4502 - accuracy: 0.1831

14/65 [=====>........................] - ETA: 13s - loss: 2.4237 - accuracy: 0.1931

15/65 [=====>........................] - ETA: 12s - loss: 2.4008 - accuracy: 0.2013

16/65 [======>.......................] - ETA: 12s - loss: 2.3788 - accuracy: 0.2089

17/65 [======>.......................] - ETA: 12s - loss: 2.3542 - accuracy: 0.2183

18/65 [=======>......................] - ETA: 12s - loss: 2.3312 - accuracy: 0.2274

19/65 [=======>......................] - ETA: 11s - loss: 2.3104 - accuracy: 0.2355

20/65 [========>.....................] - ETA: 11s - loss: 2.2913 - accuracy: 0.2436

21/65 [========>.....................] - ETA: 11s - loss: 2.2717 - accuracy: 0.2515

22/65 [=========>....................] - ETA: 11s - loss: 2.2500 - accuracy: 0.2595

23/65 [=========>....................] - ETA: 10s - loss: 2.2308 - accuracy: 0.2663

24/65 [==========>...................] - ETA: 10s - loss: 2.2122 - accuracy: 0.2731

25/65 [==========>...................] - ETA: 10s - loss: 2.1938 - accuracy: 0.2798

26/65 [===========>..................] - ETA: 9s - loss: 2.1758 - accuracy: 0.2868 

27/65 [===========>..................] - ETA: 9s - loss: 2.1590 - accuracy: 0.2928

28/65 [===========>..................] - ETA: 9s - loss: 2.1415 - accuracy: 0.2991

29/65 [============>.................] - ETA: 9s - loss: 2.1239 - accuracy: 0.3064

30/65 [============>.................] - ETA: 8s - loss: 2.1063 - accuracy: 0.3138

31/65 [=============>................] - ETA: 8s - loss: 2.0883 - accuracy: 0.3213

32/65 [=============>................] - ETA: 8s - loss: 2.0730 - accuracy: 0.3277

33/65 [==============>...............] - ETA: 8s - loss: 2.0573 - accuracy: 0.3342

34/65 [==============>...............] - ETA: 7s - loss: 2.0428 - accuracy: 0.3402

35/65 [===============>..............] - ETA: 7s - loss: 2.0257 - accuracy: 0.3468

36/65 [===============>..............] - ETA: 7s - loss: 2.0111 - accuracy: 0.3521

37/65 [================>.............] - ETA: 7s - loss: 1.9958 - accuracy: 0.3583

38/65 [================>.............] - ETA: 6s - loss: 1.9794 - accuracy: 0.3648

39/65 [=================>............] - ETA: 6s - loss: 1.9634 - accuracy: 0.3712

40/65 [=================>............] - ETA: 6s - loss: 1.9489 - accuracy: 0.3765

41/65 [=================>............] - ETA: 6s - loss: 1.9343 - accuracy: 0.3824

42/65 [==================>...........] - ETA: 5s - loss: 1.9192 - accuracy: 0.3882

43/65 [==================>...........] - ETA: 5s - loss: 1.9049 - accuracy: 0.3936

44/65 [===================>..........] - ETA: 5s - loss: 1.8911 - accuracy: 0.3986

45/65 [===================>..........] - ETA: 5s - loss: 1.8773 - accuracy: 0.4041

46/65 [====================>.........] - ETA: 4s - loss: 1.8642 - accuracy: 0.4089

47/65 [====================>.........] - ETA: 4s - loss: 1.8506 - accuracy: 0.4144

48/65 [=====================>........] - ETA: 4s - loss: 1.8366 - accuracy: 0.4198

49/65 [=====================>........] - ETA: 4s - loss: 1.8225 - accuracy: 0.4250

50/65 [======================>.......] - ETA: 3s - loss: 1.8089 - accuracy: 0.4301

51/65 [======================>.......] - ETA: 3s - loss: 1.7964 - accuracy: 0.4348

52/65 [=======================>......] - ETA: 3s - loss: 1.7839 - accuracy: 0.4395

53/65 [=======================>......] - ETA: 3s - loss: 1.7716 - accuracy: 0.4441

54/65 [=======================>......] - ETA: 2s - loss: 1.7586 - accuracy: 0.4489

55/65 [========================>.....] - ETA: 2s - loss: 1.7462 - accuracy: 0.4532

56/65 [========================>.....] - ETA: 2s - loss: 1.7346 - accuracy: 0.4577

57/65 [=========================>....] - ETA: 2s - loss: 1.7226 - accuracy: 0.4625

58/65 [=========================>....] - ETA: 1s - loss: 1.7105 - accuracy: 0.4671

59/65 [==========================>...] - ETA: 1s - loss: 1.6998 - accuracy: 0.4709

60/65 [==========================>...] - ETA: 1s - loss: 1.6887 - accuracy: 0.4749

61/65 [===========================>..] - ETA: 1s - loss: 1.6775 - accuracy: 0.4791

62/65 [===========================>..] - ETA: 0s - loss: 1.6667 - accuracy: 0.4828

63/65 [============================>.] - ETA: 0s - loss: 1.6552 - accuracy: 0.4870

64/65 [============================>.] - ETA: 0s - loss: 1.6448 - accuracy: 0.4907

65/65 [==============================] - ETA: 0s - loss: 1.6408 - accuracy: 0.4923

65/65 [==============================] - 20s 261ms/step - loss: 1.6408 - accuracy: 0.4923 - val_loss: 2.2242 - val_accuracy: 0.2128 - lr: 0.0030
Epoch 2/30
 1/65 [..............................] - ETA: 31s - loss: 0.9862 - accuracy: 0.7363

 2/65 [..............................] - ETA: 15s - loss: 1.0174 - accuracy: 0.7266

 3/65 [>.............................] - ETA: 15s - loss: 0.9867 - accuracy: 0.7363

 4/65 [>.............................] - ETA: 15s - loss: 0.9699 - accuracy: 0.7378

 5/65 [=>............................] - ETA: 15s - loss: 0.9535 - accuracy: 0.7406

 6/65 [=>............................] - ETA: 14s - loss: 0.9480 - accuracy: 0.7415

 7/65 [==>...........................] - ETA: 14s - loss: 0.9423 - accuracy: 0.7426

 8/65 [==>...........................] - ETA: 14s - loss: 0.9380 - accuracy: 0.7445

 9/65 [===>..........................] - ETA: 14s - loss: 0.9374 - accuracy: 0.7458

10/65 [===>..........................] - ETA: 13s - loss: 0.9364 - accuracy: 0.7477

11/65 [====>.........................] - ETA: 13s - loss: 0.9291 - accuracy: 0.7501

12/65 [====>.........................] - ETA: 13s - loss: 0.9228 - accuracy: 0.7507

13/65 [=====>........................] - ETA: 13s - loss: 0.9195 - accuracy: 0.7517

14/65 [=====>........................] - ETA: 12s - loss: 0.9119 - accuracy: 0.7538

15/65 [=====>........................] - ETA: 12s - loss: 0.9075 - accuracy: 0.7552

16/65 [======>.......................] - ETA: 12s - loss: 0.9039 - accuracy: 0.7562

17/65 [======>.......................] - ETA: 12s - loss: 0.9008 - accuracy: 0.7574

18/65 [=======>......................] - ETA: 11s - loss: 0.8986 - accuracy: 0.7584

19/65 [=======>......................] - ETA: 11s - loss: 0.8955 - accuracy: 0.7595

20/65 [========>.....................] - ETA: 11s - loss: 0.8945 - accuracy: 0.7597

21/65 [========>.....................] - ETA: 11s - loss: 0.8890 - accuracy: 0.7606

22/65 [=========>....................] - ETA: 10s - loss: 0.8876 - accuracy: 0.7606

23/65 [=========>....................] - ETA: 10s - loss: 0.8839 - accuracy: 0.7624

24/65 [==========>...................] - ETA: 10s - loss: 0.8818 - accuracy: 0.7635

25/65 [==========>...................] - ETA: 10s - loss: 0.8769 - accuracy: 0.7649

26/65 [===========>..................] - ETA: 9s - loss: 0.8730 - accuracy: 0.7660 

27/65 [===========>..................] - ETA: 9s - loss: 0.8688 - accuracy: 0.7672

28/65 [===========>..................] - ETA: 9s - loss: 0.8684 - accuracy: 0.7669

29/65 [============>.................] - ETA: 9s - loss: 0.8658 - accuracy: 0.7676

30/65 [============>.................] - ETA: 8s - loss: 0.8604 - accuracy: 0.7696

31/65 [=============>................] - ETA: 8s - loss: 0.8589 - accuracy: 0.7700

32/65 [=============>................] - ETA: 8s - loss: 0.8581 - accuracy: 0.7708

33/65 [==============>...............] - ETA: 8s - loss: 0.8571 - accuracy: 0.7712

34/65 [==============>...............] - ETA: 7s - loss: 0.8547 - accuracy: 0.7720

35/65 [===============>..............] - ETA: 7s - loss: 0.8509 - accuracy: 0.7732

36/65 [===============>..............] - ETA: 7s - loss: 0.8476 - accuracy: 0.7742

37/65 [================>.............] - ETA: 7s - loss: 0.8449 - accuracy: 0.7753

38/65 [================>.............] - ETA: 6s - loss: 0.8428 - accuracy: 0.7761

39/65 [=================>............] - ETA: 6s - loss: 0.8400 - accuracy: 0.7770

40/65 [=================>............] - ETA: 6s - loss: 0.8371 - accuracy: 0.7779

41/65 [=================>............] - ETA: 6s - loss: 0.8347 - accuracy: 0.7789

42/65 [==================>...........] - ETA: 5s - loss: 0.8319 - accuracy: 0.7797

43/65 [==================>...........] - ETA: 5s - loss: 0.8288 - accuracy: 0.7806

44/65 [===================>..........] - ETA: 5s - loss: 0.8270 - accuracy: 0.7811

45/65 [===================>..........] - ETA: 5s - loss: 0.8250 - accuracy: 0.7817

46/65 [====================>.........] - ETA: 4s - loss: 0.8231 - accuracy: 0.7821

47/65 [====================>.........] - ETA: 4s - loss: 0.8205 - accuracy: 0.7827

48/65 [=====================>........] - ETA: 4s - loss: 0.8178 - accuracy: 0.7835

49/65 [=====================>........] - ETA: 4s - loss: 0.8147 - accuracy: 0.7849

50/65 [======================>.......] - ETA: 3s - loss: 0.8132 - accuracy: 0.7853

51/65 [======================>.......] - ETA: 3s - loss: 0.8107 - accuracy: 0.7861

52/65 [=======================>......] - ETA: 3s - loss: 0.8083 - accuracy: 0.7871

53/65 [=======================>......] - ETA: 3s - loss: 0.8053 - accuracy: 0.7879

54/65 [=======================>......] - ETA: 2s - loss: 0.8024 - accuracy: 0.7888

55/65 [========================>.....] - ETA: 2s - loss: 0.8005 - accuracy: 0.7892

56/65 [========================>.....] - ETA: 2s - loss: 0.7988 - accuracy: 0.7898

57/65 [=========================>....] - ETA: 2s - loss: 0.7974 - accuracy: 0.7903

58/65 [=========================>....] - ETA: 1s - loss: 0.7960 - accuracy: 0.7907

59/65 [==========================>...] - ETA: 1s - loss: 0.7932 - accuracy: 0.7917

60/65 [==========================>...] - ETA: 1s - loss: 0.7920 - accuracy: 0.7920

61/65 [===========================>..] - ETA: 1s - loss: 0.7902 - accuracy: 0.7925

62/65 [===========================>..] - ETA: 0s - loss: 0.7877 - accuracy: 0.7930

63/65 [============================>.] - ETA: 0s - loss: 0.7856 - accuracy: 0.7936

64/65 [============================>.] - ETA: 0s - loss: 0.7834 - accuracy: 0.7943

65/65 [==============================] - ETA: 0s - loss: 0.7833 - accuracy: 0.7943

65/65 [==============================] - 17s 260ms/step - loss: 0.7833 - accuracy: 0.7943 - val_loss: 1.4600 - val_accuracy: 0.5364 - lr: 0.0030
Epoch 3/30
 1/65 [..............................] - ETA: 30s - loss: 0.6394 - accuracy: 0.8535

 2/65 [..............................] - ETA: 17s - loss: 0.7019 - accuracy: 0.8257

 3/65 [>.............................] - ETA: 16s - loss: 0.6744 - accuracy: 0.8281

 4/65 [>.............................] - ETA: 16s - loss: 0.6754 - accuracy: 0.8264

 5/65 [=>............................] - ETA: 15s - loss: 0.6759 - accuracy: 0.8270

 6/65 [=>............................] - ETA: 15s - loss: 0.6661 - accuracy: 0.8302

 7/65 [==>...........................] - ETA: 15s - loss: 0.6701 - accuracy: 0.8299

 8/65 [==>...........................] - ETA: 14s - loss: 0.6666 - accuracy: 0.8303

 9/65 [===>..........................] - ETA: 14s - loss: 0.6676 - accuracy: 0.8301

10/65 [===>..........................] - ETA: 14s - loss: 0.6659 - accuracy: 0.8307

11/65 [====>.........................] - ETA: 13s - loss: 0.6645 - accuracy: 0.8316

12/65 [====>.........................] - ETA: 13s - loss: 0.6611 - accuracy: 0.8323

13/65 [=====>........................] - ETA: 13s - loss: 0.6589 - accuracy: 0.8326

14/65 [=====>........................] - ETA: 13s - loss: 0.6583 - accuracy: 0.8322

15/65 [=====>........................] - ETA: 12s - loss: 0.6551 - accuracy: 0.8337

16/65 [======>.......................] - ETA: 12s - loss: 0.6520 - accuracy: 0.8345

17/65 [======>.......................] - ETA: 12s - loss: 0.6507 - accuracy: 0.8344

18/65 [=======>......................] - ETA: 12s - loss: 0.6505 - accuracy: 0.8337

19/65 [=======>......................] - ETA: 11s - loss: 0.6492 - accuracy: 0.8340

20/65 [========>.....................] - ETA: 11s - loss: 0.6483 - accuracy: 0.8346

21/65 [========>.....................] - ETA: 11s - loss: 0.6482 - accuracy: 0.8345

22/65 [=========>....................] - ETA: 10s - loss: 0.6445 - accuracy: 0.8355

23/65 [=========>....................] - ETA: 10s - loss: 0.6437 - accuracy: 0.8355

24/65 [==========>...................] - ETA: 10s - loss: 0.6439 - accuracy: 0.8358

25/65 [==========>...................] - ETA: 10s - loss: 0.6413 - accuracy: 0.8366

26/65 [===========>..................] - ETA: 9s - loss: 0.6419 - accuracy: 0.8367 

27/65 [===========>..................] - ETA: 9s - loss: 0.6409 - accuracy: 0.8370

28/65 [===========>..................] - ETA: 9s - loss: 0.6416 - accuracy: 0.8369

29/65 [============>.................] - ETA: 9s - loss: 0.6419 - accuracy: 0.8370

30/65 [============>.................] - ETA: 8s - loss: 0.6410 - accuracy: 0.8374

31/65 [=============>................] - ETA: 8s - loss: 0.6400 - accuracy: 0.8373

32/65 [=============>................] - ETA: 8s - loss: 0.6396 - accuracy: 0.8376

33/65 [==============>...............] - ETA: 8s - loss: 0.6373 - accuracy: 0.8381

34/65 [==============>...............] - ETA: 7s - loss: 0.6372 - accuracy: 0.8380

35/65 [===============>..............] - ETA: 7s - loss: 0.6384 - accuracy: 0.8375

36/65 [===============>..............] - ETA: 7s - loss: 0.6386 - accuracy: 0.8377

37/65 [================>.............] - ETA: 7s - loss: 0.6373 - accuracy: 0.8382

38/65 [================>.............] - ETA: 6s - loss: 0.6362 - accuracy: 0.8385

39/65 [=================>............] - ETA: 6s - loss: 0.6359 - accuracy: 0.8383

40/65 [=================>............] - ETA: 6s - loss: 0.6337 - accuracy: 0.8390

41/65 [=================>............] - ETA: 6s - loss: 0.6339 - accuracy: 0.8387

42/65 [==================>...........] - ETA: 5s - loss: 0.6312 - accuracy: 0.8397

43/65 [==================>...........] - ETA: 5s - loss: 0.6305 - accuracy: 0.8399

44/65 [===================>..........] - ETA: 5s - loss: 0.6304 - accuracy: 0.8402

45/65 [===================>..........] - ETA: 5s - loss: 0.6311 - accuracy: 0.8401

46/65 [====================>.........] - ETA: 4s - loss: 0.6310 - accuracy: 0.8402

47/65 [====================>.........] - ETA: 4s - loss: 0.6291 - accuracy: 0.8409

48/65 [=====================>........] - ETA: 4s - loss: 0.6282 - accuracy: 0.8412

49/65 [=====================>........] - ETA: 4s - loss: 0.6275 - accuracy: 0.8417

50/65 [======================>.......] - ETA: 3s - loss: 0.6267 - accuracy: 0.8418

51/65 [======================>.......] - ETA: 3s - loss: 0.6252 - accuracy: 0.8422

52/65 [=======================>......] - ETA: 3s - loss: 0.6240 - accuracy: 0.8426

53/65 [=======================>......] - ETA: 3s - loss: 0.6230 - accuracy: 0.8429

54/65 [=======================>......] - ETA: 2s - loss: 0.6218 - accuracy: 0.8433

55/65 [========================>.....] - ETA: 2s - loss: 0.6206 - accuracy: 0.8436

56/65 [========================>.....] - ETA: 2s - loss: 0.6191 - accuracy: 0.8440

57/65 [=========================>....] - ETA: 2s - loss: 0.6182 - accuracy: 0.8443

58/65 [=========================>....] - ETA: 1s - loss: 0.6171 - accuracy: 0.8447

59/65 [==========================>...] - ETA: 1s - loss: 0.6163 - accuracy: 0.8450

60/65 [==========================>...] - ETA: 1s - loss: 0.6156 - accuracy: 0.8451

61/65 [===========================>..] - ETA: 1s - loss: 0.6153 - accuracy: 0.8453

62/65 [===========================>..] - ETA: 0s - loss: 0.6143 - accuracy: 0.8455

63/65 [============================>.] - ETA: 0s - loss: 0.6136 - accuracy: 0.8456

64/65 [============================>.] - ETA: 0s - loss: 0.6133 - accuracy: 0.8456

65/65 [==============================] - ETA: 0s - loss: 0.6137 - accuracy: 0.8454

65/65 [==============================] - 17s 258ms/step - loss: 0.6137 - accuracy: 0.8454 - val_loss: 1.1035 - val_accuracy: 0.6717 - lr: 0.0030
Epoch 4/30
 1/65 [..............................] - ETA: 30s - loss: 0.6064 - accuracy: 0.8516

 2/65 [..............................] - ETA: 16s - loss: 0.6136 - accuracy: 0.8525

 3/65 [>.............................] - ETA: 15s - loss: 0.6061 - accuracy: 0.8551

 4/65 [>.............................] - ETA: 15s - loss: 0.5929 - accuracy: 0.8567

 5/65 [=>............................] - ETA: 15s - loss: 0.5840 - accuracy: 0.8596

 6/65 [=>............................] - ETA: 15s - loss: 0.5782 - accuracy: 0.8577

 7/65 [==>...........................] - ETA: 15s - loss: 0.5811 - accuracy: 0.8580

 8/65 [==>...........................] - ETA: 14s - loss: 0.5828 - accuracy: 0.8563

 9/65 [===>..........................] - ETA: 14s - loss: 0.5739 - accuracy: 0.8585

10/65 [===>..........................] - ETA: 14s - loss: 0.5784 - accuracy: 0.8575

11/65 [====>.........................] - ETA: 13s - loss: 0.5771 - accuracy: 0.8585

12/65 [====>.........................] - ETA: 13s - loss: 0.5735 - accuracy: 0.8597

13/65 [=====>........................] - ETA: 13s - loss: 0.5721 - accuracy: 0.8591

14/65 [=====>........................] - ETA: 13s - loss: 0.5724 - accuracy: 0.8594

15/65 [=====>........................] - ETA: 12s - loss: 0.5659 - accuracy: 0.8615

16/65 [======>.......................] - ETA: 12s - loss: 0.5633 - accuracy: 0.8626

17/65 [======>.......................] - ETA: 12s - loss: 0.5639 - accuracy: 0.8620

18/65 [=======>......................] - ETA: 12s - loss: 0.5603 - accuracy: 0.8633

19/65 [=======>......................] - ETA: 11s - loss: 0.5607 - accuracy: 0.8635

20/65 [========>.....................] - ETA: 11s - loss: 0.5635 - accuracy: 0.8630

21/65 [========>.....................] - ETA: 11s - loss: 0.5628 - accuracy: 0.8627

22/65 [=========>....................] - ETA: 11s - loss: 0.5616 - accuracy: 0.8629

23/65 [=========>....................] - ETA: 10s - loss: 0.5605 - accuracy: 0.8630

24/65 [==========>...................] - ETA: 10s - loss: 0.5582 - accuracy: 0.8639

25/65 [==========>...................] - ETA: 10s - loss: 0.5563 - accuracy: 0.8644

26/65 [===========>..................] - ETA: 10s - loss: 0.5559 - accuracy: 0.8647

27/65 [===========>..................] - ETA: 9s - loss: 0.5575 - accuracy: 0.8644 

28/65 [===========>..................] - ETA: 9s - loss: 0.5576 - accuracy: 0.8641

29/65 [============>.................] - ETA: 9s - loss: 0.5576 - accuracy: 0.8638

30/65 [============>.................] - ETA: 9s - loss: 0.5574 - accuracy: 0.8636

31/65 [=============>................] - ETA: 8s - loss: 0.5575 - accuracy: 0.8635

32/65 [=============>................] - ETA: 8s - loss: 0.5586 - accuracy: 0.8633

33/65 [==============>...............] - ETA: 8s - loss: 0.5583 - accuracy: 0.8635

34/65 [==============>...............] - ETA: 8s - loss: 0.5590 - accuracy: 0.8633

35/65 [===============>..............] - ETA: 7s - loss: 0.5573 - accuracy: 0.8639

36/65 [===============>..............] - ETA: 7s - loss: 0.5576 - accuracy: 0.8637

37/65 [================>.............] - ETA: 7s - loss: 0.5561 - accuracy: 0.8640

38/65 [================>.............] - ETA: 6s - loss: 0.5570 - accuracy: 0.8635

39/65 [=================>............] - ETA: 6s - loss: 0.5555 - accuracy: 0.8636

40/65 [=================>............] - ETA: 6s - loss: 0.5555 - accuracy: 0.8635

41/65 [=================>............] - ETA: 6s - loss: 0.5553 - accuracy: 0.8635

42/65 [==================>...........] - ETA: 5s - loss: 0.5540 - accuracy: 0.8640

43/65 [==================>...........] - ETA: 5s - loss: 0.5532 - accuracy: 0.8643

44/65 [===================>..........] - ETA: 5s - loss: 0.5538 - accuracy: 0.8642

45/65 [===================>..........] - ETA: 5s - loss: 0.5529 - accuracy: 0.8643

46/65 [====================>.........] - ETA: 4s - loss: 0.5527 - accuracy: 0.8640

47/65 [====================>.........] - ETA: 4s - loss: 0.5523 - accuracy: 0.8641

48/65 [=====================>........] - ETA: 4s - loss: 0.5512 - accuracy: 0.8643

49/65 [=====================>........] - ETA: 4s - loss: 0.5507 - accuracy: 0.8644

50/65 [======================>.......] - ETA: 3s - loss: 0.5497 - accuracy: 0.8647

51/65 [======================>.......] - ETA: 3s - loss: 0.5485 - accuracy: 0.8653

52/65 [=======================>......] - ETA: 3s - loss: 0.5477 - accuracy: 0.8655

53/65 [=======================>......] - ETA: 3s - loss: 0.5477 - accuracy: 0.8654

54/65 [=======================>......] - ETA: 2s - loss: 0.5476 - accuracy: 0.8653

55/65 [========================>.....] - ETA: 2s - loss: 0.5473 - accuracy: 0.8654

56/65 [========================>.....] - ETA: 2s - loss: 0.5466 - accuracy: 0.8657

57/65 [=========================>....] - ETA: 2s - loss: 0.5446 - accuracy: 0.8662

58/65 [=========================>....] - ETA: 1s - loss: 0.5443 - accuracy: 0.8662

59/65 [==========================>...] - ETA: 1s - loss: 0.5440 - accuracy: 0.8661

60/65 [==========================>...] - ETA: 1s - loss: 0.5436 - accuracy: 0.8664

61/65 [===========================>..] - ETA: 1s - loss: 0.5444 - accuracy: 0.8661

62/65 [===========================>..] - ETA: 0s - loss: 0.5445 - accuracy: 0.8661

63/65 [============================>.] - ETA: 0s - loss: 0.5447 - accuracy: 0.8659

64/65 [============================>.] - ETA: 0s - loss: 0.5446 - accuracy: 0.8657

65/65 [==============================] - ETA: 0s - loss: 0.5445 - accuracy: 0.8658

65/65 [==============================] - 17s 262ms/step - loss: 0.5445 - accuracy: 0.8658 - val_loss: 1.0664 - val_accuracy: 0.6803 - lr: 0.0030
Epoch 5/30
 1/65 [..............................] - ETA: 32s - loss: 0.5478 - accuracy: 0.8643

 2/65 [..............................] - ETA: 16s - loss: 0.5593 - accuracy: 0.8594

 3/65 [>.............................] - ETA: 15s - loss: 0.5364 - accuracy: 0.8656

 4/65 [>.............................] - ETA: 15s - loss: 0.5490 - accuracy: 0.8657

 5/65 [=>............................] - ETA: 15s - loss: 0.5512 - accuracy: 0.8668

 6/65 [=>............................] - ETA: 15s - loss: 0.5470 - accuracy: 0.8657

 7/65 [==>...........................] - ETA: 14s - loss: 0.5436 - accuracy: 0.8655

 8/65 [==>...........................] - ETA: 14s - loss: 0.5381 - accuracy: 0.8668

 9/65 [===>..........................] - ETA: 14s - loss: 0.5331 - accuracy: 0.8681

10/65 [===>..........................] - ETA: 13s - loss: 0.5332 - accuracy: 0.8673

11/65 [====>.........................] - ETA: 13s - loss: 0.5296 - accuracy: 0.8680

12/65 [====>.........................] - ETA: 13s - loss: 0.5246 - accuracy: 0.8689

13/65 [=====>........................] - ETA: 13s - loss: 0.5223 - accuracy: 0.8701

14/65 [=====>........................] - ETA: 12s - loss: 0.5224 - accuracy: 0.8704

15/65 [=====>........................] - ETA: 12s - loss: 0.5197 - accuracy: 0.8712

16/65 [======>.......................] - ETA: 12s - loss: 0.5201 - accuracy: 0.8708

17/65 [======>.......................] - ETA: 12s - loss: 0.5181 - accuracy: 0.8709

18/65 [=======>......................] - ETA: 11s - loss: 0.5177 - accuracy: 0.8718

19/65 [=======>......................] - ETA: 11s - loss: 0.5160 - accuracy: 0.8721

20/65 [========>.....................] - ETA: 11s - loss: 0.5136 - accuracy: 0.8729

21/65 [========>.....................] - ETA: 11s - loss: 0.5135 - accuracy: 0.8727

22/65 [=========>....................] - ETA: 10s - loss: 0.5122 - accuracy: 0.8730

23/65 [=========>....................] - ETA: 10s - loss: 0.5122 - accuracy: 0.8730

24/65 [==========>...................] - ETA: 10s - loss: 0.5135 - accuracy: 0.8724

25/65 [==========>...................] - ETA: 10s - loss: 0.5130 - accuracy: 0.8725

26/65 [===========>..................] - ETA: 9s - loss: 0.5118 - accuracy: 0.8729 

27/65 [===========>..................] - ETA: 9s - loss: 0.5102 - accuracy: 0.8732

28/65 [===========>..................] - ETA: 9s - loss: 0.5091 - accuracy: 0.8737

29/65 [============>.................] - ETA: 9s - loss: 0.5095 - accuracy: 0.8734

30/65 [============>.................] - ETA: 8s - loss: 0.5104 - accuracy: 0.8735

31/65 [=============>................] - ETA: 8s - loss: 0.5095 - accuracy: 0.8740

32/65 [=============>................] - ETA: 8s - loss: 0.5097 - accuracy: 0.8741

33/65 [==============>...............] - ETA: 8s - loss: 0.5084 - accuracy: 0.8746

34/65 [==============>...............] - ETA: 7s - loss: 0.5080 - accuracy: 0.8747

35/65 [===============>..............] - ETA: 7s - loss: 0.5082 - accuracy: 0.8748

36/65 [===============>..............] - ETA: 7s - loss: 0.5077 - accuracy: 0.8751

37/65 [================>.............] - ETA: 7s - loss: 0.5083 - accuracy: 0.8751

38/65 [================>.............] - ETA: 6s - loss: 0.5085 - accuracy: 0.8749

39/65 [=================>............] - ETA: 6s - loss: 0.5066 - accuracy: 0.8755

40/65 [=================>............] - ETA: 6s - loss: 0.5074 - accuracy: 0.8754

41/65 [=================>............] - ETA: 6s - loss: 0.5060 - accuracy: 0.8757

42/65 [==================>...........] - ETA: 5s - loss: 0.5059 - accuracy: 0.8757

43/65 [==================>...........] - ETA: 5s - loss: 0.5059 - accuracy: 0.8756

44/65 [===================>..........] - ETA: 5s - loss: 0.5064 - accuracy: 0.8753

45/65 [===================>..........] - ETA: 5s - loss: 0.5054 - accuracy: 0.8755

46/65 [====================>.........] - ETA: 4s - loss: 0.5049 - accuracy: 0.8758

47/65 [====================>.........] - ETA: 4s - loss: 0.5048 - accuracy: 0.8757

48/65 [=====================>........] - ETA: 4s - loss: 0.5044 - accuracy: 0.8760

49/65 [=====================>........] - ETA: 4s - loss: 0.5044 - accuracy: 0.8761

50/65 [======================>.......] - ETA: 3s - loss: 0.5036 - accuracy: 0.8763

51/65 [======================>.......] - ETA: 3s - loss: 0.5034 - accuracy: 0.8763

52/65 [=======================>......] - ETA: 3s - loss: 0.5024 - accuracy: 0.8764

53/65 [=======================>......] - ETA: 3s - loss: 0.5013 - accuracy: 0.8767

54/65 [=======================>......] - ETA: 2s - loss: 0.5007 - accuracy: 0.8769

55/65 [========================>.....] - ETA: 2s - loss: 0.4999 - accuracy: 0.8770

56/65 [========================>.....] - ETA: 2s - loss: 0.4993 - accuracy: 0.8772

57/65 [=========================>....] - ETA: 2s - loss: 0.4987 - accuracy: 0.8772

58/65 [=========================>....] - ETA: 1s - loss: 0.4984 - accuracy: 0.8774

59/65 [==========================>...] - ETA: 1s - loss: 0.4979 - accuracy: 0.8775

60/65 [==========================>...] - ETA: 1s - loss: 0.4988 - accuracy: 0.8772

61/65 [===========================>..] - ETA: 1s - loss: 0.4994 - accuracy: 0.8769

62/65 [===========================>..] - ETA: 0s - loss: 0.5005 - accuracy: 0.8766

63/65 [============================>.] - ETA: 0s - loss: 0.4995 - accuracy: 0.8767

64/65 [============================>.] - ETA: 0s - loss: 0.4992 - accuracy: 0.8768

65/65 [==============================] - ETA: 0s - loss: 0.4987 - accuracy: 0.8769

65/65 [==============================] - 17s 258ms/step - loss: 0.4987 - accuracy: 0.8769 - val_loss: 0.7790 - val_accuracy: 0.7858 - lr: 0.0030
Epoch 6/30
 1/65 [..............................] - ETA: 32s - loss: 0.4491 - accuracy: 0.8818

 2/65 [..............................] - ETA: 16s - loss: 0.4387 - accuracy: 0.8892

 3/65 [>.............................] - ETA: 15s - loss: 0.4536 - accuracy: 0.8864

 4/65 [>.............................] - ETA: 15s - loss: 0.4665 - accuracy: 0.8853

 5/65 [=>............................] - ETA: 15s - loss: 0.4674 - accuracy: 0.8857

 6/65 [=>............................] - ETA: 14s - loss: 0.4837 - accuracy: 0.8805

 7/65 [==>...........................] - ETA: 14s - loss: 0.4894 - accuracy: 0.8800

 8/65 [==>...........................] - ETA: 14s - loss: 0.4882 - accuracy: 0.8804

 9/65 [===>..........................] - ETA: 14s - loss: 0.4883 - accuracy: 0.8805

10/65 [===>..........................] - ETA: 13s - loss: 0.4846 - accuracy: 0.8821

11/65 [====>.........................] - ETA: 13s - loss: 0.4821 - accuracy: 0.8825

12/65 [====>.........................] - ETA: 13s - loss: 0.4798 - accuracy: 0.8840

13/65 [=====>........................] - ETA: 13s - loss: 0.4765 - accuracy: 0.8849

14/65 [=====>........................] - ETA: 12s - loss: 0.4779 - accuracy: 0.8848

15/65 [=====>........................] - ETA: 12s - loss: 0.4778 - accuracy: 0.8844

16/65 [======>.......................] - ETA: 12s - loss: 0.4766 - accuracy: 0.8845

17/65 [======>.......................] - ETA: 12s - loss: 0.4746 - accuracy: 0.8857

18/65 [=======>......................] - ETA: 11s - loss: 0.4745 - accuracy: 0.8849

19/65 [=======>......................] - ETA: 11s - loss: 0.4751 - accuracy: 0.8843

20/65 [========>.....................] - ETA: 11s - loss: 0.4757 - accuracy: 0.8837

21/65 [========>.....................] - ETA: 11s - loss: 0.4767 - accuracy: 0.8833

22/65 [=========>....................] - ETA: 10s - loss: 0.4766 - accuracy: 0.8835

23/65 [=========>....................] - ETA: 10s - loss: 0.4751 - accuracy: 0.8837

24/65 [==========>...................] - ETA: 10s - loss: 0.4742 - accuracy: 0.8841

25/65 [==========>...................] - ETA: 10s - loss: 0.4723 - accuracy: 0.8844

26/65 [===========>..................] - ETA: 9s - loss: 0.4709 - accuracy: 0.8847 

27/65 [===========>..................] - ETA: 9s - loss: 0.4704 - accuracy: 0.8845

28/65 [===========>..................] - ETA: 9s - loss: 0.4698 - accuracy: 0.8844

29/65 [============>.................] - ETA: 9s - loss: 0.4706 - accuracy: 0.8843

30/65 [============>.................] - ETA: 8s - loss: 0.4710 - accuracy: 0.8841

31/65 [=============>................] - ETA: 8s - loss: 0.4720 - accuracy: 0.8842

32/65 [=============>................] - ETA: 8s - loss: 0.4724 - accuracy: 0.8841

33/65 [==============>...............] - ETA: 8s - loss: 0.4721 - accuracy: 0.8843

34/65 [==============>...............] - ETA: 7s - loss: 0.4715 - accuracy: 0.8848

35/65 [===============>..............] - ETA: 7s - loss: 0.4716 - accuracy: 0.8847

36/65 [===============>..............] - ETA: 7s - loss: 0.4711 - accuracy: 0.8850

37/65 [================>.............] - ETA: 7s - loss: 0.4706 - accuracy: 0.8849

38/65 [================>.............] - ETA: 6s - loss: 0.4707 - accuracy: 0.8848

39/65 [=================>............] - ETA: 6s - loss: 0.4710 - accuracy: 0.8847

40/65 [=================>............] - ETA: 6s - loss: 0.4706 - accuracy: 0.8847

41/65 [=================>............] - ETA: 6s - loss: 0.4705 - accuracy: 0.8847

42/65 [==================>...........] - ETA: 5s - loss: 0.4706 - accuracy: 0.8849

43/65 [==================>...........] - ETA: 5s - loss: 0.4702 - accuracy: 0.8847

44/65 [===================>..........] - ETA: 5s - loss: 0.4705 - accuracy: 0.8849

45/65 [===================>..........] - ETA: 5s - loss: 0.4705 - accuracy: 0.8850

46/65 [====================>.........] - ETA: 4s - loss: 0.4720 - accuracy: 0.8848

47/65 [====================>.........] - ETA: 4s - loss: 0.4713 - accuracy: 0.8850

48/65 [=====================>........] - ETA: 4s - loss: 0.4704 - accuracy: 0.8855

49/65 [=====================>........] - ETA: 4s - loss: 0.4700 - accuracy: 0.8856

50/65 [======================>.......] - ETA: 3s - loss: 0.4686 - accuracy: 0.8860

51/65 [======================>.......] - ETA: 3s - loss: 0.4679 - accuracy: 0.8858

52/65 [=======================>......] - ETA: 3s - loss: 0.4681 - accuracy: 0.8857

53/65 [=======================>......] - ETA: 3s - loss: 0.4674 - accuracy: 0.8857

54/65 [=======================>......] - ETA: 2s - loss: 0.4665 - accuracy: 0.8862

55/65 [========================>.....] - ETA: 2s - loss: 0.4658 - accuracy: 0.8862

56/65 [========================>.....] - ETA: 2s - loss: 0.4652 - accuracy: 0.8863

57/65 [=========================>....] - ETA: 2s - loss: 0.4646 - accuracy: 0.8864

58/65 [=========================>....] - ETA: 1s - loss: 0.4645 - accuracy: 0.8865

59/65 [==========================>...] - ETA: 1s - loss: 0.4678 - accuracy: 0.8852

60/65 [==========================>...] - ETA: 1s - loss: 0.4692 - accuracy: 0.8845

61/65 [===========================>..] - ETA: 0s - loss: 0.4708 - accuracy: 0.8837

62/65 [===========================>..] - ETA: 0s - loss: 0.4713 - accuracy: 0.8835

63/65 [============================>.] - ETA: 0s - loss: 0.4718 - accuracy: 0.8833

64/65 [============================>.] - ETA: 0s - loss: 0.4722 - accuracy: 0.8831

65/65 [==============================] - ETA: 0s - loss: 0.4716 - accuracy: 0.8833

65/65 [==============================] - 17s 257ms/step - loss: 0.4716 - accuracy: 0.8833 - val_loss: 0.9978 - val_accuracy: 0.7123 - lr: 0.0030
Epoch 7/30
 1/65 [..............................] - ETA: 30s - loss: 0.5066 - accuracy: 0.8711

 2/65 [..............................] - ETA: 15s - loss: 0.5174 - accuracy: 0.8735

 3/65 [>.............................] - ETA: 15s - loss: 0.5049 - accuracy: 0.8743

 4/65 [>.............................] - ETA: 15s - loss: 0.4998 - accuracy: 0.8755

 5/65 [=>............................] - ETA: 15s - loss: 0.4960 - accuracy: 0.8766

 6/65 [=>............................] - ETA: 14s - loss: 0.4952 - accuracy: 0.8740

 7/65 [==>...........................] - ETA: 14s - loss: 0.4955 - accuracy: 0.8740

 8/65 [==>...........................] - ETA: 14s - loss: 0.4928 - accuracy: 0.8752

 9/65 [===>..........................] - ETA: 13s - loss: 0.4856 - accuracy: 0.8773

10/65 [===>..........................] - ETA: 13s - loss: 0.4903 - accuracy: 0.8756

11/65 [====>.........................] - ETA: 13s - loss: 0.4848 - accuracy: 0.8771

12/65 [====>.........................] - ETA: 13s - loss: 0.4778 - accuracy: 0.8792

13/65 [=====>........................] - ETA: 12s - loss: 0.4752 - accuracy: 0.8807

14/65 [=====>........................] - ETA: 12s - loss: 0.4756 - accuracy: 0.8810

15/65 [=====>........................] - ETA: 12s - loss: 0.4768 - accuracy: 0.8805

16/65 [======>.......................] - ETA: 12s - loss: 0.4757 - accuracy: 0.8810

17/65 [======>.......................] - ETA: 12s - loss: 0.4760 - accuracy: 0.8810

18/65 [=======>......................] - ETA: 11s - loss: 0.4753 - accuracy: 0.8807

19/65 [=======>......................] - ETA: 11s - loss: 0.4722 - accuracy: 0.8813

20/65 [========>.....................] - ETA: 11s - loss: 0.4734 - accuracy: 0.8812

21/65 [========>.....................] - ETA: 11s - loss: 0.4723 - accuracy: 0.8821

22/65 [=========>....................] - ETA: 10s - loss: 0.4720 - accuracy: 0.8820

23/65 [=========>....................] - ETA: 10s - loss: 0.4697 - accuracy: 0.8830

24/65 [==========>...................] - ETA: 10s - loss: 0.4689 - accuracy: 0.8832

25/65 [==========>...................] - ETA: 10s - loss: 0.4681 - accuracy: 0.8835

26/65 [===========>..................] - ETA: 9s - loss: 0.4675 - accuracy: 0.8833 

27/65 [===========>..................] - ETA: 9s - loss: 0.4680 - accuracy: 0.8832

28/65 [===========>..................] - ETA: 9s - loss: 0.4655 - accuracy: 0.8839

29/65 [============>.................] - ETA: 9s - loss: 0.4662 - accuracy: 0.8837

30/65 [============>.................] - ETA: 8s - loss: 0.4676 - accuracy: 0.8830

31/65 [=============>................] - ETA: 8s - loss: 0.4662 - accuracy: 0.8839

32/65 [=============>................] - ETA: 8s - loss: 0.4660 - accuracy: 0.8839

33/65 [==============>...............] - ETA: 8s - loss: 0.4669 - accuracy: 0.8841

34/65 [==============>...............] - ETA: 7s - loss: 0.4653 - accuracy: 0.8844

35/65 [===============>..............] - ETA: 7s - loss: 0.4652 - accuracy: 0.8845

36/65 [===============>..............] - ETA: 7s - loss: 0.4655 - accuracy: 0.8843

37/65 [================>.............] - ETA: 7s - loss: 0.4651 - accuracy: 0.8844

38/65 [================>.............] - ETA: 6s - loss: 0.4644 - accuracy: 0.8849

39/65 [=================>............] - ETA: 6s - loss: 0.4636 - accuracy: 0.8850

40/65 [=================>............] - ETA: 6s - loss: 0.4642 - accuracy: 0.8850

41/65 [=================>............] - ETA: 6s - loss: 0.4634 - accuracy: 0.8852

42/65 [==================>...........] - ETA: 5s - loss: 0.4624 - accuracy: 0.8854

43/65 [==================>...........] - ETA: 5s - loss: 0.4617 - accuracy: 0.8857

44/65 [===================>..........] - ETA: 5s - loss: 0.4615 - accuracy: 0.8856

45/65 [===================>..........] - ETA: 5s - loss: 0.4609 - accuracy: 0.8859

46/65 [====================>.........] - ETA: 4s - loss: 0.4601 - accuracy: 0.8862

47/65 [====================>.........] - ETA: 4s - loss: 0.4597 - accuracy: 0.8864

48/65 [=====================>........] - ETA: 4s - loss: 0.4585 - accuracy: 0.8866

49/65 [=====================>........] - ETA: 4s - loss: 0.4579 - accuracy: 0.8870

50/65 [======================>.......] - ETA: 3s - loss: 0.4567 - accuracy: 0.8872

51/65 [======================>.......] - ETA: 3s - loss: 0.4569 - accuracy: 0.8870

52/65 [=======================>......] - ETA: 3s - loss: 0.4567 - accuracy: 0.8872

53/65 [=======================>......] - ETA: 3s - loss: 0.4561 - accuracy: 0.8872

54/65 [=======================>......] - ETA: 2s - loss: 0.4554 - accuracy: 0.8873

55/65 [========================>.....] - ETA: 2s - loss: 0.4547 - accuracy: 0.8874

56/65 [========================>.....] - ETA: 2s - loss: 0.4540 - accuracy: 0.8877

57/65 [=========================>....] - ETA: 2s - loss: 0.4535 - accuracy: 0.8879

58/65 [=========================>....] - ETA: 1s - loss: 0.4539 - accuracy: 0.8878

59/65 [==========================>...] - ETA: 1s - loss: 0.4536 - accuracy: 0.8879

60/65 [==========================>...] - ETA: 1s - loss: 0.4534 - accuracy: 0.8880

61/65 [===========================>..] - ETA: 1s - loss: 0.4533 - accuracy: 0.8881

62/65 [===========================>..] - ETA: 0s - loss: 0.4531 - accuracy: 0.8882

63/65 [============================>.] - ETA: 0s - loss: 0.4524 - accuracy: 0.8884

64/65 [============================>.] - ETA: 0s - loss: 0.4524 - accuracy: 0.8883

65/65 [==============================] - ETA: 0s - loss: 0.4526 - accuracy: 0.8883

65/65 [==============================] - 17s 258ms/step - loss: 0.4526 - accuracy: 0.8883 - val_loss: 0.5923 - val_accuracy: 0.8415 - lr: 0.0030
Epoch 8/30
 1/65 [..............................] - ETA: 31s - loss: 0.4155 - accuracy: 0.8984

 2/65 [..............................] - ETA: 17s - loss: 0.4508 - accuracy: 0.8911

 3/65 [>.............................] - ETA: 16s - loss: 0.4445 - accuracy: 0.8939

 4/65 [>.............................] - ETA: 16s - loss: 0.4485 - accuracy: 0.8916

 5/65 [=>............................] - ETA: 15s - loss: 0.4508 - accuracy: 0.8906

 6/65 [=>............................] - ETA: 15s - loss: 0.4478 - accuracy: 0.8931

 7/65 [==>...........................] - ETA: 15s - loss: 0.4461 - accuracy: 0.8926

 8/65 [==>...........................] - ETA: 14s - loss: 0.4463 - accuracy: 0.8923

 9/65 [===>..........................] - ETA: 14s - loss: 0.4484 - accuracy: 0.8920

10/65 [===>..........................] - ETA: 14s - loss: 0.4483 - accuracy: 0.8926

11/65 [====>.........................] - ETA: 13s - loss: 0.4534 - accuracy: 0.8913

12/65 [====>.........................] - ETA: 13s - loss: 0.4491 - accuracy: 0.8924

13/65 [=====>........................] - ETA: 13s - loss: 0.4445 - accuracy: 0.8939

14/65 [=====>........................] - ETA: 12s - loss: 0.4434 - accuracy: 0.8947

15/65 [=====>........................] - ETA: 12s - loss: 0.4439 - accuracy: 0.8938

16/65 [======>.......................] - ETA: 12s - loss: 0.4443 - accuracy: 0.8934

17/65 [======>.......................] - ETA: 12s - loss: 0.4442 - accuracy: 0.8933

18/65 [=======>......................] - ETA: 11s - loss: 0.4409 - accuracy: 0.8944

19/65 [=======>......................] - ETA: 11s - loss: 0.4365 - accuracy: 0.8954

20/65 [========>.....................] - ETA: 11s - loss: 0.4352 - accuracy: 0.8956

21/65 [========>.....................] - ETA: 11s - loss: 0.4339 - accuracy: 0.8956

22/65 [=========>....................] - ETA: 10s - loss: 0.4329 - accuracy: 0.8956

23/65 [=========>....................] - ETA: 10s - loss: 0.4326 - accuracy: 0.8952

24/65 [==========>...................] - ETA: 10s - loss: 0.4334 - accuracy: 0.8950

25/65 [==========>...................] - ETA: 10s - loss: 0.4327 - accuracy: 0.8954

26/65 [===========>..................] - ETA: 9s - loss: 0.4348 - accuracy: 0.8944 

27/65 [===========>..................] - ETA: 9s - loss: 0.4350 - accuracy: 0.8941

28/65 [===========>..................] - ETA: 9s - loss: 0.4362 - accuracy: 0.8937

29/65 [============>.................] - ETA: 9s - loss: 0.4354 - accuracy: 0.8940

30/65 [============>.................] - ETA: 8s - loss: 0.4345 - accuracy: 0.8945

31/65 [=============>................] - ETA: 8s - loss: 0.4354 - accuracy: 0.8943

32/65 [=============>................] - ETA: 8s - loss: 0.4355 - accuracy: 0.8939

33/65 [==============>...............] - ETA: 8s - loss: 0.4361 - accuracy: 0.8937

34/65 [==============>...............] - ETA: 7s - loss: 0.4358 - accuracy: 0.8934

35/65 [===============>..............] - ETA: 7s - loss: 0.4348 - accuracy: 0.8938

36/65 [===============>..............] - ETA: 7s - loss: 0.4344 - accuracy: 0.8938

37/65 [================>.............] - ETA: 7s - loss: 0.4351 - accuracy: 0.8937

38/65 [================>.............] - ETA: 6s - loss: 0.4351 - accuracy: 0.8938

39/65 [=================>............] - ETA: 6s - loss: 0.4348 - accuracy: 0.8940

40/65 [=================>............] - ETA: 6s - loss: 0.4346 - accuracy: 0.8939

41/65 [=================>............] - ETA: 6s - loss: 0.4338 - accuracy: 0.8940

42/65 [==================>...........] - ETA: 5s - loss: 0.4333 - accuracy: 0.8942

43/65 [==================>...........] - ETA: 5s - loss: 0.4323 - accuracy: 0.8943

44/65 [===================>..........] - ETA: 5s - loss: 0.4323 - accuracy: 0.8942

45/65 [===================>..........] - ETA: 5s - loss: 0.4317 - accuracy: 0.8944

46/65 [====================>.........] - ETA: 4s - loss: 0.4308 - accuracy: 0.8945

47/65 [====================>.........] - ETA: 4s - loss: 0.4310 - accuracy: 0.8944

48/65 [=====================>........] - ETA: 4s - loss: 0.4310 - accuracy: 0.8944

49/65 [=====================>........] - ETA: 4s - loss: 0.4305 - accuracy: 0.8945

50/65 [======================>.......] - ETA: 3s - loss: 0.4304 - accuracy: 0.8944

51/65 [======================>.......] - ETA: 3s - loss: 0.4303 - accuracy: 0.8945

52/65 [=======================>......] - ETA: 3s - loss: 0.4298 - accuracy: 0.8948

53/65 [=======================>......] - ETA: 3s - loss: 0.4288 - accuracy: 0.8950

54/65 [=======================>......] - ETA: 2s - loss: 0.4281 - accuracy: 0.8951

55/65 [========================>.....] - ETA: 2s - loss: 0.4280 - accuracy: 0.8953

56/65 [========================>.....] - ETA: 2s - loss: 0.4277 - accuracy: 0.8955

57/65 [=========================>....] - ETA: 2s - loss: 0.4270 - accuracy: 0.8957

58/65 [=========================>....] - ETA: 1s - loss: 0.4272 - accuracy: 0.8957

59/65 [==========================>...] - ETA: 1s - loss: 0.4264 - accuracy: 0.8957

60/65 [==========================>...] - ETA: 1s - loss: 0.4263 - accuracy: 0.8958

61/65 [===========================>..] - ETA: 1s - loss: 0.4263 - accuracy: 0.8957

62/65 [===========================>..] - ETA: 0s - loss: 0.4263 - accuracy: 0.8957

63/65 [============================>.] - ETA: 0s - loss: 0.4258 - accuracy: 0.8958

64/65 [============================>.] - ETA: 0s - loss: 0.4262 - accuracy: 0.8957

65/65 [==============================] - ETA: 0s - loss: 0.4262 - accuracy: 0.8956

65/65 [==============================] - 17s 258ms/step - loss: 0.4262 - accuracy: 0.8956 - val_loss: 0.5695 - val_accuracy: 0.8474 - lr: 0.0030
Epoch 9/30
 1/65 [..............................] - ETA: 29s - loss: 0.4686 - accuracy: 0.8838

 2/65 [..............................] - ETA: 15s - loss: 0.4427 - accuracy: 0.8960

 3/65 [>.............................] - ETA: 15s - loss: 0.4326 - accuracy: 0.9001

 4/65 [>.............................] - ETA: 15s - loss: 0.4315 - accuracy: 0.8994

 5/65 [=>............................] - ETA: 15s - loss: 0.4354 - accuracy: 0.8969

 6/65 [=>............................] - ETA: 14s - loss: 0.4378 - accuracy: 0.8962

 7/65 [==>...........................] - ETA: 14s - loss: 0.4403 - accuracy: 0.8949

 8/65 [==>...........................] - ETA: 14s - loss: 0.4430 - accuracy: 0.8937

 9/65 [===>..........................] - ETA: 14s - loss: 0.4398 - accuracy: 0.8932

10/65 [===>..........................] - ETA: 13s - loss: 0.4371 - accuracy: 0.8938

11/65 [====>.........................] - ETA: 13s - loss: 0.4321 - accuracy: 0.8960

12/65 [====>.........................] - ETA: 13s - loss: 0.4288 - accuracy: 0.8975

13/65 [=====>........................] - ETA: 13s - loss: 0.4281 - accuracy: 0.8970

14/65 [=====>........................] - ETA: 13s - loss: 0.4289 - accuracy: 0.8964

15/65 [=====>........................] - ETA: 12s - loss: 0.4267 - accuracy: 0.8965

16/65 [======>.......................] - ETA: 12s - loss: 0.4234 - accuracy: 0.8970

17/65 [======>.......................] - ETA: 12s - loss: 0.4237 - accuracy: 0.8967

18/65 [=======>......................] - ETA: 11s - loss: 0.4249 - accuracy: 0.8962

19/65 [=======>......................] - ETA: 11s - loss: 0.4225 - accuracy: 0.8965

20/65 [========>.....................] - ETA: 11s - loss: 0.4208 - accuracy: 0.8969

21/65 [========>.....................] - ETA: 11s - loss: 0.4184 - accuracy: 0.8976

22/65 [=========>....................] - ETA: 10s - loss: 0.4177 - accuracy: 0.8981

23/65 [=========>....................] - ETA: 10s - loss: 0.4184 - accuracy: 0.8978

24/65 [==========>...................] - ETA: 10s - loss: 0.4170 - accuracy: 0.8979

25/65 [==========>...................] - ETA: 10s - loss: 0.4155 - accuracy: 0.8982

26/65 [===========>..................] - ETA: 9s - loss: 0.4158 - accuracy: 0.8985 

27/65 [===========>..................] - ETA: 9s - loss: 0.4153 - accuracy: 0.8984

28/65 [===========>..................] - ETA: 9s - loss: 0.4140 - accuracy: 0.8989

29/65 [============>.................] - ETA: 9s - loss: 0.4149 - accuracy: 0.8985

30/65 [============>.................] - ETA: 8s - loss: 0.4156 - accuracy: 0.8982

31/65 [=============>................] - ETA: 8s - loss: 0.4144 - accuracy: 0.8984

32/65 [=============>................] - ETA: 8s - loss: 0.4158 - accuracy: 0.8979

33/65 [==============>...............] - ETA: 8s - loss: 0.4170 - accuracy: 0.8975

34/65 [==============>...............] - ETA: 7s - loss: 0.4173 - accuracy: 0.8977

35/65 [===============>..............] - ETA: 7s - loss: 0.4169 - accuracy: 0.8981

36/65 [===============>..............] - ETA: 7s - loss: 0.4170 - accuracy: 0.8980

37/65 [================>.............] - ETA: 7s - loss: 0.4167 - accuracy: 0.8983

38/65 [================>.............] - ETA: 6s - loss: 0.4175 - accuracy: 0.8980

39/65 [=================>............] - ETA: 6s - loss: 0.4160 - accuracy: 0.8984

40/65 [=================>............] - ETA: 6s - loss: 0.4165 - accuracy: 0.8981

41/65 [=================>............] - ETA: 6s - loss: 0.4165 - accuracy: 0.8981

42/65 [==================>...........] - ETA: 5s - loss: 0.4163 - accuracy: 0.8980

43/65 [==================>...........] - ETA: 5s - loss: 0.4162 - accuracy: 0.8982

44/65 [===================>..........] - ETA: 5s - loss: 0.4165 - accuracy: 0.8981

45/65 [===================>..........] - ETA: 5s - loss: 0.4163 - accuracy: 0.8982

46/65 [====================>.........] - ETA: 4s - loss: 0.4163 - accuracy: 0.8982

47/65 [====================>.........] - ETA: 4s - loss: 0.4170 - accuracy: 0.8981

48/65 [=====================>........] - ETA: 4s - loss: 0.4166 - accuracy: 0.8982

49/65 [=====================>........] - ETA: 4s - loss: 0.4162 - accuracy: 0.8984

50/65 [======================>.......] - ETA: 3s - loss: 0.4169 - accuracy: 0.8979

51/65 [======================>.......] - ETA: 3s - loss: 0.4159 - accuracy: 0.8982

52/65 [=======================>......] - ETA: 3s - loss: 0.4150 - accuracy: 0.8983

53/65 [=======================>......] - ETA: 3s - loss: 0.4145 - accuracy: 0.8984

54/65 [=======================>......] - ETA: 2s - loss: 0.4135 - accuracy: 0.8986

55/65 [========================>.....] - ETA: 2s - loss: 0.4128 - accuracy: 0.8988

56/65 [========================>.....] - ETA: 2s - loss: 0.4120 - accuracy: 0.8990

57/65 [=========================>....] - ETA: 2s - loss: 0.4119 - accuracy: 0.8990

58/65 [=========================>....] - ETA: 1s - loss: 0.4118 - accuracy: 0.8991

59/65 [==========================>...] - ETA: 1s - loss: 0.4110 - accuracy: 0.8993

60/65 [==========================>...] - ETA: 1s - loss: 0.4106 - accuracy: 0.8993

61/65 [===========================>..] - ETA: 1s - loss: 0.4115 - accuracy: 0.8992

62/65 [===========================>..] - ETA: 0s - loss: 0.4110 - accuracy: 0.8992

63/65 [============================>.] - ETA: 0s - loss: 0.4120 - accuracy: 0.8991

64/65 [============================>.] - ETA: 0s - loss: 0.4125 - accuracy: 0.8990

65/65 [==============================] - ETA: 0s - loss: 0.4121 - accuracy: 0.8990

65/65 [==============================] - 17s 259ms/step - loss: 0.4121 - accuracy: 0.8990 - val_loss: 0.5090 - val_accuracy: 0.8695 - lr: 0.0030
Epoch 10/30
 1/65 [..............................] - ETA: 30s - loss: 0.4410 - accuracy: 0.8945

 2/65 [..............................] - ETA: 15s - loss: 0.4220 - accuracy: 0.8960

 3/65 [>.............................] - ETA: 15s - loss: 0.4097 - accuracy: 0.9036

 4/65 [>.............................] - ETA: 15s - loss: 0.3950 - accuracy: 0.9077

 5/65 [=>............................] - ETA: 15s - loss: 0.3979 - accuracy: 0.9062

 6/65 [=>............................] - ETA: 15s - loss: 0.4039 - accuracy: 0.9033

 7/65 [==>...........................] - ETA: 14s - loss: 0.4150 - accuracy: 0.8990

 8/65 [==>...........................] - ETA: 14s - loss: 0.4111 - accuracy: 0.8993

 9/65 [===>..........................] - ETA: 14s - loss: 0.4134 - accuracy: 0.8997

10/65 [===>..........................] - ETA: 13s - loss: 0.4122 - accuracy: 0.8998

11/65 [====>.........................] - ETA: 13s - loss: 0.4124 - accuracy: 0.8986

12/65 [====>.........................] - ETA: 13s - loss: 0.4098 - accuracy: 0.9004

13/65 [=====>........................] - ETA: 13s - loss: 0.4112 - accuracy: 0.9002

14/65 [=====>........................] - ETA: 12s - loss: 0.4118 - accuracy: 0.8993

15/65 [=====>........................] - ETA: 12s - loss: 0.4107 - accuracy: 0.9003

16/65 [======>.......................] - ETA: 12s - loss: 0.4119 - accuracy: 0.8996

17/65 [======>.......................] - ETA: 12s - loss: 0.4100 - accuracy: 0.9000

18/65 [=======>......................] - ETA: 11s - loss: 0.4097 - accuracy: 0.9002

19/65 [=======>......................] - ETA: 11s - loss: 0.4096 - accuracy: 0.9000

20/65 [========>.....................] - ETA: 11s - loss: 0.4080 - accuracy: 0.9001

21/65 [========>.....................] - ETA: 11s - loss: 0.4086 - accuracy: 0.8997

22/65 [=========>....................] - ETA: 10s - loss: 0.4076 - accuracy: 0.8999

23/65 [=========>....................] - ETA: 10s - loss: 0.4093 - accuracy: 0.8993

24/65 [==========>...................] - ETA: 10s - loss: 0.4095 - accuracy: 0.8992

25/65 [==========>...................] - ETA: 10s - loss: 0.4098 - accuracy: 0.8994

26/65 [===========>..................] - ETA: 9s - loss: 0.4088 - accuracy: 0.8997 

27/65 [===========>..................] - ETA: 9s - loss: 0.4076 - accuracy: 0.8999

28/65 [===========>..................] - ETA: 9s - loss: 0.4074 - accuracy: 0.8998

29/65 [============>.................] - ETA: 9s - loss: 0.4071 - accuracy: 0.8998

30/65 [============>.................] - ETA: 8s - loss: 0.4085 - accuracy: 0.8992

31/65 [=============>................] - ETA: 8s - loss: 0.4085 - accuracy: 0.8994

32/65 [=============>................] - ETA: 8s - loss: 0.4079 - accuracy: 0.8999

33/65 [==============>...............] - ETA: 7s - loss: 0.4077 - accuracy: 0.8998

34/65 [==============>...............] - ETA: 7s - loss: 0.4073 - accuracy: 0.9001

35/65 [===============>..............] - ETA: 7s - loss: 0.4078 - accuracy: 0.9000

36/65 [===============>..............] - ETA: 7s - loss: 0.4076 - accuracy: 0.9002

37/65 [================>.............] - ETA: 6s - loss: 0.4088 - accuracy: 0.8999

38/65 [================>.............] - ETA: 6s - loss: 0.4094 - accuracy: 0.8997

39/65 [=================>............] - ETA: 6s - loss: 0.4087 - accuracy: 0.8999

40/65 [=================>............] - ETA: 6s - loss: 0.4073 - accuracy: 0.9003

41/65 [=================>............] - ETA: 6s - loss: 0.4073 - accuracy: 0.9004

42/65 [==================>...........] - ETA: 5s - loss: 0.4070 - accuracy: 0.9005

43/65 [==================>...........] - ETA: 5s - loss: 0.4074 - accuracy: 0.9005

44/65 [===================>..........] - ETA: 5s - loss: 0.4069 - accuracy: 0.9005

45/65 [===================>..........] - ETA: 5s - loss: 0.4062 - accuracy: 0.9006

46/65 [====================>.........] - ETA: 4s - loss: 0.4052 - accuracy: 0.9008

47/65 [====================>.........] - ETA: 4s - loss: 0.4052 - accuracy: 0.9008

48/65 [=====================>........] - ETA: 4s - loss: 0.4064 - accuracy: 0.9008

49/65 [=====================>........] - ETA: 4s - loss: 0.4060 - accuracy: 0.9009

50/65 [======================>.......] - ETA: 3s - loss: 0.4062 - accuracy: 0.9008

51/65 [======================>.......] - ETA: 3s - loss: 0.4062 - accuracy: 0.9006

52/65 [=======================>......] - ETA: 3s - loss: 0.4057 - accuracy: 0.9008

53/65 [=======================>......] - ETA: 3s - loss: 0.4053 - accuracy: 0.9007

54/65 [=======================>......] - ETA: 2s - loss: 0.4048 - accuracy: 0.9008

55/65 [========================>.....] - ETA: 2s - loss: 0.4038 - accuracy: 0.9010

56/65 [========================>.....] - ETA: 2s - loss: 0.4022 - accuracy: 0.9014

57/65 [=========================>....] - ETA: 2s - loss: 0.4022 - accuracy: 0.9014

58/65 [=========================>....] - ETA: 1s - loss: 0.4020 - accuracy: 0.9015

59/65 [==========================>...] - ETA: 1s - loss: 0.4028 - accuracy: 0.9012

60/65 [==========================>...] - ETA: 1s - loss: 0.4030 - accuracy: 0.9012

61/65 [===========================>..] - ETA: 1s - loss: 0.4031 - accuracy: 0.9011

62/65 [===========================>..] - ETA: 0s - loss: 0.4025 - accuracy: 0.9013

63/65 [============================>.] - ETA: 0s - loss: 0.4021 - accuracy: 0.9014

64/65 [============================>.] - ETA: 0s - loss: 0.4019 - accuracy: 0.9015

65/65 [==============================] - ETA: 0s - loss: 0.4019 - accuracy: 0.9015

65/65 [==============================] - 17s 258ms/step - loss: 0.4019 - accuracy: 0.9015 - val_loss: 0.5378 - val_accuracy: 0.8583 - lr: 0.0030
Epoch 11/30
 1/65 [..............................] - ETA: 30s - loss: 0.4262 - accuracy: 0.8975

 2/65 [..............................] - ETA: 16s - loss: 0.4228 - accuracy: 0.9033

 3/65 [>.............................] - ETA: 16s - loss: 0.4044 - accuracy: 0.9076

 4/65 [>.............................] - ETA: 16s - loss: 0.4025 - accuracy: 0.9055

 5/65 [=>............................] - ETA: 15s - loss: 0.3975 - accuracy: 0.9053

 6/65 [=>............................] - ETA: 15s - loss: 0.4028 - accuracy: 0.9027

 7/65 [==>...........................] - ETA: 15s - loss: 0.4055 - accuracy: 0.9015

 8/65 [==>...........................] - ETA: 15s - loss: 0.4050 - accuracy: 0.9023

 9/65 [===>..........................] - ETA: 14s - loss: 0.4052 - accuracy: 0.9027

10/65 [===>..........................] - ETA: 14s - loss: 0.4105 - accuracy: 0.9011

11/65 [====>.........................] - ETA: 14s - loss: 0.4074 - accuracy: 0.9017

12/65 [====>.........................] - ETA: 13s - loss: 0.4077 - accuracy: 0.9019

13/65 [=====>........................] - ETA: 13s - loss: 0.4060 - accuracy: 0.9019

14/65 [=====>........................] - ETA: 13s - loss: 0.4058 - accuracy: 0.9018

15/65 [=====>........................] - ETA: 13s - loss: 0.4063 - accuracy: 0.9020

16/65 [======>.......................] - ETA: 12s - loss: 0.4051 - accuracy: 0.9018

17/65 [======>.......................] - ETA: 12s - loss: 0.4024 - accuracy: 0.9025

18/65 [=======>......................] - ETA: 12s - loss: 0.4020 - accuracy: 0.9020

19/65 [=======>......................] - ETA: 11s - loss: 0.4005 - accuracy: 0.9027

20/65 [========>.....................] - ETA: 11s - loss: 0.3996 - accuracy: 0.9034

21/65 [========>.....................] - ETA: 11s - loss: 0.3997 - accuracy: 0.9032

22/65 [=========>....................] - ETA: 11s - loss: 0.4003 - accuracy: 0.9026

23/65 [=========>....................] - ETA: 10s - loss: 0.3987 - accuracy: 0.9030

24/65 [==========>...................] - ETA: 10s - loss: 0.4000 - accuracy: 0.9027

25/65 [==========>...................] - ETA: 10s - loss: 0.4009 - accuracy: 0.9020

26/65 [===========>..................] - ETA: 10s - loss: 0.4012 - accuracy: 0.9021

27/65 [===========>..................] - ETA: 9s - loss: 0.4013 - accuracy: 0.9018 

28/65 [===========>..................] - ETA: 9s - loss: 0.4006 - accuracy: 0.9019

29/65 [============>.................] - ETA: 9s - loss: 0.3993 - accuracy: 0.9022

30/65 [============>.................] - ETA: 8s - loss: 0.3995 - accuracy: 0.9021

31/65 [=============>................] - ETA: 8s - loss: 0.4003 - accuracy: 0.9020

32/65 [=============>................] - ETA: 8s - loss: 0.3992 - accuracy: 0.9025

33/65 [==============>...............] - ETA: 8s - loss: 0.3981 - accuracy: 0.9029

34/65 [==============>...............] - ETA: 7s - loss: 0.3988 - accuracy: 0.9025

35/65 [===============>..............] - ETA: 7s - loss: 0.4000 - accuracy: 0.9025

36/65 [===============>..............] - ETA: 7s - loss: 0.4004 - accuracy: 0.9023

37/65 [================>.............] - ETA: 7s - loss: 0.3995 - accuracy: 0.9026

38/65 [================>.............] - ETA: 6s - loss: 0.3995 - accuracy: 0.9025

39/65 [=================>............] - ETA: 6s - loss: 0.3988 - accuracy: 0.9027

40/65 [=================>............] - ETA: 6s - loss: 0.3986 - accuracy: 0.9027

41/65 [=================>............] - ETA: 6s - loss: 0.3988 - accuracy: 0.9027

42/65 [==================>...........] - ETA: 5s - loss: 0.3980 - accuracy: 0.9030

43/65 [==================>...........] - ETA: 5s - loss: 0.3982 - accuracy: 0.9029

44/65 [===================>..........] - ETA: 5s - loss: 0.3980 - accuracy: 0.9028

45/65 [===================>..........] - ETA: 5s - loss: 0.3993 - accuracy: 0.9023

46/65 [====================>.........] - ETA: 4s - loss: 0.3990 - accuracy: 0.9023

47/65 [====================>.........] - ETA: 4s - loss: 0.3990 - accuracy: 0.9026

48/65 [=====================>........] - ETA: 4s - loss: 0.3987 - accuracy: 0.9025

49/65 [=====================>........] - ETA: 4s - loss: 0.3984 - accuracy: 0.9026

50/65 [======================>.......] - ETA: 3s - loss: 0.3985 - accuracy: 0.9025

51/65 [======================>.......] - ETA: 3s - loss: 0.3979 - accuracy: 0.9026

52/65 [=======================>......] - ETA: 3s - loss: 0.3974 - accuracy: 0.9026

53/65 [=======================>......] - ETA: 3s - loss: 0.3970 - accuracy: 0.9027

54/65 [=======================>......] - ETA: 2s - loss: 0.3966 - accuracy: 0.9027

55/65 [========================>.....] - ETA: 2s - loss: 0.3970 - accuracy: 0.9025

56/65 [========================>.....] - ETA: 2s - loss: 0.3958 - accuracy: 0.9028

57/65 [=========================>....] - ETA: 2s - loss: 0.3962 - accuracy: 0.9026

58/65 [=========================>....] - ETA: 1s - loss: 0.3968 - accuracy: 0.9023

59/65 [==========================>...] - ETA: 1s - loss: 0.3956 - accuracy: 0.9025

60/65 [==========================>...] - ETA: 1s - loss: 0.3953 - accuracy: 0.9027

61/65 [===========================>..] - ETA: 1s - loss: 0.3947 - accuracy: 0.9028

62/65 [===========================>..] - ETA: 0s - loss: 0.3940 - accuracy: 0.9031

63/65 [============================>.] - ETA: 0s - loss: 0.3939 - accuracy: 0.9032

64/65 [============================>.] - ETA: 0s - loss: 0.3939 - accuracy: 0.9031

65/65 [==============================] - ETA: 0s - loss: 0.3938 - accuracy: 0.9032

65/65 [==============================] - 17s 259ms/step - loss: 0.3938 - accuracy: 0.9032 - val_loss: 0.5010 - val_accuracy: 0.8707 - lr: 0.0030
Epoch 12/30
 1/65 [..............................] - ETA: 30s - loss: 0.3973 - accuracy: 0.8984

 2/65 [..............................] - ETA: 16s - loss: 0.3953 - accuracy: 0.8989

 3/65 [>.............................] - ETA: 16s - loss: 0.3927 - accuracy: 0.9007

 4/65 [>.............................] - ETA: 15s - loss: 0.3936 - accuracy: 0.9043

 5/65 [=>............................] - ETA: 15s - loss: 0.3942 - accuracy: 0.9043

 6/65 [=>............................] - ETA: 15s - loss: 0.3940 - accuracy: 0.9048

 7/65 [==>...........................] - ETA: 14s - loss: 0.3993 - accuracy: 0.9039

 8/65 [==>...........................] - ETA: 14s - loss: 0.4000 - accuracy: 0.9037

 9/65 [===>..........................] - ETA: 14s - loss: 0.4035 - accuracy: 0.9033

10/65 [===>..........................] - ETA: 13s - loss: 0.4022 - accuracy: 0.9040

11/65 [====>.........................] - ETA: 13s - loss: 0.3993 - accuracy: 0.9046

12/65 [====>.........................] - ETA: 13s - loss: 0.3946 - accuracy: 0.9048

13/65 [=====>........................] - ETA: 13s - loss: 0.3937 - accuracy: 0.9046

14/65 [=====>........................] - ETA: 13s - loss: 0.3936 - accuracy: 0.9044

15/65 [=====>........................] - ETA: 12s - loss: 0.3964 - accuracy: 0.9037

16/65 [======>.......................] - ETA: 12s - loss: 0.3969 - accuracy: 0.9037

17/65 [======>.......................] - ETA: 12s - loss: 0.3956 - accuracy: 0.9041

18/65 [=======>......................] - ETA: 12s - loss: 0.3943 - accuracy: 0.9039

19/65 [=======>......................] - ETA: 11s - loss: 0.3918 - accuracy: 0.9049

20/65 [========>.....................] - ETA: 11s - loss: 0.3954 - accuracy: 0.9036

21/65 [========>.....................] - ETA: 11s - loss: 0.3943 - accuracy: 0.9039

22/65 [=========>....................] - ETA: 11s - loss: 0.3932 - accuracy: 0.9039

23/65 [=========>....................] - ETA: 10s - loss: 0.3912 - accuracy: 0.9047

24/65 [==========>...................] - ETA: 10s - loss: 0.3913 - accuracy: 0.9049

25/65 [==========>...................] - ETA: 10s - loss: 0.3919 - accuracy: 0.9045

26/65 [===========>..................] - ETA: 10s - loss: 0.3916 - accuracy: 0.9043

27/65 [===========>..................] - ETA: 9s - loss: 0.3929 - accuracy: 0.9040 

28/65 [===========>..................] - ETA: 9s - loss: 0.3925 - accuracy: 0.9043

29/65 [============>.................] - ETA: 9s - loss: 0.3909 - accuracy: 0.9047

30/65 [============>.................] - ETA: 9s - loss: 0.3897 - accuracy: 0.9050

31/65 [=============>................] - ETA: 8s - loss: 0.3905 - accuracy: 0.9046

32/65 [=============>................] - ETA: 8s - loss: 0.3898 - accuracy: 0.9047

33/65 [==============>...............] - ETA: 8s - loss: 0.3907 - accuracy: 0.9048

34/65 [==============>...............] - ETA: 7s - loss: 0.3917 - accuracy: 0.9048

35/65 [===============>..............] - ETA: 7s - loss: 0.3921 - accuracy: 0.9046

36/65 [===============>..............] - ETA: 7s - loss: 0.3924 - accuracy: 0.9046

37/65 [================>.............] - ETA: 7s - loss: 0.3921 - accuracy: 0.9043

38/65 [================>.............] - ETA: 6s - loss: 0.3926 - accuracy: 0.9040

39/65 [=================>............] - ETA: 6s - loss: 0.3924 - accuracy: 0.9040

40/65 [=================>............] - ETA: 6s - loss: 0.3930 - accuracy: 0.9037

41/65 [=================>............] - ETA: 6s - loss: 0.3941 - accuracy: 0.9036

42/65 [==================>...........] - ETA: 5s - loss: 0.3944 - accuracy: 0.9038

43/65 [==================>...........] - ETA: 5s - loss: 0.3940 - accuracy: 0.9040

44/65 [===================>..........] - ETA: 5s - loss: 0.3947 - accuracy: 0.9035

45/65 [===================>..........] - ETA: 5s - loss: 0.3933 - accuracy: 0.9039

46/65 [====================>.........] - ETA: 4s - loss: 0.3932 - accuracy: 0.9039

47/65 [====================>.........] - ETA: 4s - loss: 0.3942 - accuracy: 0.9036

48/65 [=====================>........] - ETA: 4s - loss: 0.3930 - accuracy: 0.9039

49/65 [=====================>........] - ETA: 4s - loss: 0.3924 - accuracy: 0.9041

50/65 [======================>.......] - ETA: 3s - loss: 0.3923 - accuracy: 0.9042

51/65 [======================>.......] - ETA: 3s - loss: 0.3919 - accuracy: 0.9041

52/65 [=======================>......] - ETA: 3s - loss: 0.3910 - accuracy: 0.9042

53/65 [=======================>......] - ETA: 3s - loss: 0.3906 - accuracy: 0.9045

54/65 [=======================>......] - ETA: 2s - loss: 0.3901 - accuracy: 0.9045

55/65 [========================>.....] - ETA: 2s - loss: 0.3893 - accuracy: 0.9050

56/65 [========================>.....] - ETA: 2s - loss: 0.3885 - accuracy: 0.9053

57/65 [=========================>....] - ETA: 2s - loss: 0.3887 - accuracy: 0.9052

58/65 [=========================>....] - ETA: 1s - loss: 0.3881 - accuracy: 0.9054

59/65 [==========================>...] - ETA: 1s - loss: 0.3877 - accuracy: 0.9055

60/65 [==========================>...] - ETA: 1s - loss: 0.3874 - accuracy: 0.9054

61/65 [===========================>..] - ETA: 1s - loss: 0.3873 - accuracy: 0.9056

62/65 [===========================>..] - ETA: 0s - loss: 0.3868 - accuracy: 0.9058

63/65 [============================>.] - ETA: 0s - loss: 0.3872 - accuracy: 0.9057

64/65 [============================>.] - ETA: 0s - loss: 0.3870 - accuracy: 0.9056

65/65 [==============================] - ETA: 0s - loss: 0.3873 - accuracy: 0.9055

65/65 [==============================] - 17s 264ms/step - loss: 0.3873 - accuracy: 0.9055 - val_loss: 0.4682 - val_accuracy: 0.8814 - lr: 0.0030
Epoch 13/30
 1/65 [..............................] - ETA: 32s - loss: 0.3803 - accuracy: 0.9180

 2/65 [..............................] - ETA: 16s - loss: 0.4002 - accuracy: 0.9116

 3/65 [>.............................] - ETA: 16s - loss: 0.4092 - accuracy: 0.9059

 4/65 [>.............................] - ETA: 16s - loss: 0.3989 - accuracy: 0.9070

 5/65 [=>............................] - ETA: 15s - loss: 0.4000 - accuracy: 0.9059

 6/65 [=>............................] - ETA: 15s - loss: 0.3948 - accuracy: 0.9059

 7/65 [==>...........................] - ETA: 15s - loss: 0.3953 - accuracy: 0.9050

 8/65 [==>...........................] - ETA: 14s - loss: 0.3980 - accuracy: 0.9041

 9/65 [===>..........................] - ETA: 14s - loss: 0.3973 - accuracy: 0.9044

10/65 [===>..........................] - ETA: 14s - loss: 0.3891 - accuracy: 0.9070

11/65 [====>.........................] - ETA: 13s - loss: 0.3872 - accuracy: 0.9066

12/65 [====>.........................] - ETA: 13s - loss: 0.3848 - accuracy: 0.9076

13/65 [=====>........................] - ETA: 13s - loss: 0.3847 - accuracy: 0.9072

14/65 [=====>........................] - ETA: 13s - loss: 0.3830 - accuracy: 0.9083

15/65 [=====>........................] - ETA: 12s - loss: 0.3844 - accuracy: 0.9078

16/65 [======>.......................] - ETA: 12s - loss: 0.3817 - accuracy: 0.9088

17/65 [======>.......................] - ETA: 12s - loss: 0.3823 - accuracy: 0.9082

18/65 [=======>......................] - ETA: 12s - loss: 0.3831 - accuracy: 0.9081

19/65 [=======>......................] - ETA: 11s - loss: 0.3825 - accuracy: 0.9087

20/65 [========>.....................] - ETA: 11s - loss: 0.3818 - accuracy: 0.9084

21/65 [========>.....................] - ETA: 11s - loss: 0.3826 - accuracy: 0.9083

22/65 [=========>....................] - ETA: 10s - loss: 0.3843 - accuracy: 0.9080

23/65 [=========>....................] - ETA: 10s - loss: 0.3850 - accuracy: 0.9079

24/65 [==========>...................] - ETA: 10s - loss: 0.3850 - accuracy: 0.9079

25/65 [==========>...................] - ETA: 10s - loss: 0.3843 - accuracy: 0.9082

26/65 [===========>..................] - ETA: 9s - loss: 0.3837 - accuracy: 0.9082 

27/65 [===========>..................] - ETA: 9s - loss: 0.3839 - accuracy: 0.9081

28/65 [===========>..................] - ETA: 9s - loss: 0.3828 - accuracy: 0.9084

29/65 [============>.................] - ETA: 9s - loss: 0.3845 - accuracy: 0.9079

30/65 [============>.................] - ETA: 8s - loss: 0.3844 - accuracy: 0.9079

31/65 [=============>................] - ETA: 8s - loss: 0.3847 - accuracy: 0.9076

32/65 [=============>................] - ETA: 8s - loss: 0.3839 - accuracy: 0.9075

33/65 [==============>...............] - ETA: 8s - loss: 0.3839 - accuracy: 0.9070

34/65 [==============>...............] - ETA: 7s - loss: 0.3846 - accuracy: 0.9069

35/65 [===============>..............] - ETA: 7s - loss: 0.3847 - accuracy: 0.9068

36/65 [===============>..............] - ETA: 7s - loss: 0.3864 - accuracy: 0.9062

37/65 [================>.............] - ETA: 7s - loss: 0.3866 - accuracy: 0.9060

38/65 [================>.............] - ETA: 6s - loss: 0.3860 - accuracy: 0.9060

39/65 [=================>............] - ETA: 6s - loss: 0.3845 - accuracy: 0.9062

40/65 [=================>............] - ETA: 6s - loss: 0.3851 - accuracy: 0.9060

41/65 [=================>............] - ETA: 6s - loss: 0.3850 - accuracy: 0.9059

42/65 [==================>...........] - ETA: 5s - loss: 0.3848 - accuracy: 0.9059

43/65 [==================>...........] - ETA: 5s - loss: 0.3849 - accuracy: 0.9060

44/65 [===================>..........] - ETA: 5s - loss: 0.3855 - accuracy: 0.9059

45/65 [===================>..........] - ETA: 5s - loss: 0.3857 - accuracy: 0.9061

46/65 [====================>.........] - ETA: 4s - loss: 0.3864 - accuracy: 0.9058

47/65 [====================>.........] - ETA: 4s - loss: 0.3858 - accuracy: 0.9059

48/65 [=====================>........] - ETA: 4s - loss: 0.3858 - accuracy: 0.9058

49/65 [=====================>........] - ETA: 4s - loss: 0.3853 - accuracy: 0.9059

50/65 [======================>.......] - ETA: 3s - loss: 0.3850 - accuracy: 0.9058

51/65 [======================>.......] - ETA: 3s - loss: 0.3853 - accuracy: 0.9057

52/65 [=======================>......] - ETA: 3s - loss: 0.3851 - accuracy: 0.9057

53/65 [=======================>......] - ETA: 3s - loss: 0.3846 - accuracy: 0.9057

54/65 [=======================>......] - ETA: 2s - loss: 0.3844 - accuracy: 0.9057

55/65 [========================>.....] - ETA: 2s - loss: 0.3834 - accuracy: 0.9061

56/65 [========================>.....] - ETA: 2s - loss: 0.3825 - accuracy: 0.9064

57/65 [=========================>....] - ETA: 2s - loss: 0.3829 - accuracy: 0.9061

58/65 [=========================>....] - ETA: 1s - loss: 0.3827 - accuracy: 0.9062

59/65 [==========================>...] - ETA: 1s - loss: 0.3823 - accuracy: 0.9064

60/65 [==========================>...] - ETA: 1s - loss: 0.3820 - accuracy: 0.9063

61/65 [===========================>..] - ETA: 1s - loss: 0.3821 - accuracy: 0.9063

62/65 [===========================>..] - ETA: 0s - loss: 0.3818 - accuracy: 0.9064

63/65 [============================>.] - ETA: 0s - loss: 0.3817 - accuracy: 0.9063

64/65 [============================>.] - ETA: 0s - loss: 0.3813 - accuracy: 0.9063

65/65 [==============================] - ETA: 0s - loss: 0.3813 - accuracy: 0.9063

65/65 [==============================] - 17s 259ms/step - loss: 0.3813 - accuracy: 0.9063 - val_loss: 0.4866 - val_accuracy: 0.8763 - lr: 0.0030
Epoch 14/30
 1/65 [..............................] - ETA: 31s - loss: 0.3975 - accuracy: 0.9053

 2/65 [..............................] - ETA: 16s - loss: 0.4054 - accuracy: 0.9009

 3/65 [>.............................] - ETA: 16s - loss: 0.3934 - accuracy: 0.9030

 4/65 [>.............................] - ETA: 15s - loss: 0.3918 - accuracy: 0.9031

 5/65 [=>............................] - ETA: 15s - loss: 0.3948 - accuracy: 0.9018

 6/65 [=>............................] - ETA: 15s - loss: 0.3840 - accuracy: 0.9049

 7/65 [==>...........................] - ETA: 15s - loss: 0.3873 - accuracy: 0.9051

 8/65 [==>...........................] - ETA: 14s - loss: 0.3922 - accuracy: 0.9032

 9/65 [===>..........................] - ETA: 14s - loss: 0.3902 - accuracy: 0.9049

10/65 [===>..........................] - ETA: 14s - loss: 0.3859 - accuracy: 0.9061

11/65 [====>.........................] - ETA: 14s - loss: 0.3829 - accuracy: 0.9077

12/65 [====>.........................] - ETA: 13s - loss: 0.3791 - accuracy: 0.9084

13/65 [=====>........................] - ETA: 13s - loss: 0.3790 - accuracy: 0.9084

14/65 [=====>........................] - ETA: 13s - loss: 0.3792 - accuracy: 0.9088

15/65 [=====>........................] - ETA: 12s - loss: 0.3794 - accuracy: 0.9080

16/65 [======>.......................] - ETA: 12s - loss: 0.3801 - accuracy: 0.9082

17/65 [======>.......................] - ETA: 12s - loss: 0.3812 - accuracy: 0.9078

18/65 [=======>......................] - ETA: 12s - loss: 0.3797 - accuracy: 0.9083

19/65 [=======>......................] - ETA: 11s - loss: 0.3809 - accuracy: 0.9075

20/65 [========>.....................] - ETA: 11s - loss: 0.3812 - accuracy: 0.9077

21/65 [========>.....................] - ETA: 11s - loss: 0.3812 - accuracy: 0.9079

22/65 [=========>....................] - ETA: 11s - loss: 0.3822 - accuracy: 0.9077

23/65 [=========>....................] - ETA: 10s - loss: 0.3798 - accuracy: 0.9082

24/65 [==========>...................] - ETA: 10s - loss: 0.3797 - accuracy: 0.9082

25/65 [==========>...................] - ETA: 10s - loss: 0.3794 - accuracy: 0.9081

26/65 [===========>..................] - ETA: 10s - loss: 0.3800 - accuracy: 0.9076

27/65 [===========>..................] - ETA: 9s - loss: 0.3791 - accuracy: 0.9080 

28/65 [===========>..................] - ETA: 9s - loss: 0.3785 - accuracy: 0.9081

29/65 [============>.................] - ETA: 9s - loss: 0.3790 - accuracy: 0.9080

30/65 [============>.................] - ETA: 9s - loss: 0.3791 - accuracy: 0.9078

31/65 [=============>................] - ETA: 8s - loss: 0.3789 - accuracy: 0.9076

32/65 [=============>................] - ETA: 8s - loss: 0.3804 - accuracy: 0.9073

33/65 [==============>...............] - ETA: 8s - loss: 0.3808 - accuracy: 0.9070

34/65 [==============>...............] - ETA: 7s - loss: 0.3810 - accuracy: 0.9069

35/65 [===============>..............] - ETA: 7s - loss: 0.3802 - accuracy: 0.9071

36/65 [===============>..............] - ETA: 7s - loss: 0.3820 - accuracy: 0.9065

37/65 [================>.............] - ETA: 7s - loss: 0.3819 - accuracy: 0.9066

38/65 [================>.............] - ETA: 6s - loss: 0.3818 - accuracy: 0.9063

39/65 [=================>............] - ETA: 6s - loss: 0.3811 - accuracy: 0.9064

40/65 [=================>............] - ETA: 6s - loss: 0.3824 - accuracy: 0.9062

41/65 [=================>............] - ETA: 6s - loss: 0.3820 - accuracy: 0.9063

42/65 [==================>...........] - ETA: 5s - loss: 0.3817 - accuracy: 0.9064

43/65 [==================>...........] - ETA: 5s - loss: 0.3823 - accuracy: 0.9064

44/65 [===================>..........] - ETA: 5s - loss: 0.3825 - accuracy: 0.9064

45/65 [===================>..........] - ETA: 5s - loss: 0.3825 - accuracy: 0.9066

46/65 [====================>.........] - ETA: 4s - loss: 0.3830 - accuracy: 0.9065

47/65 [====================>.........] - ETA: 4s - loss: 0.3823 - accuracy: 0.9067

48/65 [=====================>........] - ETA: 4s - loss: 0.3809 - accuracy: 0.9069

49/65 [=====================>........] - ETA: 4s - loss: 0.3807 - accuracy: 0.9070

50/65 [======================>.......] - ETA: 3s - loss: 0.3799 - accuracy: 0.9071

51/65 [======================>.......] - ETA: 3s - loss: 0.3791 - accuracy: 0.9073

52/65 [=======================>......] - ETA: 3s - loss: 0.3787 - accuracy: 0.9073

53/65 [=======================>......] - ETA: 3s - loss: 0.3776 - accuracy: 0.9076

54/65 [=======================>......] - ETA: 2s - loss: 0.3768 - accuracy: 0.9077

55/65 [========================>.....] - ETA: 2s - loss: 0.3765 - accuracy: 0.9078

56/65 [========================>.....] - ETA: 2s - loss: 0.3761 - accuracy: 0.9080

57/65 [=========================>....] - ETA: 2s - loss: 0.3760 - accuracy: 0.9080

58/65 [=========================>....] - ETA: 1s - loss: 0.3756 - accuracy: 0.9081

59/65 [==========================>...] - ETA: 1s - loss: 0.3757 - accuracy: 0.9081

60/65 [==========================>...] - ETA: 1s - loss: 0.3751 - accuracy: 0.9082

61/65 [===========================>..] - ETA: 1s - loss: 0.3754 - accuracy: 0.9081

62/65 [===========================>..] - ETA: 0s - loss: 0.3755 - accuracy: 0.9080

63/65 [============================>.] - ETA: 0s - loss: 0.3754 - accuracy: 0.9081

64/65 [============================>.] - ETA: 0s - loss: 0.3754 - accuracy: 0.9080

65/65 [==============================] - ETA: 0s - loss: 0.3752 - accuracy: 0.9081

65/65 [==============================] - 17s 263ms/step - loss: 0.3752 - accuracy: 0.9081 - val_loss: 0.4921 - val_accuracy: 0.8720 - lr: 0.0030
Epoch 15/30
 1/65 [..............................] - ETA: 30s - loss: 0.3828 - accuracy: 0.9199

 2/65 [..............................] - ETA: 16s - loss: 0.3880 - accuracy: 0.9106

 3/65 [>.............................] - ETA: 16s - loss: 0.3879 - accuracy: 0.9076

 4/65 [>.............................] - ETA: 15s - loss: 0.3816 - accuracy: 0.9099

 5/65 [=>............................] - ETA: 15s - loss: 0.3894 - accuracy: 0.9086

 6/65 [=>............................] - ETA: 15s - loss: 0.3903 - accuracy: 0.9080

 7/65 [==>...........................] - ETA: 15s - loss: 0.3914 - accuracy: 0.9075

 8/65 [==>...........................] - ETA: 14s - loss: 0.3882 - accuracy: 0.9078

 9/65 [===>..........................] - ETA: 14s - loss: 0.3850 - accuracy: 0.9086

10/65 [===>..........................] - ETA: 14s - loss: 0.3829 - accuracy: 0.9083

11/65 [====>.........................] - ETA: 13s - loss: 0.3808 - accuracy: 0.9084

12/65 [====>.........................] - ETA: 13s - loss: 0.3818 - accuracy: 0.9084

13/65 [=====>........................] - ETA: 13s - loss: 0.3784 - accuracy: 0.9095

14/65 [=====>........................] - ETA: 12s - loss: 0.3733 - accuracy: 0.9106

15/65 [=====>........................] - ETA: 12s - loss: 0.3742 - accuracy: 0.9102

16/65 [======>.......................] - ETA: 12s - loss: 0.3742 - accuracy: 0.9100

17/65 [======>.......................] - ETA: 12s - loss: 0.3719 - accuracy: 0.9111

18/65 [=======>......................] - ETA: 11s - loss: 0.3710 - accuracy: 0.9113

19/65 [=======>......................] - ETA: 11s - loss: 0.3724 - accuracy: 0.9109

20/65 [========>.....................] - ETA: 11s - loss: 0.3706 - accuracy: 0.9112

21/65 [========>.....................] - ETA: 11s - loss: 0.3732 - accuracy: 0.9102

22/65 [=========>....................] - ETA: 10s - loss: 0.3734 - accuracy: 0.9103

23/65 [=========>....................] - ETA: 10s - loss: 0.3744 - accuracy: 0.9099

24/65 [==========>...................] - ETA: 10s - loss: 0.3744 - accuracy: 0.9102

25/65 [==========>...................] - ETA: 10s - loss: 0.3744 - accuracy: 0.9100

26/65 [===========>..................] - ETA: 9s - loss: 0.3764 - accuracy: 0.9096 

27/65 [===========>..................] - ETA: 9s - loss: 0.3757 - accuracy: 0.9097

28/65 [===========>..................] - ETA: 9s - loss: 0.3759 - accuracy: 0.9093

29/65 [============>.................] - ETA: 9s - loss: 0.3764 - accuracy: 0.9092

30/65 [============>.................] - ETA: 8s - loss: 0.3788 - accuracy: 0.9082

31/65 [=============>................] - ETA: 8s - loss: 0.3772 - accuracy: 0.9085

32/65 [=============>................] - ETA: 8s - loss: 0.3768 - accuracy: 0.9088

33/65 [==============>...............] - ETA: 8s - loss: 0.3767 - accuracy: 0.9088

34/65 [==============>...............] - ETA: 7s - loss: 0.3765 - accuracy: 0.9089

35/65 [===============>..............] - ETA: 7s - loss: 0.3763 - accuracy: 0.9086

36/65 [===============>..............] - ETA: 7s - loss: 0.3777 - accuracy: 0.9080

37/65 [================>.............] - ETA: 7s - loss: 0.3780 - accuracy: 0.9082

38/65 [================>.............] - ETA: 6s - loss: 0.3769 - accuracy: 0.9084

39/65 [=================>............] - ETA: 6s - loss: 0.3768 - accuracy: 0.9082

40/65 [=================>............] - ETA: 6s - loss: 0.3775 - accuracy: 0.9077

41/65 [=================>............] - ETA: 6s - loss: 0.3770 - accuracy: 0.9082

42/65 [==================>...........] - ETA: 5s - loss: 0.3769 - accuracy: 0.9082

43/65 [==================>...........] - ETA: 5s - loss: 0.3773 - accuracy: 0.9082

44/65 [===================>..........] - ETA: 5s - loss: 0.3771 - accuracy: 0.9080

45/65 [===================>..........] - ETA: 5s - loss: 0.3767 - accuracy: 0.9080

46/65 [====================>.........] - ETA: 4s - loss: 0.3760 - accuracy: 0.9082

47/65 [====================>.........] - ETA: 4s - loss: 0.3763 - accuracy: 0.9079

48/65 [=====================>........] - ETA: 4s - loss: 0.3759 - accuracy: 0.9081

49/65 [=====================>........] - ETA: 4s - loss: 0.3751 - accuracy: 0.9083

50/65 [======================>.......] - ETA: 3s - loss: 0.3741 - accuracy: 0.9084

51/65 [======================>.......] - ETA: 3s - loss: 0.3733 - accuracy: 0.9086

52/65 [=======================>......] - ETA: 3s - loss: 0.3733 - accuracy: 0.9083

53/65 [=======================>......] - ETA: 3s - loss: 0.3734 - accuracy: 0.9083

54/65 [=======================>......] - ETA: 2s - loss: 0.3728 - accuracy: 0.9084

55/65 [========================>.....] - ETA: 2s - loss: 0.3724 - accuracy: 0.9085

56/65 [========================>.....] - ETA: 2s - loss: 0.3722 - accuracy: 0.9086

57/65 [=========================>....] - ETA: 2s - loss: 0.3719 - accuracy: 0.9088

58/65 [=========================>....] - ETA: 1s - loss: 0.3721 - accuracy: 0.9087

59/65 [==========================>...] - ETA: 1s - loss: 0.3719 - accuracy: 0.9088

60/65 [==========================>...] - ETA: 1s - loss: 0.3710 - accuracy: 0.9091

61/65 [===========================>..] - ETA: 1s - loss: 0.3705 - accuracy: 0.9091

62/65 [===========================>..] - ETA: 0s - loss: 0.3706 - accuracy: 0.9090

63/65 [============================>.] - ETA: 0s - loss: 0.3709 - accuracy: 0.9091

64/65 [============================>.] - ETA: 0s - loss: 0.3710 - accuracy: 0.9088

65/65 [==============================] - ETA: 0s - loss: 0.3709 - accuracy: 0.9088
Epoch 15: ReduceLROnPlateau reducing learning rate to 0.001500000013038516.

65/65 [==============================] - 17s 260ms/step - loss: 0.3709 - accuracy: 0.9088 - val_loss: 0.4841 - val_accuracy: 0.8788 - lr: 0.0030
Epoch 16/30
 1/65 [..............................] - ETA: 31s - loss: 0.4125 - accuracy: 0.9004

 2/65 [..............................] - ETA: 16s - loss: 0.4044 - accuracy: 0.9009

 3/65 [>.............................] - ETA: 15s - loss: 0.3980 - accuracy: 0.9027

 4/65 [>.............................] - ETA: 15s - loss: 0.3844 - accuracy: 0.9077

 5/65 [=>............................] - ETA: 15s - loss: 0.3781 - accuracy: 0.9102

 6/65 [=>............................] - ETA: 15s - loss: 0.3830 - accuracy: 0.9084

 7/65 [==>...........................] - ETA: 15s - loss: 0.3770 - accuracy: 0.9096

 8/65 [==>...........................] - ETA: 14s - loss: 0.3814 - accuracy: 0.9086

 9/65 [===>..........................] - ETA: 14s - loss: 0.3789 - accuracy: 0.9087

10/65 [===>..........................] - ETA: 14s - loss: 0.3789 - accuracy: 0.9077

11/65 [====>.........................] - ETA: 14s - loss: 0.3737 - accuracy: 0.9092

12/65 [====>.........................] - ETA: 13s - loss: 0.3714 - accuracy: 0.9104

13/65 [=====>........................] - ETA: 13s - loss: 0.3716 - accuracy: 0.9103

14/65 [=====>........................] - ETA: 13s - loss: 0.3680 - accuracy: 0.9116

15/65 [=====>........................] - ETA: 12s - loss: 0.3685 - accuracy: 0.9113

16/65 [======>.......................] - ETA: 12s - loss: 0.3698 - accuracy: 0.9111

17/65 [======>.......................] - ETA: 12s - loss: 0.3698 - accuracy: 0.9112

18/65 [=======>......................] - ETA: 12s - loss: 0.3679 - accuracy: 0.9123

19/65 [=======>......................] - ETA: 11s - loss: 0.3681 - accuracy: 0.9121

20/65 [========>.....................] - ETA: 11s - loss: 0.3679 - accuracy: 0.9121

21/65 [========>.....................] - ETA: 11s - loss: 0.3680 - accuracy: 0.9118

22/65 [=========>....................] - ETA: 11s - loss: 0.3674 - accuracy: 0.9120

23/65 [=========>....................] - ETA: 10s - loss: 0.3667 - accuracy: 0.9120

24/65 [==========>...................] - ETA: 10s - loss: 0.3653 - accuracy: 0.9125

25/65 [==========>...................] - ETA: 10s - loss: 0.3643 - accuracy: 0.9128

26/65 [===========>..................] - ETA: 10s - loss: 0.3626 - accuracy: 0.9137

27/65 [===========>..................] - ETA: 9s - loss: 0.3623 - accuracy: 0.9137 

28/65 [===========>..................] - ETA: 9s - loss: 0.3616 - accuracy: 0.9138

29/65 [============>.................] - ETA: 9s - loss: 0.3625 - accuracy: 0.9133

30/65 [============>.................] - ETA: 9s - loss: 0.3624 - accuracy: 0.9130

31/65 [=============>................] - ETA: 8s - loss: 0.3624 - accuracy: 0.9128

32/65 [=============>................] - ETA: 8s - loss: 0.3641 - accuracy: 0.9124

33/65 [==============>...............] - ETA: 8s - loss: 0.3651 - accuracy: 0.9121

34/65 [==============>...............] - ETA: 8s - loss: 0.3638 - accuracy: 0.9123

35/65 [===============>..............] - ETA: 7s - loss: 0.3633 - accuracy: 0.9126

36/65 [===============>..............] - ETA: 7s - loss: 0.3644 - accuracy: 0.9121

37/65 [================>.............] - ETA: 7s - loss: 0.3641 - accuracy: 0.9119

38/65 [================>.............] - ETA: 6s - loss: 0.3634 - accuracy: 0.9122

39/65 [=================>............] - ETA: 6s - loss: 0.3625 - accuracy: 0.9124

40/65 [=================>............] - ETA: 6s - loss: 0.3626 - accuracy: 0.9122

41/65 [=================>............] - ETA: 6s - loss: 0.3623 - accuracy: 0.9123

42/65 [==================>...........] - ETA: 5s - loss: 0.3622 - accuracy: 0.9126

43/65 [==================>...........] - ETA: 5s - loss: 0.3618 - accuracy: 0.9127

44/65 [===================>..........] - ETA: 5s - loss: 0.3613 - accuracy: 0.9130

45/65 [===================>..........] - ETA: 5s - loss: 0.3609 - accuracy: 0.9130

46/65 [====================>.........] - ETA: 4s - loss: 0.3615 - accuracy: 0.9129

47/65 [====================>.........] - ETA: 4s - loss: 0.3608 - accuracy: 0.9130

48/65 [=====================>........] - ETA: 4s - loss: 0.3616 - accuracy: 0.9127

49/65 [=====================>........] - ETA: 4s - loss: 0.3611 - accuracy: 0.9128

50/65 [======================>.......] - ETA: 3s - loss: 0.3608 - accuracy: 0.9128

51/65 [======================>.......] - ETA: 3s - loss: 0.3601 - accuracy: 0.9130

52/65 [=======================>......] - ETA: 3s - loss: 0.3597 - accuracy: 0.9130

53/65 [=======================>......] - ETA: 3s - loss: 0.3586 - accuracy: 0.9135

54/65 [=======================>......] - ETA: 2s - loss: 0.3582 - accuracy: 0.9135

55/65 [========================>.....] - ETA: 2s - loss: 0.3571 - accuracy: 0.9138

56/65 [========================>.....] - ETA: 2s - loss: 0.3565 - accuracy: 0.9140

57/65 [=========================>....] - ETA: 2s - loss: 0.3566 - accuracy: 0.9141

58/65 [=========================>....] - ETA: 1s - loss: 0.3558 - accuracy: 0.9143

59/65 [==========================>...] - ETA: 1s - loss: 0.3554 - accuracy: 0.9145

60/65 [==========================>...] - ETA: 1s - loss: 0.3554 - accuracy: 0.9145

61/65 [===========================>..] - ETA: 1s - loss: 0.3548 - accuracy: 0.9146

62/65 [===========================>..] - ETA: 0s - loss: 0.3544 - accuracy: 0.9147

63/65 [============================>.] - ETA: 0s - loss: 0.3541 - accuracy: 0.9148

64/65 [============================>.] - ETA: 0s - loss: 0.3539 - accuracy: 0.9149

65/65 [==============================] - ETA: 0s - loss: 0.3539 - accuracy: 0.9149

65/65 [==============================] - 17s 262ms/step - loss: 0.3539 - accuracy: 0.9149 - val_loss: 0.4557 - val_accuracy: 0.8849 - lr: 0.0015
Epoch 17/30
 1/65 [..............................] - ETA: 30s - loss: 0.3552 - accuracy: 0.9111

 2/65 [..............................] - ETA: 16s - loss: 0.3582 - accuracy: 0.9160

 3/65 [>.............................] - ETA: 15s - loss: 0.3481 - accuracy: 0.9160

 4/65 [>.............................] - ETA: 15s - loss: 0.3728 - accuracy: 0.9104

 5/65 [=>............................] - ETA: 15s - loss: 0.3765 - accuracy: 0.9100

 6/65 [=>............................] - ETA: 15s - loss: 0.3745 - accuracy: 0.9106

 7/65 [==>...........................] - ETA: 14s - loss: 0.3677 - accuracy: 0.9129

 8/65 [==>...........................] - ETA: 14s - loss: 0.3627 - accuracy: 0.9141

 9/65 [===>..........................] - ETA: 14s - loss: 0.3613 - accuracy: 0.9138

10/65 [===>..........................] - ETA: 13s - loss: 0.3593 - accuracy: 0.9146

11/65 [====>.........................] - ETA: 13s - loss: 0.3578 - accuracy: 0.9148

12/65 [====>.........................] - ETA: 13s - loss: 0.3569 - accuracy: 0.9151

13/65 [=====>........................] - ETA: 13s - loss: 0.3535 - accuracy: 0.9161

14/65 [=====>........................] - ETA: 12s - loss: 0.3515 - accuracy: 0.9167

15/65 [=====>........................] - ETA: 12s - loss: 0.3519 - accuracy: 0.9169

16/65 [======>.......................] - ETA: 12s - loss: 0.3542 - accuracy: 0.9159

17/65 [======>.......................] - ETA: 12s - loss: 0.3539 - accuracy: 0.9158

18/65 [=======>......................] - ETA: 11s - loss: 0.3525 - accuracy: 0.9162

19/65 [=======>......................] - ETA: 11s - loss: 0.3514 - accuracy: 0.9170

20/65 [========>.....................] - ETA: 11s - loss: 0.3527 - accuracy: 0.9167

21/65 [========>.....................] - ETA: 11s - loss: 0.3534 - accuracy: 0.9162

22/65 [=========>....................] - ETA: 10s - loss: 0.3543 - accuracy: 0.9161

23/65 [=========>....................] - ETA: 10s - loss: 0.3547 - accuracy: 0.9156

24/65 [==========>...................] - ETA: 10s - loss: 0.3530 - accuracy: 0.9162

25/65 [==========>...................] - ETA: 10s - loss: 0.3535 - accuracy: 0.9160

26/65 [===========>..................] - ETA: 9s - loss: 0.3543 - accuracy: 0.9156 

27/65 [===========>..................] - ETA: 9s - loss: 0.3530 - accuracy: 0.9157

28/65 [===========>..................] - ETA: 9s - loss: 0.3534 - accuracy: 0.9154

29/65 [============>.................] - ETA: 9s - loss: 0.3516 - accuracy: 0.9157

30/65 [============>.................] - ETA: 8s - loss: 0.3527 - accuracy: 0.9155

31/65 [=============>................] - ETA: 8s - loss: 0.3519 - accuracy: 0.9159

32/65 [=============>................] - ETA: 8s - loss: 0.3524 - accuracy: 0.9159

33/65 [==============>...............] - ETA: 8s - loss: 0.3505 - accuracy: 0.9165

34/65 [==============>...............] - ETA: 7s - loss: 0.3500 - accuracy: 0.9163

35/65 [===============>..............] - ETA: 7s - loss: 0.3525 - accuracy: 0.9156

36/65 [===============>..............] - ETA: 7s - loss: 0.3526 - accuracy: 0.9154

37/65 [================>.............] - ETA: 7s - loss: 0.3538 - accuracy: 0.9150

38/65 [================>.............] - ETA: 6s - loss: 0.3540 - accuracy: 0.9149

39/65 [=================>............] - ETA: 6s - loss: 0.3544 - accuracy: 0.9147

40/65 [=================>............] - ETA: 6s - loss: 0.3537 - accuracy: 0.9149

41/65 [=================>............] - ETA: 6s - loss: 0.3547 - accuracy: 0.9146

42/65 [==================>...........] - ETA: 5s - loss: 0.3540 - accuracy: 0.9148

43/65 [==================>...........] - ETA: 5s - loss: 0.3542 - accuracy: 0.9149

44/65 [===================>..........] - ETA: 5s - loss: 0.3550 - accuracy: 0.9146

45/65 [===================>..........] - ETA: 5s - loss: 0.3537 - accuracy: 0.9151

46/65 [====================>.........] - ETA: 4s - loss: 0.3539 - accuracy: 0.9149

47/65 [====================>.........] - ETA: 4s - loss: 0.3525 - accuracy: 0.9153

48/65 [=====================>........] - ETA: 4s - loss: 0.3515 - accuracy: 0.9155

49/65 [=====================>........] - ETA: 4s - loss: 0.3514 - accuracy: 0.9155

50/65 [======================>.......] - ETA: 3s - loss: 0.3518 - accuracy: 0.9152

51/65 [======================>.......] - ETA: 3s - loss: 0.3512 - accuracy: 0.9152

52/65 [=======================>......] - ETA: 3s - loss: 0.3508 - accuracy: 0.9152

53/65 [=======================>......] - ETA: 3s - loss: 0.3503 - accuracy: 0.9153

54/65 [=======================>......] - ETA: 2s - loss: 0.3497 - accuracy: 0.9155

55/65 [========================>.....] - ETA: 2s - loss: 0.3495 - accuracy: 0.9156

56/65 [========================>.....] - ETA: 2s - loss: 0.3493 - accuracy: 0.9156

57/65 [=========================>....] - ETA: 2s - loss: 0.3496 - accuracy: 0.9157

58/65 [=========================>....] - ETA: 1s - loss: 0.3502 - accuracy: 0.9155

59/65 [==========================>...] - ETA: 1s - loss: 0.3499 - accuracy: 0.9157

60/65 [==========================>...] - ETA: 1s - loss: 0.3498 - accuracy: 0.9156

61/65 [===========================>..] - ETA: 1s - loss: 0.3495 - accuracy: 0.9155

62/65 [===========================>..] - ETA: 0s - loss: 0.3495 - accuracy: 0.9155

63/65 [============================>.] - ETA: 0s - loss: 0.3487 - accuracy: 0.9157

64/65 [============================>.] - ETA: 0s - loss: 0.3487 - accuracy: 0.9158

65/65 [==============================] - ETA: 0s - loss: 0.3485 - accuracy: 0.9158

65/65 [==============================] - 17s 260ms/step - loss: 0.3485 - accuracy: 0.9158 - val_loss: 0.4501 - val_accuracy: 0.8859 - lr: 0.0015
Epoch 18/30
 1/65 [..............................] - ETA: 32s - loss: 0.3246 - accuracy: 0.9209

 2/65 [..............................] - ETA: 16s - loss: 0.3462 - accuracy: 0.9214

 3/65 [>.............................] - ETA: 15s - loss: 0.3454 - accuracy: 0.9189

 4/65 [>.............................] - ETA: 15s - loss: 0.3553 - accuracy: 0.9167

 5/65 [=>............................] - ETA: 15s - loss: 0.3575 - accuracy: 0.9143

 6/65 [=>............................] - ETA: 15s - loss: 0.3556 - accuracy: 0.9129

 7/65 [==>...........................] - ETA: 14s - loss: 0.3598 - accuracy: 0.9120

 8/65 [==>...........................] - ETA: 14s - loss: 0.3592 - accuracy: 0.9143

 9/65 [===>..........................] - ETA: 14s - loss: 0.3607 - accuracy: 0.9145

10/65 [===>..........................] - ETA: 14s - loss: 0.3584 - accuracy: 0.9149

11/65 [====>.........................] - ETA: 13s - loss: 0.3572 - accuracy: 0.9145

12/65 [====>.........................] - ETA: 13s - loss: 0.3573 - accuracy: 0.9153

13/65 [=====>........................] - ETA: 13s - loss: 0.3551 - accuracy: 0.9162

14/65 [=====>........................] - ETA: 13s - loss: 0.3544 - accuracy: 0.9169

15/65 [=====>........................] - ETA: 12s - loss: 0.3512 - accuracy: 0.9173

16/65 [======>.......................] - ETA: 12s - loss: 0.3491 - accuracy: 0.9179

17/65 [======>.......................] - ETA: 12s - loss: 0.3487 - accuracy: 0.9179

18/65 [=======>......................] - ETA: 12s - loss: 0.3470 - accuracy: 0.9182

19/65 [=======>......................] - ETA: 11s - loss: 0.3466 - accuracy: 0.9184

20/65 [========>.....................] - ETA: 11s - loss: 0.3488 - accuracy: 0.9179

21/65 [========>.....................] - ETA: 11s - loss: 0.3503 - accuracy: 0.9178

22/65 [=========>....................] - ETA: 10s - loss: 0.3497 - accuracy: 0.9177

23/65 [=========>....................] - ETA: 10s - loss: 0.3480 - accuracy: 0.9179

24/65 [==========>...................] - ETA: 10s - loss: 0.3476 - accuracy: 0.9180

25/65 [==========>...................] - ETA: 10s - loss: 0.3486 - accuracy: 0.9179

26/65 [===========>..................] - ETA: 9s - loss: 0.3494 - accuracy: 0.9175 

27/65 [===========>..................] - ETA: 9s - loss: 0.3485 - accuracy: 0.9177

28/65 [===========>..................] - ETA: 9s - loss: 0.3491 - accuracy: 0.9172

29/65 [============>.................] - ETA: 9s - loss: 0.3478 - accuracy: 0.9176

30/65 [============>.................] - ETA: 8s - loss: 0.3481 - accuracy: 0.9176

31/65 [=============>................] - ETA: 8s - loss: 0.3478 - accuracy: 0.9176

32/65 [=============>................] - ETA: 8s - loss: 0.3483 - accuracy: 0.9172

33/65 [==============>...............] - ETA: 8s - loss: 0.3500 - accuracy: 0.9168

34/65 [==============>...............] - ETA: 7s - loss: 0.3516 - accuracy: 0.9162

35/65 [===============>..............] - ETA: 7s - loss: 0.3499 - accuracy: 0.9167

36/65 [===============>..............] - ETA: 7s - loss: 0.3519 - accuracy: 0.9159

37/65 [================>.............] - ETA: 7s - loss: 0.3516 - accuracy: 0.9160

38/65 [================>.............] - ETA: 6s - loss: 0.3515 - accuracy: 0.9159

39/65 [=================>............] - ETA: 6s - loss: 0.3514 - accuracy: 0.9159

40/65 [=================>............] - ETA: 6s - loss: 0.3513 - accuracy: 0.9158

41/65 [=================>............] - ETA: 6s - loss: 0.3509 - accuracy: 0.9158

42/65 [==================>...........] - ETA: 5s - loss: 0.3516 - accuracy: 0.9158

43/65 [==================>...........] - ETA: 5s - loss: 0.3513 - accuracy: 0.9159

44/65 [===================>..........] - ETA: 5s - loss: 0.3514 - accuracy: 0.9158

45/65 [===================>..........] - ETA: 5s - loss: 0.3508 - accuracy: 0.9161

46/65 [====================>.........] - ETA: 4s - loss: 0.3516 - accuracy: 0.9158

47/65 [====================>.........] - ETA: 4s - loss: 0.3506 - accuracy: 0.9162

48/65 [=====================>........] - ETA: 4s - loss: 0.3505 - accuracy: 0.9164

49/65 [=====================>........] - ETA: 4s - loss: 0.3505 - accuracy: 0.9165

50/65 [======================>.......] - ETA: 3s - loss: 0.3495 - accuracy: 0.9168

51/65 [======================>.......] - ETA: 3s - loss: 0.3495 - accuracy: 0.9167

52/65 [=======================>......] - ETA: 3s - loss: 0.3491 - accuracy: 0.9166

53/65 [=======================>......] - ETA: 3s - loss: 0.3481 - accuracy: 0.9168

54/65 [=======================>......] - ETA: 2s - loss: 0.3485 - accuracy: 0.9166

55/65 [========================>.....] - ETA: 2s - loss: 0.3477 - accuracy: 0.9168

56/65 [========================>.....] - ETA: 2s - loss: 0.3474 - accuracy: 0.9169

57/65 [=========================>....] - ETA: 2s - loss: 0.3472 - accuracy: 0.9169

58/65 [=========================>....] - ETA: 1s - loss: 0.3472 - accuracy: 0.9171

59/65 [==========================>...] - ETA: 1s - loss: 0.3470 - accuracy: 0.9171

60/65 [==========================>...] - ETA: 1s - loss: 0.3465 - accuracy: 0.9173

61/65 [===========================>..] - ETA: 1s - loss: 0.3464 - accuracy: 0.9173

62/65 [===========================>..] - ETA: 0s - loss: 0.3454 - accuracy: 0.9175

63/65 [============================>.] - ETA: 0s - loss: 0.3452 - accuracy: 0.9174

64/65 [============================>.] - ETA: 0s - loss: 0.3450 - accuracy: 0.9175

65/65 [==============================] - ETA: 0s - loss: 0.3448 - accuracy: 0.9175

65/65 [==============================] - 17s 259ms/step - loss: 0.3448 - accuracy: 0.9175 - val_loss: 0.4492 - val_accuracy: 0.8841 - lr: 0.0015
Epoch 19/30
 1/65 [..............................] - ETA: 30s - loss: 0.3375 - accuracy: 0.9092

 2/65 [..............................] - ETA: 15s - loss: 0.3678 - accuracy: 0.9067

 3/65 [>.............................] - ETA: 16s - loss: 0.3751 - accuracy: 0.9030

 4/65 [>.............................] - ETA: 15s - loss: 0.3590 - accuracy: 0.9065

 5/65 [=>............................] - ETA: 15s - loss: 0.3610 - accuracy: 0.9076

 6/65 [=>............................] - ETA: 15s - loss: 0.3486 - accuracy: 0.9129

 7/65 [==>...........................] - ETA: 15s - loss: 0.3473 - accuracy: 0.9135

 8/65 [==>...........................] - ETA: 15s - loss: 0.3467 - accuracy: 0.9146

 9/65 [===>..........................] - ETA: 14s - loss: 0.3472 - accuracy: 0.9143

10/65 [===>..........................] - ETA: 14s - loss: 0.3466 - accuracy: 0.9146

11/65 [====>.........................] - ETA: 14s - loss: 0.3455 - accuracy: 0.9146

12/65 [====>.........................] - ETA: 13s - loss: 0.3442 - accuracy: 0.9154

13/65 [=====>........................] - ETA: 13s - loss: 0.3470 - accuracy: 0.9148

14/65 [=====>........................] - ETA: 13s - loss: 0.3446 - accuracy: 0.9155

15/65 [=====>........................] - ETA: 13s - loss: 0.3446 - accuracy: 0.9153

16/65 [======>.......................] - ETA: 12s - loss: 0.3487 - accuracy: 0.9146

17/65 [======>.......................] - ETA: 12s - loss: 0.3482 - accuracy: 0.9145

18/65 [=======>......................] - ETA: 12s - loss: 0.3448 - accuracy: 0.9153

19/65 [=======>......................] - ETA: 11s - loss: 0.3448 - accuracy: 0.9157

20/65 [========>.....................] - ETA: 11s - loss: 0.3436 - accuracy: 0.9161

21/65 [========>.....................] - ETA: 11s - loss: 0.3443 - accuracy: 0.9162

22/65 [=========>....................] - ETA: 11s - loss: 0.3460 - accuracy: 0.9154

23/65 [=========>....................] - ETA: 10s - loss: 0.3448 - accuracy: 0.9158

24/65 [==========>...................] - ETA: 10s - loss: 0.3449 - accuracy: 0.9160

25/65 [==========>...................] - ETA: 10s - loss: 0.3460 - accuracy: 0.9161

26/65 [===========>..................] - ETA: 10s - loss: 0.3463 - accuracy: 0.9161

27/65 [===========>..................] - ETA: 9s - loss: 0.3452 - accuracy: 0.9164 

28/65 [===========>..................] - ETA: 9s - loss: 0.3457 - accuracy: 0.9163

29/65 [============>.................] - ETA: 9s - loss: 0.3463 - accuracy: 0.9159

30/65 [============>.................] - ETA: 8s - loss: 0.3460 - accuracy: 0.9160

31/65 [=============>................] - ETA: 8s - loss: 0.3461 - accuracy: 0.9157

32/65 [=============>................] - ETA: 8s - loss: 0.3478 - accuracy: 0.9151

33/65 [==============>...............] - ETA: 8s - loss: 0.3473 - accuracy: 0.9153

34/65 [==============>...............] - ETA: 7s - loss: 0.3472 - accuracy: 0.9154

35/65 [===============>..............] - ETA: 7s - loss: 0.3479 - accuracy: 0.9154

36/65 [===============>..............] - ETA: 7s - loss: 0.3475 - accuracy: 0.9153

37/65 [================>.............] - ETA: 7s - loss: 0.3476 - accuracy: 0.9153

38/65 [================>.............] - ETA: 6s - loss: 0.3484 - accuracy: 0.9152

39/65 [=================>............] - ETA: 6s - loss: 0.3483 - accuracy: 0.9154

40/65 [=================>............] - ETA: 6s - loss: 0.3481 - accuracy: 0.9155

41/65 [=================>............] - ETA: 6s - loss: 0.3467 - accuracy: 0.9158

42/65 [==================>...........] - ETA: 5s - loss: 0.3470 - accuracy: 0.9155

43/65 [==================>...........] - ETA: 5s - loss: 0.3470 - accuracy: 0.9154

44/65 [===================>..........] - ETA: 5s - loss: 0.3471 - accuracy: 0.9152

45/65 [===================>..........] - ETA: 5s - loss: 0.3465 - accuracy: 0.9153

46/65 [====================>.........] - ETA: 4s - loss: 0.3463 - accuracy: 0.9155

47/65 [====================>.........] - ETA: 4s - loss: 0.3470 - accuracy: 0.9154

48/65 [=====================>........] - ETA: 4s - loss: 0.3460 - accuracy: 0.9156

49/65 [=====================>........] - ETA: 4s - loss: 0.3463 - accuracy: 0.9154

50/65 [======================>.......] - ETA: 3s - loss: 0.3457 - accuracy: 0.9156

51/65 [======================>.......] - ETA: 3s - loss: 0.3459 - accuracy: 0.9155

52/65 [=======================>......] - ETA: 3s - loss: 0.3458 - accuracy: 0.9155

53/65 [=======================>......] - ETA: 3s - loss: 0.3456 - accuracy: 0.9154

54/65 [=======================>......] - ETA: 2s - loss: 0.3453 - accuracy: 0.9155

55/65 [========================>.....] - ETA: 2s - loss: 0.3451 - accuracy: 0.9156

56/65 [========================>.....] - ETA: 2s - loss: 0.3446 - accuracy: 0.9158

57/65 [=========================>....] - ETA: 2s - loss: 0.3442 - accuracy: 0.9160

58/65 [=========================>....] - ETA: 1s - loss: 0.3437 - accuracy: 0.9163

59/65 [==========================>...] - ETA: 1s - loss: 0.3436 - accuracy: 0.9164

60/65 [==========================>...] - ETA: 1s - loss: 0.3430 - accuracy: 0.9166

61/65 [===========================>..] - ETA: 1s - loss: 0.3425 - accuracy: 0.9165

62/65 [===========================>..] - ETA: 0s - loss: 0.3430 - accuracy: 0.9164

63/65 [============================>.] - ETA: 0s - loss: 0.3422 - accuracy: 0.9167

64/65 [============================>.] - ETA: 0s - loss: 0.3420 - accuracy: 0.9167

65/65 [==============================] - ETA: 0s - loss: 0.3423 - accuracy: 0.9167

65/65 [==============================] - 17s 264ms/step - loss: 0.3423 - accuracy: 0.9167 - val_loss: 0.4452 - val_accuracy: 0.8849 - lr: 0.0015
Epoch 20/30
 1/65 [..............................] - ETA: 31s - loss: 0.3592 - accuracy: 0.9102

 2/65 [..............................] - ETA: 16s - loss: 0.3374 - accuracy: 0.9175

 3/65 [>.............................] - ETA: 16s - loss: 0.3403 - accuracy: 0.9160

 4/65 [>.............................] - ETA: 16s - loss: 0.3412 - accuracy: 0.9155

 5/65 [=>............................] - ETA: 15s - loss: 0.3469 - accuracy: 0.9160

 6/65 [=>............................] - ETA: 15s - loss: 0.3530 - accuracy: 0.9150

 7/65 [==>...........................] - ETA: 15s - loss: 0.3496 - accuracy: 0.9153

 8/65 [==>...........................] - ETA: 15s - loss: 0.3517 - accuracy: 0.9155

 9/65 [===>..........................] - ETA: 14s - loss: 0.3493 - accuracy: 0.9166

10/65 [===>..........................] - ETA: 14s - loss: 0.3486 - accuracy: 0.9170

11/65 [====>.........................] - ETA: 14s - loss: 0.3457 - accuracy: 0.9186

12/65 [====>.........................] - ETA: 13s - loss: 0.3446 - accuracy: 0.9190

13/65 [=====>........................] - ETA: 13s - loss: 0.3457 - accuracy: 0.9190

14/65 [=====>........................] - ETA: 13s - loss: 0.3454 - accuracy: 0.9191

15/65 [=====>........................] - ETA: 12s - loss: 0.3439 - accuracy: 0.9196

16/65 [======>.......................] - ETA: 12s - loss: 0.3425 - accuracy: 0.9199

17/65 [======>.......................] - ETA: 12s - loss: 0.3406 - accuracy: 0.9197

18/65 [=======>......................] - ETA: 12s - loss: 0.3394 - accuracy: 0.9197

19/65 [=======>......................] - ETA: 11s - loss: 0.3398 - accuracy: 0.9196

20/65 [========>.....................] - ETA: 11s - loss: 0.3397 - accuracy: 0.9190

21/65 [========>.....................] - ETA: 11s - loss: 0.3404 - accuracy: 0.9192

22/65 [=========>....................] - ETA: 11s - loss: 0.3408 - accuracy: 0.9193

23/65 [=========>....................] - ETA: 10s - loss: 0.3419 - accuracy: 0.9189

24/65 [==========>...................] - ETA: 10s - loss: 0.3440 - accuracy: 0.9181

25/65 [==========>...................] - ETA: 10s - loss: 0.3422 - accuracy: 0.9182

26/65 [===========>..................] - ETA: 10s - loss: 0.3415 - accuracy: 0.9183

27/65 [===========>..................] - ETA: 9s - loss: 0.3422 - accuracy: 0.9180 

28/65 [===========>..................] - ETA: 9s - loss: 0.3418 - accuracy: 0.9176

29/65 [============>.................] - ETA: 9s - loss: 0.3413 - accuracy: 0.9178

30/65 [============>.................] - ETA: 8s - loss: 0.3433 - accuracy: 0.9169

31/65 [=============>................] - ETA: 8s - loss: 0.3435 - accuracy: 0.9169

32/65 [=============>................] - ETA: 8s - loss: 0.3437 - accuracy: 0.9170

33/65 [==============>...............] - ETA: 8s - loss: 0.3426 - accuracy: 0.9173

34/65 [==============>...............] - ETA: 7s - loss: 0.3426 - accuracy: 0.9171

35/65 [===============>..............] - ETA: 7s - loss: 0.3437 - accuracy: 0.9167

36/65 [===============>..............] - ETA: 7s - loss: 0.3439 - accuracy: 0.9166

37/65 [================>.............] - ETA: 7s - loss: 0.3445 - accuracy: 0.9163

38/65 [================>.............] - ETA: 6s - loss: 0.3454 - accuracy: 0.9161

39/65 [=================>............] - ETA: 6s - loss: 0.3445 - accuracy: 0.9164

40/65 [=================>............] - ETA: 6s - loss: 0.3469 - accuracy: 0.9159

41/65 [=================>............] - ETA: 6s - loss: 0.3471 - accuracy: 0.9158

42/65 [==================>...........] - ETA: 5s - loss: 0.3463 - accuracy: 0.9159

43/65 [==================>...........] - ETA: 5s - loss: 0.3450 - accuracy: 0.9163

44/65 [===================>..........] - ETA: 5s - loss: 0.3442 - accuracy: 0.9162

45/65 [===================>..........] - ETA: 5s - loss: 0.3441 - accuracy: 0.9163

46/65 [====================>.........] - ETA: 4s - loss: 0.3453 - accuracy: 0.9158

47/65 [====================>.........] - ETA: 4s - loss: 0.3457 - accuracy: 0.9157

48/65 [=====================>........] - ETA: 4s - loss: 0.3457 - accuracy: 0.9157

49/65 [=====================>........] - ETA: 4s - loss: 0.3451 - accuracy: 0.9158

50/65 [======================>.......] - ETA: 3s - loss: 0.3444 - accuracy: 0.9158

51/65 [======================>.......] - ETA: 3s - loss: 0.3442 - accuracy: 0.9158

52/65 [=======================>......] - ETA: 3s - loss: 0.3430 - accuracy: 0.9163

53/65 [=======================>......] - ETA: 3s - loss: 0.3426 - accuracy: 0.9165

54/65 [=======================>......] - ETA: 2s - loss: 0.3423 - accuracy: 0.9166

55/65 [========================>.....] - ETA: 2s - loss: 0.3421 - accuracy: 0.9167

56/65 [========================>.....] - ETA: 2s - loss: 0.3414 - accuracy: 0.9167

57/65 [=========================>....] - ETA: 2s - loss: 0.3409 - accuracy: 0.9169

58/65 [=========================>....] - ETA: 1s - loss: 0.3410 - accuracy: 0.9170

59/65 [==========================>...] - ETA: 1s - loss: 0.3416 - accuracy: 0.9168

60/65 [==========================>...] - ETA: 1s - loss: 0.3414 - accuracy: 0.9167

61/65 [===========================>..] - ETA: 1s - loss: 0.3418 - accuracy: 0.9165

62/65 [===========================>..] - ETA: 0s - loss: 0.3412 - accuracy: 0.9167

63/65 [============================>.] - ETA: 0s - loss: 0.3405 - accuracy: 0.9169

64/65 [============================>.] - ETA: 0s - loss: 0.3400 - accuracy: 0.9171

65/65 [==============================] - ETA: 0s - loss: 0.3401 - accuracy: 0.9170

65/65 [==============================] - 17s 260ms/step - loss: 0.3401 - accuracy: 0.9170 - val_loss: 0.4535 - val_accuracy: 0.8833 - lr: 0.0015
Epoch 21/30
 1/65 [..............................] - ETA: 31s - loss: 0.3349 - accuracy: 0.9189

 2/65 [..............................] - ETA: 16s - loss: 0.3358 - accuracy: 0.9185

 3/65 [>.............................] - ETA: 16s - loss: 0.3524 - accuracy: 0.9163

 4/65 [>.............................] - ETA: 16s - loss: 0.3437 - accuracy: 0.9180

 5/65 [=>............................] - ETA: 15s - loss: 0.3479 - accuracy: 0.9158

 6/65 [=>............................] - ETA: 15s - loss: 0.3520 - accuracy: 0.9139

 7/65 [==>...........................] - ETA: 15s - loss: 0.3494 - accuracy: 0.9136

 8/65 [==>...........................] - ETA: 14s - loss: 0.3484 - accuracy: 0.9139

 9/65 [===>..........................] - ETA: 14s - loss: 0.3454 - accuracy: 0.9158

10/65 [===>..........................] - ETA: 14s - loss: 0.3462 - accuracy: 0.9166

11/65 [====>.........................] - ETA: 13s - loss: 0.3443 - accuracy: 0.9168

12/65 [====>.........................] - ETA: 13s - loss: 0.3428 - accuracy: 0.9172

13/65 [=====>........................] - ETA: 13s - loss: 0.3429 - accuracy: 0.9175

14/65 [=====>........................] - ETA: 13s - loss: 0.3438 - accuracy: 0.9172

15/65 [=====>........................] - ETA: 12s - loss: 0.3430 - accuracy: 0.9173

16/65 [======>.......................] - ETA: 12s - loss: 0.3448 - accuracy: 0.9170

17/65 [======>.......................] - ETA: 12s - loss: 0.3446 - accuracy: 0.9170

18/65 [=======>......................] - ETA: 12s - loss: 0.3433 - accuracy: 0.9172

19/65 [=======>......................] - ETA: 11s - loss: 0.3441 - accuracy: 0.9170

20/65 [========>.....................] - ETA: 11s - loss: 0.3433 - accuracy: 0.9167

21/65 [========>.....................] - ETA: 11s - loss: 0.3438 - accuracy: 0.9167

22/65 [=========>....................] - ETA: 11s - loss: 0.3438 - accuracy: 0.9169

23/65 [=========>....................] - ETA: 10s - loss: 0.3432 - accuracy: 0.9173

24/65 [==========>...................] - ETA: 10s - loss: 0.3443 - accuracy: 0.9168

25/65 [==========>...................] - ETA: 10s - loss: 0.3442 - accuracy: 0.9169

26/65 [===========>..................] - ETA: 9s - loss: 0.3427 - accuracy: 0.9172 

27/65 [===========>..................] - ETA: 9s - loss: 0.3422 - accuracy: 0.9171

28/65 [===========>..................] - ETA: 9s - loss: 0.3413 - accuracy: 0.9172

29/65 [============>.................] - ETA: 9s - loss: 0.3415 - accuracy: 0.9171

30/65 [============>.................] - ETA: 8s - loss: 0.3419 - accuracy: 0.9166

31/65 [=============>................] - ETA: 8s - loss: 0.3430 - accuracy: 0.9166

32/65 [=============>................] - ETA: 8s - loss: 0.3434 - accuracy: 0.9166

33/65 [==============>...............] - ETA: 8s - loss: 0.3441 - accuracy: 0.9162

34/65 [==============>...............] - ETA: 7s - loss: 0.3424 - accuracy: 0.9166

35/65 [===============>..............] - ETA: 7s - loss: 0.3430 - accuracy: 0.9165

36/65 [===============>..............] - ETA: 7s - loss: 0.3429 - accuracy: 0.9163

37/65 [================>.............] - ETA: 7s - loss: 0.3446 - accuracy: 0.9157

38/65 [================>.............] - ETA: 6s - loss: 0.3441 - accuracy: 0.9158

39/65 [=================>............] - ETA: 6s - loss: 0.3444 - accuracy: 0.9159

40/65 [=================>............] - ETA: 6s - loss: 0.3440 - accuracy: 0.9160

41/65 [=================>............] - ETA: 6s - loss: 0.3449 - accuracy: 0.9159

42/65 [==================>...........] - ETA: 5s - loss: 0.3442 - accuracy: 0.9161

43/65 [==================>...........] - ETA: 5s - loss: 0.3441 - accuracy: 0.9163

44/65 [===================>..........] - ETA: 5s - loss: 0.3439 - accuracy: 0.9162

45/65 [===================>..........] - ETA: 5s - loss: 0.3429 - accuracy: 0.9164

46/65 [====================>.........] - ETA: 4s - loss: 0.3432 - accuracy: 0.9163

47/65 [====================>.........] - ETA: 4s - loss: 0.3429 - accuracy: 0.9166

48/65 [=====================>........] - ETA: 4s - loss: 0.3427 - accuracy: 0.9167

49/65 [=====================>........] - ETA: 4s - loss: 0.3430 - accuracy: 0.9168

50/65 [======================>.......] - ETA: 3s - loss: 0.3428 - accuracy: 0.9169

51/65 [======================>.......] - ETA: 3s - loss: 0.3418 - accuracy: 0.9171

52/65 [=======================>......] - ETA: 3s - loss: 0.3416 - accuracy: 0.9170

53/65 [=======================>......] - ETA: 3s - loss: 0.3418 - accuracy: 0.9169

54/65 [=======================>......] - ETA: 2s - loss: 0.3412 - accuracy: 0.9171

55/65 [========================>.....] - ETA: 2s - loss: 0.3414 - accuracy: 0.9170

56/65 [========================>.....] - ETA: 2s - loss: 0.3404 - accuracy: 0.9172

57/65 [=========================>....] - ETA: 2s - loss: 0.3398 - accuracy: 0.9174

58/65 [=========================>....] - ETA: 1s - loss: 0.3401 - accuracy: 0.9173

59/65 [==========================>...] - ETA: 1s - loss: 0.3392 - accuracy: 0.9175

60/65 [==========================>...] - ETA: 1s - loss: 0.3389 - accuracy: 0.9176

61/65 [===========================>..] - ETA: 1s - loss: 0.3380 - accuracy: 0.9176

62/65 [===========================>..] - ETA: 0s - loss: 0.3383 - accuracy: 0.9177

63/65 [============================>.] - ETA: 0s - loss: 0.3380 - accuracy: 0.9179

64/65 [============================>.] - ETA: 0s - loss: 0.3381 - accuracy: 0.9178

65/65 [==============================] - ETA: 0s - loss: 0.3380 - accuracy: 0.9179

65/65 [==============================] - 17s 259ms/step - loss: 0.3380 - accuracy: 0.9179 - val_loss: 0.4673 - val_accuracy: 0.8804 - lr: 0.0015
Epoch 22/30
 1/65 [..............................] - ETA: 30s - loss: 0.3355 - accuracy: 0.9238

 2/65 [..............................] - ETA: 15s - loss: 0.3230 - accuracy: 0.9258

 3/65 [>.............................] - ETA: 15s - loss: 0.3388 - accuracy: 0.9186

 4/65 [>.............................] - ETA: 15s - loss: 0.3315 - accuracy: 0.9216

 5/65 [=>............................] - ETA: 15s - loss: 0.3424 - accuracy: 0.9193

 6/65 [=>............................] - ETA: 14s - loss: 0.3460 - accuracy: 0.9172

 7/65 [==>...........................] - ETA: 14s - loss: 0.3418 - accuracy: 0.9181

 8/65 [==>...........................] - ETA: 14s - loss: 0.3425 - accuracy: 0.9175

 9/65 [===>..........................] - ETA: 14s - loss: 0.3445 - accuracy: 0.9180

10/65 [===>..........................] - ETA: 13s - loss: 0.3484 - accuracy: 0.9163

11/65 [====>.........................] - ETA: 13s - loss: 0.3481 - accuracy: 0.9157

12/65 [====>.........................] - ETA: 13s - loss: 0.3454 - accuracy: 0.9173

13/65 [=====>........................] - ETA: 13s - loss: 0.3444 - accuracy: 0.9174

14/65 [=====>........................] - ETA: 12s - loss: 0.3438 - accuracy: 0.9180

15/65 [=====>........................] - ETA: 12s - loss: 0.3437 - accuracy: 0.9181

16/65 [======>.......................] - ETA: 12s - loss: 0.3434 - accuracy: 0.9183

17/65 [======>.......................] - ETA: 12s - loss: 0.3418 - accuracy: 0.9187

18/65 [=======>......................] - ETA: 11s - loss: 0.3412 - accuracy: 0.9186

19/65 [=======>......................] - ETA: 11s - loss: 0.3400 - accuracy: 0.9193

20/65 [========>.....................] - ETA: 11s - loss: 0.3399 - accuracy: 0.9193

21/65 [========>.....................] - ETA: 11s - loss: 0.3392 - accuracy: 0.9191

22/65 [=========>....................] - ETA: 10s - loss: 0.3393 - accuracy: 0.9187

23/65 [=========>....................] - ETA: 10s - loss: 0.3384 - accuracy: 0.9188

24/65 [==========>...................] - ETA: 10s - loss: 0.3405 - accuracy: 0.9179

25/65 [==========>...................] - ETA: 10s - loss: 0.3396 - accuracy: 0.9180

26/65 [===========>..................] - ETA: 9s - loss: 0.3396 - accuracy: 0.9176 

27/65 [===========>..................] - ETA: 9s - loss: 0.3389 - accuracy: 0.9178

28/65 [===========>..................] - ETA: 9s - loss: 0.3401 - accuracy: 0.9172

29/65 [============>.................] - ETA: 9s - loss: 0.3399 - accuracy: 0.9171

30/65 [============>.................] - ETA: 8s - loss: 0.3396 - accuracy: 0.9170

31/65 [=============>................] - ETA: 8s - loss: 0.3391 - accuracy: 0.9169

32/65 [=============>................] - ETA: 8s - loss: 0.3416 - accuracy: 0.9164

33/65 [==============>...............] - ETA: 8s - loss: 0.3410 - accuracy: 0.9163

34/65 [==============>...............] - ETA: 7s - loss: 0.3419 - accuracy: 0.9164

35/65 [===============>..............] - ETA: 7s - loss: 0.3419 - accuracy: 0.9164

36/65 [===============>..............] - ETA: 7s - loss: 0.3416 - accuracy: 0.9163

37/65 [================>.............] - ETA: 7s - loss: 0.3414 - accuracy: 0.9166

38/65 [================>.............] - ETA: 6s - loss: 0.3422 - accuracy: 0.9165

39/65 [=================>............] - ETA: 6s - loss: 0.3428 - accuracy: 0.9164

40/65 [=================>............] - ETA: 6s - loss: 0.3422 - accuracy: 0.9167

41/65 [=================>............] - ETA: 6s - loss: 0.3413 - accuracy: 0.9170

42/65 [==================>...........] - ETA: 5s - loss: 0.3406 - accuracy: 0.9172

43/65 [==================>...........] - ETA: 5s - loss: 0.3415 - accuracy: 0.9170

44/65 [===================>..........] - ETA: 5s - loss: 0.3412 - accuracy: 0.9172

45/65 [===================>..........] - ETA: 5s - loss: 0.3405 - accuracy: 0.9172

46/65 [====================>.........] - ETA: 4s - loss: 0.3402 - accuracy: 0.9173

47/65 [====================>.........] - ETA: 4s - loss: 0.3401 - accuracy: 0.9174

48/65 [=====================>........] - ETA: 4s - loss: 0.3400 - accuracy: 0.9174

49/65 [=====================>........] - ETA: 4s - loss: 0.3395 - accuracy: 0.9175

50/65 [======================>.......] - ETA: 3s - loss: 0.3391 - accuracy: 0.9176

51/65 [======================>.......] - ETA: 3s - loss: 0.3390 - accuracy: 0.9175

52/65 [=======================>......] - ETA: 3s - loss: 0.3380 - accuracy: 0.9177

53/65 [=======================>......] - ETA: 3s - loss: 0.3383 - accuracy: 0.9174

54/65 [=======================>......] - ETA: 2s - loss: 0.3380 - accuracy: 0.9175

55/65 [========================>.....] - ETA: 2s - loss: 0.3380 - accuracy: 0.9175

56/65 [========================>.....] - ETA: 2s - loss: 0.3376 - accuracy: 0.9177

57/65 [=========================>....] - ETA: 2s - loss: 0.3369 - accuracy: 0.9179

58/65 [=========================>....] - ETA: 1s - loss: 0.3363 - accuracy: 0.9181

59/65 [==========================>...] - ETA: 1s - loss: 0.3364 - accuracy: 0.9181

60/65 [==========================>...] - ETA: 1s - loss: 0.3370 - accuracy: 0.9181

61/65 [===========================>..] - ETA: 1s - loss: 0.3375 - accuracy: 0.9179

62/65 [===========================>..] - ETA: 0s - loss: 0.3371 - accuracy: 0.9179

63/65 [============================>.] - ETA: 0s - loss: 0.3366 - accuracy: 0.9181

64/65 [============================>.] - ETA: 0s - loss: 0.3366 - accuracy: 0.9182

65/65 [==============================] - ETA: 0s - loss: 0.3364 - accuracy: 0.9182
Epoch 22: ReduceLROnPlateau reducing learning rate to 0.000750000006519258.

65/65 [==============================] - 17s 260ms/step - loss: 0.3364 - accuracy: 0.9182 - val_loss: 0.4595 - val_accuracy: 0.8826 - lr: 0.0015
Epoch 23/30
 1/65 [..............................] - ETA: 30s - loss: 0.3563 - accuracy: 0.9102

 2/65 [..............................] - ETA: 15s - loss: 0.3487 - accuracy: 0.9165

 3/65 [>.............................] - ETA: 16s - loss: 0.3409 - accuracy: 0.9176

 4/65 [>.............................] - ETA: 15s - loss: 0.3377 - accuracy: 0.9199

 5/65 [=>............................] - ETA: 15s - loss: 0.3403 - accuracy: 0.9203

 6/65 [=>............................] - ETA: 15s - loss: 0.3403 - accuracy: 0.9199

 7/65 [==>...........................] - ETA: 14s - loss: 0.3464 - accuracy: 0.9181

 8/65 [==>...........................] - ETA: 14s - loss: 0.3395 - accuracy: 0.9202

 9/65 [===>..........................] - ETA: 14s - loss: 0.3387 - accuracy: 0.9204

10/65 [===>..........................] - ETA: 13s - loss: 0.3358 - accuracy: 0.9202

11/65 [====>.........................] - ETA: 13s - loss: 0.3363 - accuracy: 0.9204

12/65 [====>.........................] - ETA: 13s - loss: 0.3384 - accuracy: 0.9198

13/65 [=====>........................] - ETA: 13s - loss: 0.3352 - accuracy: 0.9212

14/65 [=====>........................] - ETA: 12s - loss: 0.3361 - accuracy: 0.9209

15/65 [=====>........................] - ETA: 12s - loss: 0.3349 - accuracy: 0.9210

16/65 [======>.......................] - ETA: 12s - loss: 0.3353 - accuracy: 0.9210

17/65 [======>.......................] - ETA: 12s - loss: 0.3354 - accuracy: 0.9202

18/65 [=======>......................] - ETA: 11s - loss: 0.3357 - accuracy: 0.9201

19/65 [=======>......................] - ETA: 11s - loss: 0.3339 - accuracy: 0.9206

20/65 [========>.....................] - ETA: 11s - loss: 0.3350 - accuracy: 0.9197

21/65 [========>.....................] - ETA: 11s - loss: 0.3339 - accuracy: 0.9201

22/65 [=========>....................] - ETA: 10s - loss: 0.3341 - accuracy: 0.9200

23/65 [=========>....................] - ETA: 10s - loss: 0.3358 - accuracy: 0.9196

24/65 [==========>...................] - ETA: 10s - loss: 0.3347 - accuracy: 0.9201

25/65 [==========>...................] - ETA: 10s - loss: 0.3351 - accuracy: 0.9200

26/65 [===========>..................] - ETA: 9s - loss: 0.3341 - accuracy: 0.9201 

27/65 [===========>..................] - ETA: 9s - loss: 0.3330 - accuracy: 0.9205

28/65 [===========>..................] - ETA: 9s - loss: 0.3327 - accuracy: 0.9203

29/65 [============>.................] - ETA: 9s - loss: 0.3332 - accuracy: 0.9200

30/65 [============>.................] - ETA: 8s - loss: 0.3327 - accuracy: 0.9203

31/65 [=============>................] - ETA: 8s - loss: 0.3319 - accuracy: 0.9206

32/65 [=============>................] - ETA: 8s - loss: 0.3329 - accuracy: 0.9207

33/65 [==============>...............] - ETA: 8s - loss: 0.3331 - accuracy: 0.9203

34/65 [==============>...............] - ETA: 7s - loss: 0.3330 - accuracy: 0.9201

35/65 [===============>..............] - ETA: 7s - loss: 0.3325 - accuracy: 0.9199

36/65 [===============>..............] - ETA: 7s - loss: 0.3333 - accuracy: 0.9198

37/65 [================>.............] - ETA: 7s - loss: 0.3340 - accuracy: 0.9194

38/65 [================>.............] - ETA: 6s - loss: 0.3344 - accuracy: 0.9195

39/65 [=================>............] - ETA: 6s - loss: 0.3339 - accuracy: 0.9195

40/65 [=================>............] - ETA: 6s - loss: 0.3333 - accuracy: 0.9197

41/65 [=================>............] - ETA: 6s - loss: 0.3335 - accuracy: 0.9195

42/65 [==================>...........] - ETA: 5s - loss: 0.3328 - accuracy: 0.9198

43/65 [==================>...........] - ETA: 5s - loss: 0.3331 - accuracy: 0.9198

44/65 [===================>..........] - ETA: 5s - loss: 0.3325 - accuracy: 0.9201

45/65 [===================>..........] - ETA: 5s - loss: 0.3330 - accuracy: 0.9199

46/65 [====================>.........] - ETA: 4s - loss: 0.3323 - accuracy: 0.9200

47/65 [====================>.........] - ETA: 4s - loss: 0.3315 - accuracy: 0.9202

48/65 [=====================>........] - ETA: 4s - loss: 0.3319 - accuracy: 0.9202

49/65 [=====================>........] - ETA: 4s - loss: 0.3315 - accuracy: 0.9203

50/65 [======================>.......] - ETA: 3s - loss: 0.3310 - accuracy: 0.9203

51/65 [======================>.......] - ETA: 3s - loss: 0.3299 - accuracy: 0.9206

52/65 [=======================>......] - ETA: 3s - loss: 0.3300 - accuracy: 0.9206

53/65 [=======================>......] - ETA: 3s - loss: 0.3293 - accuracy: 0.9206

54/65 [=======================>......] - ETA: 2s - loss: 0.3287 - accuracy: 0.9209

55/65 [========================>.....] - ETA: 2s - loss: 0.3287 - accuracy: 0.9209

56/65 [========================>.....] - ETA: 2s - loss: 0.3279 - accuracy: 0.9211

57/65 [=========================>....] - ETA: 2s - loss: 0.3273 - accuracy: 0.9212

58/65 [=========================>....] - ETA: 1s - loss: 0.3273 - accuracy: 0.9212

59/65 [==========================>...] - ETA: 1s - loss: 0.3267 - accuracy: 0.9215

60/65 [==========================>...] - ETA: 1s - loss: 0.3266 - accuracy: 0.9214

61/65 [===========================>..] - ETA: 1s - loss: 0.3261 - accuracy: 0.9217

62/65 [===========================>..] - ETA: 0s - loss: 0.3259 - accuracy: 0.9217

63/65 [============================>.] - ETA: 0s - loss: 0.3256 - accuracy: 0.9217

64/65 [============================>.] - ETA: 0s - loss: 0.3261 - accuracy: 0.9217

65/65 [==============================] - ETA: 0s - loss: 0.3261 - accuracy: 0.9217

65/65 [==============================] - 17s 259ms/step - loss: 0.3261 - accuracy: 0.9217 - val_loss: 0.4458 - val_accuracy: 0.8851 - lr: 7.5000e-04
Epoch 24/30
 1/65 [..............................] - ETA: 30s - loss: 0.3380 - accuracy: 0.9209

 2/65 [..............................] - ETA: 16s - loss: 0.3434 - accuracy: 0.9238

 3/65 [>.............................] - ETA: 16s - loss: 0.3441 - accuracy: 0.9235

 4/65 [>.............................] - ETA: 15s - loss: 0.3302 - accuracy: 0.9253

 5/65 [=>............................] - ETA: 15s - loss: 0.3321 - accuracy: 0.9242

 6/65 [=>............................] - ETA: 15s - loss: 0.3355 - accuracy: 0.9211

 7/65 [==>...........................] - ETA: 15s - loss: 0.3337 - accuracy: 0.9196

 8/65 [==>...........................] - ETA: 14s - loss: 0.3337 - accuracy: 0.9175

 9/65 [===>..........................] - ETA: 14s - loss: 0.3336 - accuracy: 0.9184

10/65 [===>..........................] - ETA: 14s - loss: 0.3313 - accuracy: 0.9192

11/65 [====>.........................] - ETA: 13s - loss: 0.3285 - accuracy: 0.9205

12/65 [====>.........................] - ETA: 13s - loss: 0.3296 - accuracy: 0.9203

13/65 [=====>........................] - ETA: 13s - loss: 0.3310 - accuracy: 0.9200

14/65 [=====>........................] - ETA: 13s - loss: 0.3298 - accuracy: 0.9208

15/65 [=====>........................] - ETA: 12s - loss: 0.3326 - accuracy: 0.9200

16/65 [======>.......................] - ETA: 12s - loss: 0.3322 - accuracy: 0.9198

17/65 [======>.......................] - ETA: 12s - loss: 0.3323 - accuracy: 0.9198

18/65 [=======>......................] - ETA: 12s - loss: 0.3325 - accuracy: 0.9198

19/65 [=======>......................] - ETA: 11s - loss: 0.3314 - accuracy: 0.9202

20/65 [========>.....................] - ETA: 11s - loss: 0.3338 - accuracy: 0.9199

21/65 [========>.....................] - ETA: 11s - loss: 0.3320 - accuracy: 0.9204

22/65 [=========>....................] - ETA: 10s - loss: 0.3300 - accuracy: 0.9213

23/65 [=========>....................] - ETA: 10s - loss: 0.3295 - accuracy: 0.9211

24/65 [==========>...................] - ETA: 10s - loss: 0.3294 - accuracy: 0.9210

25/65 [==========>...................] - ETA: 10s - loss: 0.3288 - accuracy: 0.9214

26/65 [===========>..................] - ETA: 10s - loss: 0.3281 - accuracy: 0.9213

27/65 [===========>..................] - ETA: 9s - loss: 0.3277 - accuracy: 0.9212 

28/65 [===========>..................] - ETA: 9s - loss: 0.3271 - accuracy: 0.9211

29/65 [============>.................] - ETA: 9s - loss: 0.3282 - accuracy: 0.9211

30/65 [============>.................] - ETA: 8s - loss: 0.3288 - accuracy: 0.9206

31/65 [=============>................] - ETA: 8s - loss: 0.3278 - accuracy: 0.9207

32/65 [=============>................] - ETA: 8s - loss: 0.3279 - accuracy: 0.9207

33/65 [==============>...............] - ETA: 8s - loss: 0.3283 - accuracy: 0.9207

34/65 [==============>...............] - ETA: 7s - loss: 0.3298 - accuracy: 0.9203

35/65 [===============>..............] - ETA: 7s - loss: 0.3289 - accuracy: 0.9204

36/65 [===============>..............] - ETA: 7s - loss: 0.3289 - accuracy: 0.9204

37/65 [================>.............] - ETA: 7s - loss: 0.3309 - accuracy: 0.9199

38/65 [================>.............] - ETA: 6s - loss: 0.3309 - accuracy: 0.9200

39/65 [=================>............] - ETA: 6s - loss: 0.3301 - accuracy: 0.9201

40/65 [=================>............] - ETA: 6s - loss: 0.3289 - accuracy: 0.9203

41/65 [=================>............] - ETA: 6s - loss: 0.3296 - accuracy: 0.9201

42/65 [==================>...........] - ETA: 5s - loss: 0.3289 - accuracy: 0.9202

43/65 [==================>...........] - ETA: 5s - loss: 0.3287 - accuracy: 0.9203

44/65 [===================>..........] - ETA: 5s - loss: 0.3293 - accuracy: 0.9202

45/65 [===================>..........] - ETA: 5s - loss: 0.3293 - accuracy: 0.9203

46/65 [====================>.........] - ETA: 4s - loss: 0.3281 - accuracy: 0.9207

47/65 [====================>.........] - ETA: 4s - loss: 0.3271 - accuracy: 0.9209

48/65 [=====================>........] - ETA: 4s - loss: 0.3276 - accuracy: 0.9207

49/65 [=====================>........] - ETA: 4s - loss: 0.3274 - accuracy: 0.9209

50/65 [======================>.......] - ETA: 3s - loss: 0.3262 - accuracy: 0.9212

51/65 [======================>.......] - ETA: 3s - loss: 0.3253 - accuracy: 0.9215

52/65 [=======================>......] - ETA: 3s - loss: 0.3253 - accuracy: 0.9215

53/65 [=======================>......] - ETA: 3s - loss: 0.3252 - accuracy: 0.9215

54/65 [=======================>......] - ETA: 2s - loss: 0.3262 - accuracy: 0.9211

55/65 [========================>.....] - ETA: 2s - loss: 0.3248 - accuracy: 0.9214

56/65 [========================>.....] - ETA: 2s - loss: 0.3245 - accuracy: 0.9216

57/65 [=========================>....] - ETA: 2s - loss: 0.3241 - accuracy: 0.9217

58/65 [=========================>....] - ETA: 1s - loss: 0.3243 - accuracy: 0.9219

59/65 [==========================>...] - ETA: 1s - loss: 0.3241 - accuracy: 0.9219

60/65 [==========================>...] - ETA: 1s - loss: 0.3238 - accuracy: 0.9220

61/65 [===========================>..] - ETA: 1s - loss: 0.3237 - accuracy: 0.9221

62/65 [===========================>..] - ETA: 0s - loss: 0.3236 - accuracy: 0.9220

63/65 [============================>.] - ETA: 0s - loss: 0.3234 - accuracy: 0.9221

64/65 [============================>.] - ETA: 0s - loss: 0.3229 - accuracy: 0.9222

65/65 [==============================] - ETA: 0s - loss: 0.3229 - accuracy: 0.9222

65/65 [==============================] - 17s 260ms/step - loss: 0.3229 - accuracy: 0.9222 - val_loss: 0.4334 - val_accuracy: 0.8893 - lr: 7.5000e-04
Epoch 25/30
 1/65 [..............................] - ETA: 31s - loss: 0.3462 - accuracy: 0.9121

 2/65 [..............................] - ETA: 15s - loss: 0.3289 - accuracy: 0.9204

 3/65 [>.............................] - ETA: 15s - loss: 0.3281 - accuracy: 0.9202

 4/65 [>.............................] - ETA: 15s - loss: 0.3251 - accuracy: 0.9211

 5/65 [=>............................] - ETA: 15s - loss: 0.3321 - accuracy: 0.9213

 6/65 [=>............................] - ETA: 14s - loss: 0.3357 - accuracy: 0.9193

 7/65 [==>...........................] - ETA: 14s - loss: 0.3293 - accuracy: 0.9209

 8/65 [==>...........................] - ETA: 14s - loss: 0.3291 - accuracy: 0.9213

 9/65 [===>..........................] - ETA: 14s - loss: 0.3321 - accuracy: 0.9201

10/65 [===>..........................] - ETA: 13s - loss: 0.3285 - accuracy: 0.9210

11/65 [====>.........................] - ETA: 13s - loss: 0.3274 - accuracy: 0.9206

12/65 [====>.........................] - ETA: 13s - loss: 0.3276 - accuracy: 0.9204

13/65 [=====>........................] - ETA: 13s - loss: 0.3268 - accuracy: 0.9202

14/65 [=====>........................] - ETA: 12s - loss: 0.3279 - accuracy: 0.9207

15/65 [=====>........................] - ETA: 12s - loss: 0.3267 - accuracy: 0.9214

16/65 [======>.......................] - ETA: 12s - loss: 0.3250 - accuracy: 0.9216

17/65 [======>.......................] - ETA: 12s - loss: 0.3248 - accuracy: 0.9219

18/65 [=======>......................] - ETA: 12s - loss: 0.3234 - accuracy: 0.9223

19/65 [=======>......................] - ETA: 11s - loss: 0.3247 - accuracy: 0.9220

20/65 [========>.....................] - ETA: 11s - loss: 0.3227 - accuracy: 0.9226

21/65 [========>.....................] - ETA: 11s - loss: 0.3230 - accuracy: 0.9224

22/65 [=========>....................] - ETA: 11s - loss: 0.3231 - accuracy: 0.9221

23/65 [=========>....................] - ETA: 10s - loss: 0.3221 - accuracy: 0.9219

24/65 [==========>...................] - ETA: 10s - loss: 0.3226 - accuracy: 0.9220

25/65 [==========>...................] - ETA: 10s - loss: 0.3239 - accuracy: 0.9217

26/65 [===========>..................] - ETA: 9s - loss: 0.3237 - accuracy: 0.9215 

27/65 [===========>..................] - ETA: 9s - loss: 0.3243 - accuracy: 0.9217

28/65 [===========>..................] - ETA: 9s - loss: 0.3242 - accuracy: 0.9217

29/65 [============>.................] - ETA: 9s - loss: 0.3239 - accuracy: 0.9216

30/65 [============>.................] - ETA: 8s - loss: 0.3249 - accuracy: 0.9212

31/65 [=============>................] - ETA: 8s - loss: 0.3258 - accuracy: 0.9209

32/65 [=============>................] - ETA: 8s - loss: 0.3252 - accuracy: 0.9210

33/65 [==============>...............] - ETA: 8s - loss: 0.3254 - accuracy: 0.9211

34/65 [==============>...............] - ETA: 7s - loss: 0.3254 - accuracy: 0.9212

35/65 [===============>..............] - ETA: 7s - loss: 0.3267 - accuracy: 0.9207

36/65 [===============>..............] - ETA: 7s - loss: 0.3267 - accuracy: 0.9208

37/65 [================>.............] - ETA: 7s - loss: 0.3266 - accuracy: 0.9207

38/65 [================>.............] - ETA: 6s - loss: 0.3261 - accuracy: 0.9209

39/65 [=================>............] - ETA: 6s - loss: 0.3252 - accuracy: 0.9212

40/65 [=================>............] - ETA: 6s - loss: 0.3251 - accuracy: 0.9209

41/65 [=================>............] - ETA: 6s - loss: 0.3257 - accuracy: 0.9210

42/65 [==================>...........] - ETA: 5s - loss: 0.3264 - accuracy: 0.9211

43/65 [==================>...........] - ETA: 5s - loss: 0.3265 - accuracy: 0.9211

44/65 [===================>..........] - ETA: 5s - loss: 0.3270 - accuracy: 0.9210

45/65 [===================>..........] - ETA: 5s - loss: 0.3266 - accuracy: 0.9212

46/65 [====================>.........] - ETA: 4s - loss: 0.3268 - accuracy: 0.9213

47/65 [====================>.........] - ETA: 4s - loss: 0.3268 - accuracy: 0.9213

48/65 [=====================>........] - ETA: 4s - loss: 0.3261 - accuracy: 0.9215

49/65 [=====================>........] - ETA: 4s - loss: 0.3255 - accuracy: 0.9215

50/65 [======================>.......] - ETA: 3s - loss: 0.3242 - accuracy: 0.9219

51/65 [======================>.......] - ETA: 3s - loss: 0.3240 - accuracy: 0.9220

52/65 [=======================>......] - ETA: 3s - loss: 0.3232 - accuracy: 0.9221

53/65 [=======================>......] - ETA: 3s - loss: 0.3229 - accuracy: 0.9221

54/65 [=======================>......] - ETA: 2s - loss: 0.3225 - accuracy: 0.9223

55/65 [========================>.....] - ETA: 2s - loss: 0.3220 - accuracy: 0.9225

56/65 [========================>.....] - ETA: 2s - loss: 0.3216 - accuracy: 0.9226

57/65 [=========================>....] - ETA: 2s - loss: 0.3218 - accuracy: 0.9226

58/65 [=========================>....] - ETA: 1s - loss: 0.3220 - accuracy: 0.9224

59/65 [==========================>...] - ETA: 1s - loss: 0.3212 - accuracy: 0.9226

60/65 [==========================>...] - ETA: 1s - loss: 0.3211 - accuracy: 0.9227

61/65 [===========================>..] - ETA: 1s - loss: 0.3208 - accuracy: 0.9228

62/65 [===========================>..] - ETA: 0s - loss: 0.3208 - accuracy: 0.9229

63/65 [============================>.] - ETA: 0s - loss: 0.3203 - accuracy: 0.9230

64/65 [============================>.] - ETA: 0s - loss: 0.3206 - accuracy: 0.9229

65/65 [==============================] - ETA: 0s - loss: 0.3204 - accuracy: 0.9230

65/65 [==============================] - 17s 259ms/step - loss: 0.3204 - accuracy: 0.9230 - val_loss: 0.4341 - val_accuracy: 0.8879 - lr: 7.5000e-04
Epoch 26/30
 1/65 [..............................] - ETA: 30s - loss: 0.3552 - accuracy: 0.9082

 2/65 [..............................] - ETA: 15s - loss: 0.3562 - accuracy: 0.9131

 3/65 [>.............................] - ETA: 16s - loss: 0.3389 - accuracy: 0.9154

 4/65 [>.............................] - ETA: 15s - loss: 0.3440 - accuracy: 0.9136

 5/65 [=>............................] - ETA: 15s - loss: 0.3360 - accuracy: 0.9164

 6/65 [=>............................] - ETA: 15s - loss: 0.3362 - accuracy: 0.9178

 7/65 [==>...........................] - ETA: 15s - loss: 0.3360 - accuracy: 0.9178

 8/65 [==>...........................] - ETA: 14s - loss: 0.3327 - accuracy: 0.9189

 9/65 [===>..........................] - ETA: 14s - loss: 0.3297 - accuracy: 0.9201

10/65 [===>..........................] - ETA: 14s - loss: 0.3275 - accuracy: 0.9217

11/65 [====>.........................] - ETA: 14s - loss: 0.3252 - accuracy: 0.9226

12/65 [====>.........................] - ETA: 13s - loss: 0.3224 - accuracy: 0.9229

13/65 [=====>........................] - ETA: 13s - loss: 0.3218 - accuracy: 0.9220

14/65 [=====>........................] - ETA: 13s - loss: 0.3226 - accuracy: 0.9215

15/65 [=====>........................] - ETA: 13s - loss: 0.3214 - accuracy: 0.9215

16/65 [======>.......................] - ETA: 12s - loss: 0.3227 - accuracy: 0.9215

17/65 [======>.......................] - ETA: 12s - loss: 0.3257 - accuracy: 0.9206

18/65 [=======>......................] - ETA: 12s - loss: 0.3224 - accuracy: 0.9218

19/65 [=======>......................] - ETA: 11s - loss: 0.3218 - accuracy: 0.9224

20/65 [========>.....................] - ETA: 11s - loss: 0.3226 - accuracy: 0.9222

21/65 [========>.....................] - ETA: 11s - loss: 0.3217 - accuracy: 0.9226

22/65 [=========>....................] - ETA: 11s - loss: 0.3242 - accuracy: 0.9218

23/65 [=========>....................] - ETA: 10s - loss: 0.3235 - accuracy: 0.9217

24/65 [==========>...................] - ETA: 10s - loss: 0.3230 - accuracy: 0.9215

25/65 [==========>...................] - ETA: 10s - loss: 0.3236 - accuracy: 0.9213

26/65 [===========>..................] - ETA: 10s - loss: 0.3233 - accuracy: 0.9213

27/65 [===========>..................] - ETA: 9s - loss: 0.3224 - accuracy: 0.9219 

28/65 [===========>..................] - ETA: 9s - loss: 0.3214 - accuracy: 0.9222

29/65 [============>.................] - ETA: 9s - loss: 0.3224 - accuracy: 0.9221

30/65 [============>.................] - ETA: 9s - loss: 0.3228 - accuracy: 0.9220

31/65 [=============>................] - ETA: 8s - loss: 0.3219 - accuracy: 0.9223

32/65 [=============>................] - ETA: 8s - loss: 0.3229 - accuracy: 0.9222

33/65 [==============>...............] - ETA: 8s - loss: 0.3235 - accuracy: 0.9221

34/65 [==============>...............] - ETA: 8s - loss: 0.3239 - accuracy: 0.9219

35/65 [===============>..............] - ETA: 7s - loss: 0.3251 - accuracy: 0.9214

36/65 [===============>..............] - ETA: 7s - loss: 0.3258 - accuracy: 0.9212

37/65 [================>.............] - ETA: 7s - loss: 0.3258 - accuracy: 0.9209

38/65 [================>.............] - ETA: 6s - loss: 0.3251 - accuracy: 0.9212

39/65 [=================>............] - ETA: 6s - loss: 0.3243 - accuracy: 0.9214

40/65 [=================>............] - ETA: 6s - loss: 0.3251 - accuracy: 0.9212

41/65 [=================>............] - ETA: 6s - loss: 0.3251 - accuracy: 0.9212

42/65 [==================>...........] - ETA: 5s - loss: 0.3245 - accuracy: 0.9215

43/65 [==================>...........] - ETA: 5s - loss: 0.3239 - accuracy: 0.9217

44/65 [===================>..........] - ETA: 5s - loss: 0.3239 - accuracy: 0.9217

45/65 [===================>..........] - ETA: 5s - loss: 0.3237 - accuracy: 0.9217

46/65 [====================>.........] - ETA: 4s - loss: 0.3239 - accuracy: 0.9215

47/65 [====================>.........] - ETA: 4s - loss: 0.3242 - accuracy: 0.9215

48/65 [=====================>........] - ETA: 4s - loss: 0.3235 - accuracy: 0.9219

49/65 [=====================>........] - ETA: 4s - loss: 0.3241 - accuracy: 0.9217

50/65 [======================>.......] - ETA: 3s - loss: 0.3234 - accuracy: 0.9218

51/65 [======================>.......] - ETA: 3s - loss: 0.3220 - accuracy: 0.9223

52/65 [=======================>......] - ETA: 3s - loss: 0.3225 - accuracy: 0.9222

53/65 [=======================>......] - ETA: 3s - loss: 0.3223 - accuracy: 0.9223

54/65 [=======================>......] - ETA: 2s - loss: 0.3219 - accuracy: 0.9223

55/65 [========================>.....] - ETA: 2s - loss: 0.3219 - accuracy: 0.9225

56/65 [========================>.....] - ETA: 2s - loss: 0.3212 - accuracy: 0.9225

57/65 [=========================>....] - ETA: 2s - loss: 0.3206 - accuracy: 0.9227

58/65 [=========================>....] - ETA: 1s - loss: 0.3203 - accuracy: 0.9228

59/65 [==========================>...] - ETA: 1s - loss: 0.3198 - accuracy: 0.9229

60/65 [==========================>...] - ETA: 1s - loss: 0.3197 - accuracy: 0.9228

61/65 [===========================>..] - ETA: 1s - loss: 0.3195 - accuracy: 0.9228

62/65 [===========================>..] - ETA: 0s - loss: 0.3197 - accuracy: 0.9229

63/65 [============================>.] - ETA: 0s - loss: 0.3202 - accuracy: 0.9229

64/65 [============================>.] - ETA: 0s - loss: 0.3196 - accuracy: 0.9230

65/65 [==============================] - ETA: 0s - loss: 0.3201 - accuracy: 0.9228

65/65 [==============================] - 17s 262ms/step - loss: 0.3201 - accuracy: 0.9228 - val_loss: 0.4342 - val_accuracy: 0.8890 - lr: 7.5000e-04
Epoch 27/30
 1/65 [..............................] - ETA: 29s - loss: 0.3093 - accuracy: 0.9248

 2/65 [..............................] - ETA: 15s - loss: 0.3270 - accuracy: 0.9219

 3/65 [>.............................] - ETA: 15s - loss: 0.3246 - accuracy: 0.9229

 4/65 [>.............................] - ETA: 16s - loss: 0.3302 - accuracy: 0.9197

 5/65 [=>............................] - ETA: 15s - loss: 0.3351 - accuracy: 0.9201

 6/65 [=>............................] - ETA: 15s - loss: 0.3316 - accuracy: 0.9211

 7/65 [==>...........................] - ETA: 15s - loss: 0.3311 - accuracy: 0.9212

 8/65 [==>...........................] - ETA: 14s - loss: 0.3230 - accuracy: 0.9233

 9/65 [===>..........................] - ETA: 14s - loss: 0.3236 - accuracy: 0.9227

10/65 [===>..........................] - ETA: 14s - loss: 0.3267 - accuracy: 0.9218

11/65 [====>.........................] - ETA: 13s - loss: 0.3249 - accuracy: 0.9227

12/65 [====>.........................] - ETA: 13s - loss: 0.3211 - accuracy: 0.9236

13/65 [=====>........................] - ETA: 13s - loss: 0.3200 - accuracy: 0.9239

14/65 [=====>........................] - ETA: 13s - loss: 0.3212 - accuracy: 0.9240

15/65 [=====>........................] - ETA: 12s - loss: 0.3206 - accuracy: 0.9240

16/65 [======>.......................] - ETA: 12s - loss: 0.3215 - accuracy: 0.9232

17/65 [======>.......................] - ETA: 12s - loss: 0.3201 - accuracy: 0.9234

18/65 [=======>......................] - ETA: 12s - loss: 0.3193 - accuracy: 0.9236

19/65 [=======>......................] - ETA: 11s - loss: 0.3194 - accuracy: 0.9233

20/65 [========>.....................] - ETA: 11s - loss: 0.3187 - accuracy: 0.9238

21/65 [========>.....................] - ETA: 11s - loss: 0.3200 - accuracy: 0.9235

22/65 [=========>....................] - ETA: 10s - loss: 0.3206 - accuracy: 0.9235

23/65 [=========>....................] - ETA: 10s - loss: 0.3230 - accuracy: 0.9225

24/65 [==========>...................] - ETA: 10s - loss: 0.3224 - accuracy: 0.9229

25/65 [==========>...................] - ETA: 10s - loss: 0.3238 - accuracy: 0.9229

26/65 [===========>..................] - ETA: 9s - loss: 0.3226 - accuracy: 0.9231 

27/65 [===========>..................] - ETA: 9s - loss: 0.3215 - accuracy: 0.9234

28/65 [===========>..................] - ETA: 9s - loss: 0.3220 - accuracy: 0.9232

29/65 [============>.................] - ETA: 9s - loss: 0.3226 - accuracy: 0.9231

30/65 [============>.................] - ETA: 8s - loss: 0.3232 - accuracy: 0.9228

31/65 [=============>................] - ETA: 8s - loss: 0.3237 - accuracy: 0.9227

32/65 [=============>................] - ETA: 8s - loss: 0.3250 - accuracy: 0.9223

33/65 [==============>...............] - ETA: 8s - loss: 0.3246 - accuracy: 0.9221

34/65 [==============>...............] - ETA: 7s - loss: 0.3243 - accuracy: 0.9223

35/65 [===============>..............] - ETA: 7s - loss: 0.3242 - accuracy: 0.9222

36/65 [===============>..............] - ETA: 7s - loss: 0.3250 - accuracy: 0.9220

37/65 [================>.............] - ETA: 7s - loss: 0.3237 - accuracy: 0.9223

38/65 [================>.............] - ETA: 6s - loss: 0.3254 - accuracy: 0.9219

39/65 [=================>............] - ETA: 6s - loss: 0.3260 - accuracy: 0.9214

40/65 [=================>............] - ETA: 6s - loss: 0.3257 - accuracy: 0.9217

41/65 [=================>............] - ETA: 6s - loss: 0.3263 - accuracy: 0.9217

42/65 [==================>...........] - ETA: 5s - loss: 0.3252 - accuracy: 0.9219

43/65 [==================>...........] - ETA: 5s - loss: 0.3251 - accuracy: 0.9221

44/65 [===================>..........] - ETA: 5s - loss: 0.3245 - accuracy: 0.9222

45/65 [===================>..........] - ETA: 5s - loss: 0.3233 - accuracy: 0.9226

46/65 [====================>.........] - ETA: 4s - loss: 0.3235 - accuracy: 0.9225

47/65 [====================>.........] - ETA: 4s - loss: 0.3231 - accuracy: 0.9225

48/65 [=====================>........] - ETA: 4s - loss: 0.3225 - accuracy: 0.9228

49/65 [=====================>........] - ETA: 4s - loss: 0.3221 - accuracy: 0.9230

50/65 [======================>.......] - ETA: 3s - loss: 0.3222 - accuracy: 0.9229

51/65 [======================>.......] - ETA: 3s - loss: 0.3217 - accuracy: 0.9229

52/65 [=======================>......] - ETA: 3s - loss: 0.3208 - accuracy: 0.9232

53/65 [=======================>......] - ETA: 3s - loss: 0.3207 - accuracy: 0.9231

54/65 [=======================>......] - ETA: 2s - loss: 0.3195 - accuracy: 0.9235

55/65 [========================>.....] - ETA: 2s - loss: 0.3190 - accuracy: 0.9237

56/65 [========================>.....] - ETA: 2s - loss: 0.3188 - accuracy: 0.9237

57/65 [=========================>....] - ETA: 2s - loss: 0.3195 - accuracy: 0.9235

58/65 [=========================>....] - ETA: 1s - loss: 0.3196 - accuracy: 0.9235

59/65 [==========================>...] - ETA: 1s - loss: 0.3193 - accuracy: 0.9233

60/65 [==========================>...] - ETA: 1s - loss: 0.3196 - accuracy: 0.9233

61/65 [===========================>..] - ETA: 1s - loss: 0.3190 - accuracy: 0.9234

62/65 [===========================>..] - ETA: 0s - loss: 0.3183 - accuracy: 0.9236

63/65 [============================>.] - ETA: 0s - loss: 0.3190 - accuracy: 0.9234

64/65 [============================>.] - ETA: 0s - loss: 0.3190 - accuracy: 0.9235

65/65 [==============================] - ETA: 0s - loss: 0.3192 - accuracy: 0.9235

65/65 [==============================] - 17s 259ms/step - loss: 0.3192 - accuracy: 0.9235 - val_loss: 0.4312 - val_accuracy: 0.8886 - lr: 7.5000e-04
Epoch 28/30
 1/65 [..............................] - ETA: 30s - loss: 0.3259 - accuracy: 0.9258

 2/65 [..............................] - ETA: 16s - loss: 0.3296 - accuracy: 0.9219

 3/65 [>.............................] - ETA: 16s - loss: 0.3265 - accuracy: 0.9219

 4/65 [>.............................] - ETA: 16s - loss: 0.3254 - accuracy: 0.9226

 5/65 [=>............................] - ETA: 15s - loss: 0.3342 - accuracy: 0.9205

 6/65 [=>............................] - ETA: 15s - loss: 0.3394 - accuracy: 0.9206

 7/65 [==>...........................] - ETA: 15s - loss: 0.3365 - accuracy: 0.9203

 8/65 [==>...........................] - ETA: 14s - loss: 0.3375 - accuracy: 0.9204

 9/65 [===>..........................] - ETA: 14s - loss: 0.3349 - accuracy: 0.9207

10/65 [===>..........................] - ETA: 14s - loss: 0.3313 - accuracy: 0.9219

11/65 [====>.........................] - ETA: 14s - loss: 0.3257 - accuracy: 0.9234

12/65 [====>.........................] - ETA: 13s - loss: 0.3208 - accuracy: 0.9248

13/65 [=====>........................] - ETA: 13s - loss: 0.3223 - accuracy: 0.9241

14/65 [=====>........................] - ETA: 13s - loss: 0.3226 - accuracy: 0.9240

15/65 [=====>........................] - ETA: 12s - loss: 0.3225 - accuracy: 0.9236

16/65 [======>.......................] - ETA: 12s - loss: 0.3226 - accuracy: 0.9240

17/65 [======>.......................] - ETA: 12s - loss: 0.3180 - accuracy: 0.9255

18/65 [=======>......................] - ETA: 12s - loss: 0.3173 - accuracy: 0.9253

19/65 [=======>......................] - ETA: 11s - loss: 0.3196 - accuracy: 0.9242

20/65 [========>.....................] - ETA: 11s - loss: 0.3206 - accuracy: 0.9239

21/65 [========>.....................] - ETA: 11s - loss: 0.3193 - accuracy: 0.9244

22/65 [=========>....................] - ETA: 11s - loss: 0.3202 - accuracy: 0.9241

23/65 [=========>....................] - ETA: 10s - loss: 0.3184 - accuracy: 0.9240

24/65 [==========>...................] - ETA: 10s - loss: 0.3188 - accuracy: 0.9240

25/65 [==========>...................] - ETA: 10s - loss: 0.3212 - accuracy: 0.9240

26/65 [===========>..................] - ETA: 10s - loss: 0.3216 - accuracy: 0.9238

27/65 [===========>..................] - ETA: 9s - loss: 0.3211 - accuracy: 0.9236 

28/65 [===========>..................] - ETA: 9s - loss: 0.3209 - accuracy: 0.9231

29/65 [============>.................] - ETA: 9s - loss: 0.3218 - accuracy: 0.9225

30/65 [============>.................] - ETA: 9s - loss: 0.3237 - accuracy: 0.9219

31/65 [=============>................] - ETA: 8s - loss: 0.3232 - accuracy: 0.9222

32/65 [=============>................] - ETA: 8s - loss: 0.3239 - accuracy: 0.9219

33/65 [==============>...............] - ETA: 8s - loss: 0.3228 - accuracy: 0.9219

34/65 [==============>...............] - ETA: 7s - loss: 0.3234 - accuracy: 0.9220

35/65 [===============>..............] - ETA: 7s - loss: 0.3243 - accuracy: 0.9216

36/65 [===============>..............] - ETA: 7s - loss: 0.3249 - accuracy: 0.9215

37/65 [================>.............] - ETA: 7s - loss: 0.3251 - accuracy: 0.9214

38/65 [================>.............] - ETA: 6s - loss: 0.3239 - accuracy: 0.9218

39/65 [=================>............] - ETA: 6s - loss: 0.3239 - accuracy: 0.9219

40/65 [=================>............] - ETA: 6s - loss: 0.3244 - accuracy: 0.9216

41/65 [=================>............] - ETA: 6s - loss: 0.3239 - accuracy: 0.9217

42/65 [==================>...........] - ETA: 5s - loss: 0.3232 - accuracy: 0.9219

43/65 [==================>...........] - ETA: 5s - loss: 0.3223 - accuracy: 0.9221

44/65 [===================>..........] - ETA: 5s - loss: 0.3217 - accuracy: 0.9223

45/65 [===================>..........] - ETA: 5s - loss: 0.3209 - accuracy: 0.9225

46/65 [====================>.........] - ETA: 4s - loss: 0.3223 - accuracy: 0.9222

47/65 [====================>.........] - ETA: 4s - loss: 0.3229 - accuracy: 0.9221

48/65 [=====================>........] - ETA: 4s - loss: 0.3226 - accuracy: 0.9220

49/65 [=====================>........] - ETA: 4s - loss: 0.3226 - accuracy: 0.9220

50/65 [======================>.......] - ETA: 3s - loss: 0.3219 - accuracy: 0.9221

51/65 [======================>.......] - ETA: 3s - loss: 0.3222 - accuracy: 0.9220

52/65 [=======================>......] - ETA: 3s - loss: 0.3214 - accuracy: 0.9222

53/65 [=======================>......] - ETA: 3s - loss: 0.3209 - accuracy: 0.9224

54/65 [=======================>......] - ETA: 2s - loss: 0.3200 - accuracy: 0.9226

55/65 [========================>.....] - ETA: 2s - loss: 0.3196 - accuracy: 0.9226

56/65 [========================>.....] - ETA: 2s - loss: 0.3197 - accuracy: 0.9226

57/65 [=========================>....] - ETA: 2s - loss: 0.3192 - accuracy: 0.9227

58/65 [=========================>....] - ETA: 1s - loss: 0.3193 - accuracy: 0.9226

59/65 [==========================>...] - ETA: 1s - loss: 0.3189 - accuracy: 0.9227

60/65 [==========================>...] - ETA: 1s - loss: 0.3184 - accuracy: 0.9228

61/65 [===========================>..] - ETA: 1s - loss: 0.3178 - accuracy: 0.9230

62/65 [===========================>..] - ETA: 0s - loss: 0.3174 - accuracy: 0.9230

63/65 [============================>.] - ETA: 0s - loss: 0.3175 - accuracy: 0.9231

64/65 [============================>.] - ETA: 0s - loss: 0.3181 - accuracy: 0.9229

65/65 [==============================] - ETA: 0s - loss: 0.3180 - accuracy: 0.9230

65/65 [==============================] - 17s 263ms/step - loss: 0.3180 - accuracy: 0.9230 - val_loss: 0.4337 - val_accuracy: 0.8875 - lr: 7.5000e-04
Epoch 29/30
 1/65 [..............................] - ETA: 30s - loss: 0.3170 - accuracy: 0.9160

 2/65 [..............................] - ETA: 15s - loss: 0.3272 - accuracy: 0.9170

 3/65 [>.............................] - ETA: 15s - loss: 0.3320 - accuracy: 0.9180

 4/65 [>.............................] - ETA: 15s - loss: 0.3288 - accuracy: 0.9194

 5/65 [=>............................] - ETA: 15s - loss: 0.3277 - accuracy: 0.9187

 6/65 [=>............................] - ETA: 14s - loss: 0.3307 - accuracy: 0.9172

 7/65 [==>...........................] - ETA: 14s - loss: 0.3317 - accuracy: 0.9178

 8/65 [==>...........................] - ETA: 14s - loss: 0.3277 - accuracy: 0.9193

 9/65 [===>..........................] - ETA: 14s - loss: 0.3265 - accuracy: 0.9201

10/65 [===>..........................] - ETA: 13s - loss: 0.3257 - accuracy: 0.9208

11/65 [====>.........................] - ETA: 13s - loss: 0.3242 - accuracy: 0.9204

12/65 [====>.........................] - ETA: 13s - loss: 0.3228 - accuracy: 0.9203

13/65 [=====>........................] - ETA: 13s - loss: 0.3234 - accuracy: 0.9205

14/65 [=====>........................] - ETA: 13s - loss: 0.3213 - accuracy: 0.9222

15/65 [=====>........................] - ETA: 12s - loss: 0.3197 - accuracy: 0.9229

16/65 [======>.......................] - ETA: 12s - loss: 0.3186 - accuracy: 0.9230

17/65 [======>.......................] - ETA: 12s - loss: 0.3221 - accuracy: 0.9219

18/65 [=======>......................] - ETA: 11s - loss: 0.3235 - accuracy: 0.9216

19/65 [=======>......................] - ETA: 11s - loss: 0.3220 - accuracy: 0.9221

20/65 [========>.....................] - ETA: 11s - loss: 0.3215 - accuracy: 0.9220

21/65 [========>.....................] - ETA: 11s - loss: 0.3219 - accuracy: 0.9222

22/65 [=========>....................] - ETA: 10s - loss: 0.3206 - accuracy: 0.9231

23/65 [=========>....................] - ETA: 10s - loss: 0.3203 - accuracy: 0.9229

24/65 [==========>...................] - ETA: 10s - loss: 0.3194 - accuracy: 0.9232

25/65 [==========>...................] - ETA: 10s - loss: 0.3186 - accuracy: 0.9229

26/65 [===========>..................] - ETA: 9s - loss: 0.3189 - accuracy: 0.9230 

27/65 [===========>..................] - ETA: 9s - loss: 0.3197 - accuracy: 0.9226

28/65 [===========>..................] - ETA: 9s - loss: 0.3188 - accuracy: 0.9227

29/65 [============>.................] - ETA: 9s - loss: 0.3196 - accuracy: 0.9224

30/65 [============>.................] - ETA: 8s - loss: 0.3196 - accuracy: 0.9225

31/65 [=============>................] - ETA: 8s - loss: 0.3200 - accuracy: 0.9219

32/65 [=============>................] - ETA: 8s - loss: 0.3208 - accuracy: 0.9219

33/65 [==============>...............] - ETA: 8s - loss: 0.3210 - accuracy: 0.9218

34/65 [==============>...............] - ETA: 7s - loss: 0.3212 - accuracy: 0.9214

35/65 [===============>..............] - ETA: 7s - loss: 0.3211 - accuracy: 0.9212

36/65 [===============>..............] - ETA: 7s - loss: 0.3214 - accuracy: 0.9213

37/65 [================>.............] - ETA: 7s - loss: 0.3224 - accuracy: 0.9210

38/65 [================>.............] - ETA: 6s - loss: 0.3221 - accuracy: 0.9212

39/65 [=================>............] - ETA: 6s - loss: 0.3215 - accuracy: 0.9213

40/65 [=================>............] - ETA: 6s - loss: 0.3213 - accuracy: 0.9214

41/65 [=================>............] - ETA: 6s - loss: 0.3210 - accuracy: 0.9214

42/65 [==================>...........] - ETA: 5s - loss: 0.3213 - accuracy: 0.9214

43/65 [==================>...........] - ETA: 5s - loss: 0.3212 - accuracy: 0.9216

44/65 [===================>..........] - ETA: 5s - loss: 0.3215 - accuracy: 0.9217

45/65 [===================>..........] - ETA: 5s - loss: 0.3213 - accuracy: 0.9216

46/65 [====================>.........] - ETA: 4s - loss: 0.3207 - accuracy: 0.9218

47/65 [====================>.........] - ETA: 4s - loss: 0.3202 - accuracy: 0.9221

48/65 [=====================>........] - ETA: 4s - loss: 0.3195 - accuracy: 0.9224

49/65 [=====================>........] - ETA: 4s - loss: 0.3200 - accuracy: 0.9223

50/65 [======================>.......] - ETA: 3s - loss: 0.3197 - accuracy: 0.9223

51/65 [======================>.......] - ETA: 3s - loss: 0.3196 - accuracy: 0.9224

52/65 [=======================>......] - ETA: 3s - loss: 0.3191 - accuracy: 0.9226

53/65 [=======================>......] - ETA: 3s - loss: 0.3190 - accuracy: 0.9225

54/65 [=======================>......] - ETA: 2s - loss: 0.3192 - accuracy: 0.9225

55/65 [========================>.....] - ETA: 2s - loss: 0.3183 - accuracy: 0.9228

56/65 [========================>.....] - ETA: 2s - loss: 0.3183 - accuracy: 0.9227

57/65 [=========================>....] - ETA: 2s - loss: 0.3176 - accuracy: 0.9231

58/65 [=========================>....] - ETA: 1s - loss: 0.3173 - accuracy: 0.9231

59/65 [==========================>...] - ETA: 1s - loss: 0.3167 - accuracy: 0.9233

60/65 [==========================>...] - ETA: 1s - loss: 0.3171 - accuracy: 0.9233

61/65 [===========================>..] - ETA: 1s - loss: 0.3169 - accuracy: 0.9234

62/65 [===========================>..] - ETA: 0s - loss: 0.3169 - accuracy: 0.9234

63/65 [============================>.] - ETA: 0s - loss: 0.3164 - accuracy: 0.9236

64/65 [============================>.] - ETA: 0s - loss: 0.3160 - accuracy: 0.9237

65/65 [==============================] - ETA: 0s - loss: 0.3158 - accuracy: 0.9237

65/65 [==============================] - 17s 262ms/step - loss: 0.3158 - accuracy: 0.9237 - val_loss: 0.4340 - val_accuracy: 0.8866 - lr: 7.5000e-04
Epoch 30/30
 1/65 [..............................] - ETA: 30s - loss: 0.3303 - accuracy: 0.9170

 2/65 [..............................] - ETA: 19s - loss: 0.3504 - accuracy: 0.9136

 3/65 [>.............................] - ETA: 17s - loss: 0.3387 - accuracy: 0.9167

 4/65 [>.............................] - ETA: 16s - loss: 0.3326 - accuracy: 0.9192

 5/65 [=>............................] - ETA: 16s - loss: 0.3294 - accuracy: 0.9207

 6/65 [=>............................] - ETA: 16s - loss: 0.3288 - accuracy: 0.9204

 7/65 [==>...........................] - ETA: 15s - loss: 0.3333 - accuracy: 0.9187

 8/65 [==>...........................] - ETA: 15s - loss: 0.3293 - accuracy: 0.9210

 9/65 [===>..........................] - ETA: 14s - loss: 0.3229 - accuracy: 0.9223

10/65 [===>..........................] - ETA: 14s - loss: 0.3247 - accuracy: 0.9218

11/65 [====>.........................] - ETA: 14s - loss: 0.3226 - accuracy: 0.9219

12/65 [====>.........................] - ETA: 13s - loss: 0.3205 - accuracy: 0.9239

13/65 [=====>........................] - ETA: 13s - loss: 0.3201 - accuracy: 0.9241

14/65 [=====>........................] - ETA: 13s - loss: 0.3193 - accuracy: 0.9244

15/65 [=====>........................] - ETA: 12s - loss: 0.3202 - accuracy: 0.9237

16/65 [======>.......................] - ETA: 12s - loss: 0.3191 - accuracy: 0.9236

17/65 [======>.......................] - ETA: 12s - loss: 0.3194 - accuracy: 0.9234

18/65 [=======>......................] - ETA: 12s - loss: 0.3194 - accuracy: 0.9238

19/65 [=======>......................] - ETA: 11s - loss: 0.3188 - accuracy: 0.9242

20/65 [========>.....................] - ETA: 11s - loss: 0.3178 - accuracy: 0.9243

21/65 [========>.....................] - ETA: 11s - loss: 0.3174 - accuracy: 0.9246

22/65 [=========>....................] - ETA: 11s - loss: 0.3170 - accuracy: 0.9248

23/65 [=========>....................] - ETA: 10s - loss: 0.3170 - accuracy: 0.9249

24/65 [==========>...................] - ETA: 10s - loss: 0.3165 - accuracy: 0.9248

25/65 [==========>...................] - ETA: 10s - loss: 0.3187 - accuracy: 0.9240

26/65 [===========>..................] - ETA: 10s - loss: 0.3182 - accuracy: 0.9237

27/65 [===========>..................] - ETA: 9s - loss: 0.3190 - accuracy: 0.9234 

28/65 [===========>..................] - ETA: 9s - loss: 0.3178 - accuracy: 0.9237

29/65 [============>.................] - ETA: 9s - loss: 0.3189 - accuracy: 0.9235

30/65 [============>.................] - ETA: 9s - loss: 0.3186 - accuracy: 0.9235

31/65 [=============>................] - ETA: 8s - loss: 0.3181 - accuracy: 0.9233

32/65 [=============>................] - ETA: 8s - loss: 0.3187 - accuracy: 0.9228

33/65 [==============>...............] - ETA: 8s - loss: 0.3179 - accuracy: 0.9230

34/65 [==============>...............] - ETA: 8s - loss: 0.3205 - accuracy: 0.9227

35/65 [===============>..............] - ETA: 7s - loss: 0.3206 - accuracy: 0.9225

36/65 [===============>..............] - ETA: 7s - loss: 0.3212 - accuracy: 0.9223

37/65 [================>.............] - ETA: 7s - loss: 0.3202 - accuracy: 0.9226

38/65 [================>.............] - ETA: 6s - loss: 0.3198 - accuracy: 0.9224

39/65 [=================>............] - ETA: 6s - loss: 0.3207 - accuracy: 0.9223

40/65 [=================>............] - ETA: 6s - loss: 0.3202 - accuracy: 0.9223

41/65 [=================>............] - ETA: 6s - loss: 0.3201 - accuracy: 0.9222

42/65 [==================>...........] - ETA: 5s - loss: 0.3199 - accuracy: 0.9224

43/65 [==================>...........] - ETA: 5s - loss: 0.3200 - accuracy: 0.9224

44/65 [===================>..........] - ETA: 5s - loss: 0.3197 - accuracy: 0.9225

45/65 [===================>..........] - ETA: 5s - loss: 0.3197 - accuracy: 0.9224

46/65 [====================>.........] - ETA: 4s - loss: 0.3194 - accuracy: 0.9225

47/65 [====================>.........] - ETA: 4s - loss: 0.3189 - accuracy: 0.9227

48/65 [=====================>........] - ETA: 4s - loss: 0.3190 - accuracy: 0.9229

49/65 [=====================>........] - ETA: 4s - loss: 0.3193 - accuracy: 0.9227

50/65 [======================>.......] - ETA: 3s - loss: 0.3194 - accuracy: 0.9226

51/65 [======================>.......] - ETA: 3s - loss: 0.3191 - accuracy: 0.9228

52/65 [=======================>......] - ETA: 3s - loss: 0.3192 - accuracy: 0.9226

53/65 [=======================>......] - ETA: 3s - loss: 0.3185 - accuracy: 0.9228

54/65 [=======================>......] - ETA: 2s - loss: 0.3178 - accuracy: 0.9229

55/65 [========================>.....] - ETA: 2s - loss: 0.3177 - accuracy: 0.9230

56/65 [========================>.....] - ETA: 2s - loss: 0.3175 - accuracy: 0.9231

57/65 [=========================>....] - ETA: 2s - loss: 0.3167 - accuracy: 0.9232

58/65 [=========================>....] - ETA: 1s - loss: 0.3168 - accuracy: 0.9232

59/65 [==========================>...] - ETA: 1s - loss: 0.3165 - accuracy: 0.9234

60/65 [==========================>...] - ETA: 1s - loss: 0.3163 - accuracy: 0.9235

61/65 [===========================>..] - ETA: 1s - loss: 0.3161 - accuracy: 0.9236

62/65 [===========================>..] - ETA: 0s - loss: 0.3158 - accuracy: 0.9238

63/65 [============================>.] - ETA: 0s - loss: 0.3160 - accuracy: 0.9236

64/65 [============================>.] - ETA: 0s - loss: 0.3152 - accuracy: 0.9239

65/65 [==============================] - ETA: 0s - loss: 0.3151 - accuracy: 0.9240
Epoch 30: ReduceLROnPlateau reducing learning rate to 0.000375000003259629.

65/65 [==============================] - 17s 262ms/step - loss: 0.3151 - accuracy: 0.9240 - val_loss: 0.4342 - val_accuracy: 0.8882 - lr: 7.5000e-04
It took 8.776950001716614 minutes to train Keras model

You’ll notice the accuracy is lower than that in the hls4ml CNN paper (https://arxiv.org/abs/2101.05108) despite the model being the same. The reson for this is that we didn’t use the extra training data in order to save time. If you want to futher optimize the network, increasing the training data is a good place to start. Enlarging the model architecture comes at a high latency/resource cost.

Quantization and the fused Conv2D+BatchNormalization layer in QKeras#

Let’s now create a pruned an quantized model using QKeras. For this, we will use a fused Convolutional and BatchNormalization (BN) layer from QKeras, which will further speed up the implementation when we implement the model using hls4ml. There is currently no fused Dense+BatchNoralization layer available in QKeras, so we’ll use Keras BatchNormalization when BN follows a Dense layer for now. We’ll use the same precision everywhere, namely a bit width of 6 and 0 integer bits (this will be implemented as<6,1> in hls4ml, due to the missing sign-bit). For now, make sure to set use_bias=True in QConv2DBatchnorm to avoid problems during synthesis.

from qkeras import QActivation
from qkeras import QDense, QConv2DBatchnorm

x = x_in = Input(shape=input_shape)

for i, f in enumerate(filters_per_conv_layer):
    print(('Adding fused QConv+BN block {} with N={} filters').format(i, f))
    x = QConv2DBatchnorm(
        int(f),
        kernel_size=(3, 3),
        strides=(1, 1),
        kernel_quantizer="quantized_bits(6,0,alpha=1)",
        bias_quantizer="quantized_bits(6,0,alpha=1)",
        kernel_initializer='lecun_uniform',
        kernel_regularizer=l1(0.0001),
        use_bias=True,
        name='fused_convbn_{}'.format(i),
    )(x)
    x = QActivation('quantized_relu(6)', name='conv_act_%i' % i)(x)
    x = MaxPooling2D(pool_size=(2, 2), name='pool_{}'.format(i))(x)
x = Flatten()(x)

for i, n in enumerate(neurons_per_dense_layer):
    print(('Adding QDense block {} with N={} neurons').format(i, n))
    x = QDense(
        n,
        kernel_quantizer="quantized_bits(6,0,alpha=1)",
        kernel_initializer='lecun_uniform',
        kernel_regularizer=l1(0.0001),
        name='dense_%i' % i,
        use_bias=False,
    )(x)
    x = BatchNormalization(name='bn_dense_{}'.format(i))(x)
    x = QActivation('quantized_relu(6)', name='dense_act_%i' % i)(x)
x = Dense(int(n_classes), name='output_dense')(x)
x_out = Activation('softmax', name='output_softmax')(x)
qmodel = Model(inputs=[x_in], outputs=[x_out], name='qkeras')

qmodel.summary()
Adding fused QConv+BN block 0 with N=16 filters
Adding fused QConv+BN block 1 with N=16 filters
Adding fused QConv+BN block 2 with N=24 filters
Adding QDense block 0 with N=42 neurons
Adding QDense block 1 with N=64 neurons
Model: "qkeras"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_2 (InputLayer)        [(None, 32, 32, 3)]       0         
                                                                 
 fused_convbn_0 (QConv2DBatc  (None, 30, 30, 16)       513       
 hnorm)                                                          
                                                                 
 conv_act_0 (QActivation)    (None, 30, 30, 16)        0         
                                                                 
 pool_0 (MaxPooling2D)       (None, 15, 15, 16)        0         
                                                                 
 fused_convbn_1 (QConv2DBatc  (None, 13, 13, 16)       2385      
 hnorm)                                                          
                                                                 
 conv_act_1 (QActivation)    (None, 13, 13, 16)        0         
                                                                 
 pool_1 (MaxPooling2D)       (None, 6, 6, 16)          0         
                                                                 
 fused_convbn_2 (QConv2DBatc  (None, 4, 4, 24)         3577      
 hnorm)                                                          
                                                                 
 conv_act_2 (QActivation)    (None, 4, 4, 24)          0         
                                                                 
 pool_2 (MaxPooling2D)       (None, 2, 2, 24)          0         
                                                                 
 flatten_1 (Flatten)         (None, 96)                0         
                                                                 
 dense_0 (QDense)            (None, 42)                4032      
                                                                 
 bn_dense_0 (BatchNormalizat  (None, 42)               168       
 ion)                                                            
                                                                 
 dense_act_0 (QActivation)   (None, 42)                0         
                                                                 
 dense_1 (QDense)            (None, 64)                2688      
                                                                 
 bn_dense_1 (BatchNormalizat  (None, 64)               256       
 ion)                                                            
                                                                 
 dense_act_1 (QActivation)   (None, 64)                0         
                                                                 
 output_dense (Dense)        (None, 10)                650       
                                                                 
 output_softmax (Activation)  (None, 10)               0         
                                                                 
=================================================================
Total params: 14,269
Trainable params: 13,942
Non-trainable params: 327
_________________________________________________________________
# Print the quantized layers
from qkeras.autoqkeras.utils import print_qmodel_summary

print_qmodel_summary(qmodel)
fused_convbn_0       f=16 quantized_bits(6,0,0,alpha=1) quantized_bits(6,0,0,alpha=1) 
conv_act_0           quantized_relu(6)
fused_convbn_1       f=16 quantized_bits(6,0,0,alpha=1) quantized_bits(6,0,0,alpha=1) 
conv_act_1           quantized_relu(6)
fused_convbn_2       f=24 quantized_bits(6,0,0,alpha=1) quantized_bits(6,0,0,alpha=1) 
conv_act_2           quantized_relu(6)
dense_0              u=42 quantized_bits(6,0,0,alpha=1) 
bn_dense_0           is normal keras bn layer
dense_act_0          quantized_relu(6)
dense_1              u=64 quantized_bits(6,0,0,alpha=1) 
bn_dense_1           is normal keras bn layer
dense_act_1          quantized_relu(6)

You see that a bias quantizer is defined, although we are not using a bias term for the layers. This is set automatically by QKeras. In addition, you’ll note that alpha='1'. This sets the weight scale per channel to 1 (no scaling). The default is alpha='auto_po2', which sets the weight scale per channel to be a power-of-2, such that an actual hardware implementation can be performed by just shifting the result of the convolutional/dense layer to the right or left by checking the sign of the scale and then taking the log2 of the scale.

Let’s now prune and train this model! If you want, you can also train the unpruned version, qmodel and see how the performance compares. We will stick to the pruned one here. Again, we do not use a model checkpoint which stores the best weights, in order to ensure the model is trained to the desired sparsity.

qmodel_pruned = tf.keras.models.clone_model(qmodel, clone_function=pruneFunction)
train = True

n_epochs = 30
if train:
    LOSS = tf.keras.losses.CategoricalCrossentropy()
    OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=3e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True)
    qmodel_pruned.compile(loss=LOSS, optimizer=OPTIMIZER, metrics=["accuracy"])

    callbacks = [
        tf.keras.callbacks.EarlyStopping(patience=10, verbose=1),
        tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1),
        pruning_callbacks.UpdatePruningStep(),
    ]

    start = time.time()
    history = qmodel_pruned.fit(train_data, epochs=n_epochs, validation_data=val_data, callbacks=callbacks, verbose=1)
    end = time.time()
    print('\n It took {} minutes to train!\n'.format((end - start) / 60.0))

    qmodel_pruned.save('quantized_pruned_cnn_model.h5')

else:
    from qkeras.utils import _add_supported_quantized_objects
    from tensorflow_model_optimization.python.core.sparsity.keras import pruning_wrapper

    co = {}
    _add_supported_quantized_objects(co)
    co['PruneLowMagnitude'] = pruning_wrapper.PruneLowMagnitude
    qmodel_pruned = tf.keras.models.load_model('quantized_pruned_cnn_model.h5', custom_objects=co)
Epoch 1/30
 1/65 [..............................] - ETA: 4:24 - loss: 2.6032 - accuracy: 0.0977

 2/65 [..............................] - ETA: 29s - loss: 2.5689 - accuracy: 0.1104 

 3/65 [>.............................] - ETA: 29s - loss: 2.5614 - accuracy: 0.1071

 4/65 [>.............................] - ETA: 28s - loss: 2.5482 - accuracy: 0.1067

 5/65 [=>............................] - ETA: 28s - loss: 2.5354 - accuracy: 0.1094

 6/65 [=>............................] - ETA: 27s - loss: 2.5187 - accuracy: 0.1143

 7/65 [==>...........................] - ETA: 27s - loss: 2.5052 - accuracy: 0.1172

 8/65 [==>...........................] - ETA: 26s - loss: 2.4926 - accuracy: 0.1239

 9/65 [===>..........................] - ETA: 26s - loss: 2.4784 - accuracy: 0.1297

10/65 [===>..........................] - ETA: 25s - loss: 2.4670 - accuracy: 0.1343

11/65 [====>.........................] - ETA: 25s - loss: 2.4590 - accuracy: 0.1396

12/65 [====>.........................] - ETA: 24s - loss: 2.4529 - accuracy: 0.1423

13/65 [=====>........................] - ETA: 24s - loss: 2.4438 - accuracy: 0.1472

14/65 [=====>........................] - ETA: 23s - loss: 2.4365 - accuracy: 0.1515

15/65 [=====>........................] - ETA: 23s - loss: 2.4298 - accuracy: 0.1550

16/65 [======>.......................] - ETA: 23s - loss: 2.4213 - accuracy: 0.1602

17/65 [======>.......................] - ETA: 22s - loss: 2.4167 - accuracy: 0.1624

18/65 [=======>......................] - ETA: 22s - loss: 2.4105 - accuracy: 0.1661

19/65 [=======>......................] - ETA: 21s - loss: 2.4052 - accuracy: 0.1700

20/65 [========>.....................] - ETA: 21s - loss: 2.3985 - accuracy: 0.1738

21/65 [========>.....................] - ETA: 20s - loss: 2.3929 - accuracy: 0.1762

22/65 [=========>....................] - ETA: 20s - loss: 2.3867 - accuracy: 0.1788

23/65 [=========>....................] - ETA: 19s - loss: 2.3827 - accuracy: 0.1811

24/65 [==========>...................] - ETA: 19s - loss: 2.3777 - accuracy: 0.1828

25/65 [==========>...................] - ETA: 18s - loss: 2.3720 - accuracy: 0.1858

26/65 [===========>..................] - ETA: 18s - loss: 2.3680 - accuracy: 0.1875

27/65 [===========>..................] - ETA: 17s - loss: 2.3644 - accuracy: 0.1892

28/65 [===========>..................] - ETA: 17s - loss: 2.3586 - accuracy: 0.1923

29/65 [============>.................] - ETA: 16s - loss: 2.3540 - accuracy: 0.1943

30/65 [============>.................] - ETA: 16s - loss: 2.3491 - accuracy: 0.1967

31/65 [=============>................] - ETA: 15s - loss: 2.3446 - accuracy: 0.1991

32/65 [=============>................] - ETA: 15s - loss: 2.3411 - accuracy: 0.2009

33/65 [==============>...............] - ETA: 15s - loss: 2.3349 - accuracy: 0.2047

34/65 [==============>...............] - ETA: 14s - loss: 2.3307 - accuracy: 0.2071

35/65 [===============>..............] - ETA: 14s - loss: 2.3266 - accuracy: 0.2092

36/65 [===============>..............] - ETA: 13s - loss: 2.3219 - accuracy: 0.2116

37/65 [================>.............] - ETA: 13s - loss: 2.3173 - accuracy: 0.2143

38/65 [================>.............] - ETA: 12s - loss: 2.3134 - accuracy: 0.2161

39/65 [=================>............] - ETA: 12s - loss: 2.3089 - accuracy: 0.2182

40/65 [=================>............] - ETA: 11s - loss: 2.3050 - accuracy: 0.2198

41/65 [=================>............] - ETA: 11s - loss: 2.3003 - accuracy: 0.2225

42/65 [==================>...........] - ETA: 10s - loss: 2.2952 - accuracy: 0.2251

43/65 [==================>...........] - ETA: 10s - loss: 2.2908 - accuracy: 0.2271

44/65 [===================>..........] - ETA: 9s - loss: 2.2866 - accuracy: 0.2291 

45/65 [===================>..........] - ETA: 9s - loss: 2.2814 - accuracy: 0.2317

46/65 [====================>.........] - ETA: 8s - loss: 2.2772 - accuracy: 0.2334

47/65 [====================>.........] - ETA: 8s - loss: 2.2714 - accuracy: 0.2362

48/65 [=====================>........] - ETA: 7s - loss: 2.2661 - accuracy: 0.2387

49/65 [=====================>........] - ETA: 7s - loss: 2.2611 - accuracy: 0.2411

50/65 [======================>.......] - ETA: 6s - loss: 2.2551 - accuracy: 0.2437

51/65 [======================>.......] - ETA: 6s - loss: 2.2498 - accuracy: 0.2458

52/65 [=======================>......] - ETA: 6s - loss: 2.2446 - accuracy: 0.2482

53/65 [=======================>......] - ETA: 5s - loss: 2.2391 - accuracy: 0.2503

54/65 [=======================>......] - ETA: 5s - loss: 2.2349 - accuracy: 0.2521

55/65 [========================>.....] - ETA: 4s - loss: 2.2296 - accuracy: 0.2541

56/65 [========================>.....] - ETA: 4s - loss: 2.2243 - accuracy: 0.2569

57/65 [=========================>....] - ETA: 3s - loss: 2.2193 - accuracy: 0.2590

58/65 [=========================>....] - ETA: 3s - loss: 2.2135 - accuracy: 0.2618

59/65 [==========================>...] - ETA: 2s - loss: 2.2086 - accuracy: 0.2639

60/65 [==========================>...] - ETA: 2s - loss: 2.2034 - accuracy: 0.2661

61/65 [===========================>..] - ETA: 1s - loss: 2.1986 - accuracy: 0.2685

62/65 [===========================>..] - ETA: 1s - loss: 2.1932 - accuracy: 0.2708

63/65 [============================>.] - ETA: 0s - loss: 2.1885 - accuracy: 0.2728

64/65 [============================>.] - ETA: 0s - loss: 2.1839 - accuracy: 0.2745

65/65 [==============================] - ETA: 0s - loss: 2.1817 - accuracy: 0.2755

65/65 [==============================] - 35s 482ms/step - loss: 2.1817 - accuracy: 0.2755 - val_loss: 2.2886 - val_accuracy: 0.2173 - lr: 0.0030
Epoch 2/30
 1/65 [..............................] - ETA: 45s - loss: 1.8350 - accuracy: 0.4160

 2/65 [..............................] - ETA: 29s - loss: 1.8172 - accuracy: 0.4224

 3/65 [>.............................] - ETA: 29s - loss: 1.7976 - accuracy: 0.4284

 4/65 [>.............................] - ETA: 28s - loss: 1.8138 - accuracy: 0.4250

 5/65 [=>............................] - ETA: 27s - loss: 1.8177 - accuracy: 0.4238

 6/65 [=>............................] - ETA: 27s - loss: 1.8175 - accuracy: 0.4230

 7/65 [==>...........................] - ETA: 26s - loss: 1.8110 - accuracy: 0.4265

 8/65 [==>...........................] - ETA: 26s - loss: 1.8007 - accuracy: 0.4297

 9/65 [===>..........................] - ETA: 25s - loss: 1.7960 - accuracy: 0.4321

10/65 [===>..........................] - ETA: 25s - loss: 1.7898 - accuracy: 0.4339

11/65 [====>.........................] - ETA: 24s - loss: 1.7836 - accuracy: 0.4356

12/65 [====>.........................] - ETA: 24s - loss: 1.7766 - accuracy: 0.4387

13/65 [=====>........................] - ETA: 23s - loss: 1.7708 - accuracy: 0.4422

14/65 [=====>........................] - ETA: 23s - loss: 1.7655 - accuracy: 0.4444

15/65 [=====>........................] - ETA: 23s - loss: 1.7625 - accuracy: 0.4459

16/65 [======>.......................] - ETA: 22s - loss: 1.7533 - accuracy: 0.4511

17/65 [======>.......................] - ETA: 22s - loss: 1.7452 - accuracy: 0.4541

18/65 [=======>......................] - ETA: 21s - loss: 1.7382 - accuracy: 0.4575

19/65 [=======>......................] - ETA: 21s - loss: 1.7319 - accuracy: 0.4593

20/65 [========>.....................] - ETA: 20s - loss: 1.7232 - accuracy: 0.4627

21/65 [========>.....................] - ETA: 20s - loss: 1.7165 - accuracy: 0.4657

22/65 [=========>....................] - ETA: 19s - loss: 1.7080 - accuracy: 0.4688

23/65 [=========>....................] - ETA: 19s - loss: 1.6988 - accuracy: 0.4724

24/65 [==========>...................] - ETA: 18s - loss: 1.6898 - accuracy: 0.4760

25/65 [==========>...................] - ETA: 18s - loss: 1.6821 - accuracy: 0.4783

26/65 [===========>..................] - ETA: 17s - loss: 1.6758 - accuracy: 0.4801

27/65 [===========>..................] - ETA: 17s - loss: 1.6662 - accuracy: 0.4838

28/65 [===========>..................] - ETA: 17s - loss: 1.6578 - accuracy: 0.4872

29/65 [============>.................] - ETA: 16s - loss: 1.6524 - accuracy: 0.4888

30/65 [============>.................] - ETA: 16s - loss: 1.6453 - accuracy: 0.4908

31/65 [=============>................] - ETA: 15s - loss: 1.6375 - accuracy: 0.4934

32/65 [=============>................] - ETA: 15s - loss: 1.6331 - accuracy: 0.4951

33/65 [==============>...............] - ETA: 14s - loss: 1.6259 - accuracy: 0.4978

34/65 [==============>...............] - ETA: 14s - loss: 1.6204 - accuracy: 0.4998

35/65 [===============>..............] - ETA: 13s - loss: 1.6140 - accuracy: 0.5018

36/65 [===============>..............] - ETA: 13s - loss: 1.6087 - accuracy: 0.5037

37/65 [================>.............] - ETA: 12s - loss: 1.6017 - accuracy: 0.5063

38/65 [================>.............] - ETA: 12s - loss: 1.5954 - accuracy: 0.5084

39/65 [=================>............] - ETA: 11s - loss: 1.5881 - accuracy: 0.5110

40/65 [=================>............] - ETA: 11s - loss: 1.5820 - accuracy: 0.5135

41/65 [=================>............] - ETA: 10s - loss: 1.5768 - accuracy: 0.5158

42/65 [==================>...........] - ETA: 10s - loss: 1.5696 - accuracy: 0.5186

43/65 [==================>...........] - ETA: 10s - loss: 1.5629 - accuracy: 0.5211

44/65 [===================>..........] - ETA: 9s - loss: 1.5568 - accuracy: 0.5240 

45/65 [===================>..........] - ETA: 9s - loss: 1.5501 - accuracy: 0.5262

46/65 [====================>.........] - ETA: 8s - loss: 1.5462 - accuracy: 0.5275

47/65 [====================>.........] - ETA: 8s - loss: 1.5400 - accuracy: 0.5299

48/65 [=====================>........] - ETA: 7s - loss: 1.5341 - accuracy: 0.5324

49/65 [=====================>........] - ETA: 7s - loss: 1.5270 - accuracy: 0.5348

50/65 [======================>.......] - ETA: 6s - loss: 1.5208 - accuracy: 0.5368

51/65 [======================>.......] - ETA: 6s - loss: 1.5146 - accuracy: 0.5390

52/65 [=======================>......] - ETA: 5s - loss: 1.5099 - accuracy: 0.5406

53/65 [=======================>......] - ETA: 5s - loss: 1.5037 - accuracy: 0.5426

54/65 [=======================>......] - ETA: 5s - loss: 1.4975 - accuracy: 0.5447

55/65 [========================>.....] - ETA: 4s - loss: 1.4921 - accuracy: 0.5464

56/65 [========================>.....] - ETA: 4s - loss: 1.4859 - accuracy: 0.5489

57/65 [=========================>....] - ETA: 3s - loss: 1.4800 - accuracy: 0.5508

58/65 [=========================>....] - ETA: 3s - loss: 1.4743 - accuracy: 0.5526

59/65 [==========================>...] - ETA: 2s - loss: 1.4687 - accuracy: 0.5546

60/65 [==========================>...] - ETA: 2s - loss: 1.4633 - accuracy: 0.5565

61/65 [===========================>..] - ETA: 1s - loss: 1.4574 - accuracy: 0.5582

62/65 [===========================>..] - ETA: 1s - loss: 1.4515 - accuracy: 0.5605

63/65 [============================>.] - ETA: 0s - loss: 1.4460 - accuracy: 0.5624

64/65 [============================>.] - ETA: 0s - loss: 1.4409 - accuracy: 0.5642

65/65 [==============================] - ETA: 0s - loss: 1.4384 - accuracy: 0.5651

65/65 [==============================] - 31s 468ms/step - loss: 1.4384 - accuracy: 0.5651 - val_loss: 2.2410 - val_accuracy: 0.2138 - lr: 0.0030
Epoch 3/30
 1/65 [..............................] - ETA: 44s - loss: 1.1446 - accuracy: 0.6758

 2/65 [..............................] - ETA: 27s - loss: 1.1486 - accuracy: 0.6680

 3/65 [>.............................] - ETA: 28s - loss: 1.1324 - accuracy: 0.6764

 4/65 [>.............................] - ETA: 28s - loss: 1.1061 - accuracy: 0.6858

 5/65 [=>............................] - ETA: 27s - loss: 1.1085 - accuracy: 0.6871

 6/65 [=>............................] - ETA: 27s - loss: 1.1003 - accuracy: 0.6891

 7/65 [==>...........................] - ETA: 27s - loss: 1.0968 - accuracy: 0.6889

 8/65 [==>...........................] - ETA: 26s - loss: 1.0818 - accuracy: 0.6952

 9/65 [===>..........................] - ETA: 26s - loss: 1.0746 - accuracy: 0.6999

10/65 [===>..........................] - ETA: 25s - loss: 1.0670 - accuracy: 0.7030

11/65 [====>.........................] - ETA: 25s - loss: 1.0665 - accuracy: 0.7042

12/65 [====>.........................] - ETA: 24s - loss: 1.0610 - accuracy: 0.7056

13/65 [=====>........................] - ETA: 24s - loss: 1.0611 - accuracy: 0.7059

14/65 [=====>........................] - ETA: 23s - loss: 1.0546 - accuracy: 0.7084

15/65 [=====>........................] - ETA: 23s - loss: 1.0498 - accuracy: 0.7090

16/65 [======>.......................] - ETA: 22s - loss: 1.0473 - accuracy: 0.7100

17/65 [======>.......................] - ETA: 22s - loss: 1.0397 - accuracy: 0.7133

18/65 [=======>......................] - ETA: 21s - loss: 1.0339 - accuracy: 0.7152

19/65 [=======>......................] - ETA: 21s - loss: 1.0324 - accuracy: 0.7158

20/65 [========>.....................] - ETA: 21s - loss: 1.0297 - accuracy: 0.7158

21/65 [========>.....................] - ETA: 20s - loss: 1.0250 - accuracy: 0.7171

22/65 [=========>....................] - ETA: 20s - loss: 1.0224 - accuracy: 0.7176

23/65 [=========>....................] - ETA: 19s - loss: 1.0171 - accuracy: 0.7195

24/65 [==========>...................] - ETA: 19s - loss: 1.0155 - accuracy: 0.7201

25/65 [==========>...................] - ETA: 18s - loss: 1.0118 - accuracy: 0.7216

26/65 [===========>..................] - ETA: 18s - loss: 1.0091 - accuracy: 0.7220

27/65 [===========>..................] - ETA: 17s - loss: 1.0070 - accuracy: 0.7222

28/65 [===========>..................] - ETA: 17s - loss: 1.0027 - accuracy: 0.7230

29/65 [============>.................] - ETA: 16s - loss: 1.0001 - accuracy: 0.7237

30/65 [============>.................] - ETA: 16s - loss: 0.9996 - accuracy: 0.7237

31/65 [=============>................] - ETA: 15s - loss: 0.9973 - accuracy: 0.7242

32/65 [=============>................] - ETA: 15s - loss: 0.9954 - accuracy: 0.7249

33/65 [==============>...............] - ETA: 14s - loss: 0.9924 - accuracy: 0.7259

34/65 [==============>...............] - ETA: 14s - loss: 0.9901 - accuracy: 0.7266

35/65 [===============>..............] - ETA: 13s - loss: 0.9888 - accuracy: 0.7270

36/65 [===============>..............] - ETA: 13s - loss: 0.9881 - accuracy: 0.7273

37/65 [================>.............] - ETA: 12s - loss: 0.9881 - accuracy: 0.7274

38/65 [================>.............] - ETA: 12s - loss: 0.9846 - accuracy: 0.7284

39/65 [=================>............] - ETA: 11s - loss: 0.9818 - accuracy: 0.7292

40/65 [=================>............] - ETA: 11s - loss: 0.9810 - accuracy: 0.7291

41/65 [=================>............] - ETA: 11s - loss: 0.9792 - accuracy: 0.7295

42/65 [==================>...........] - ETA: 10s - loss: 0.9767 - accuracy: 0.7301

43/65 [==================>...........] - ETA: 10s - loss: 0.9742 - accuracy: 0.7310

44/65 [===================>..........] - ETA: 9s - loss: 0.9717 - accuracy: 0.7320 

45/65 [===================>..........] - ETA: 9s - loss: 0.9691 - accuracy: 0.7329

46/65 [====================>.........] - ETA: 8s - loss: 0.9675 - accuracy: 0.7334

47/65 [====================>.........] - ETA: 8s - loss: 0.9661 - accuracy: 0.7335

48/65 [=====================>........] - ETA: 7s - loss: 0.9635 - accuracy: 0.7345

49/65 [=====================>........] - ETA: 7s - loss: 0.9604 - accuracy: 0.7353

50/65 [======================>.......] - ETA: 6s - loss: 0.9589 - accuracy: 0.7356

51/65 [======================>.......] - ETA: 6s - loss: 0.9568 - accuracy: 0.7362

52/65 [=======================>......] - ETA: 5s - loss: 0.9553 - accuracy: 0.7365

53/65 [=======================>......] - ETA: 5s - loss: 0.9525 - accuracy: 0.7376

54/65 [=======================>......] - ETA: 5s - loss: 0.9509 - accuracy: 0.7384

55/65 [========================>.....] - ETA: 4s - loss: 0.9490 - accuracy: 0.7389

56/65 [========================>.....] - ETA: 4s - loss: 0.9468 - accuracy: 0.7397

57/65 [=========================>....] - ETA: 3s - loss: 0.9449 - accuracy: 0.7404

58/65 [=========================>....] - ETA: 3s - loss: 0.9436 - accuracy: 0.7406

59/65 [==========================>...] - ETA: 2s - loss: 0.9410 - accuracy: 0.7417

60/65 [==========================>...] - ETA: 2s - loss: 0.9378 - accuracy: 0.7427

61/65 [===========================>..] - ETA: 1s - loss: 0.9365 - accuracy: 0.7433

62/65 [===========================>..] - ETA: 1s - loss: 0.9333 - accuracy: 0.7440

63/65 [============================>.] - ETA: 0s - loss: 0.9325 - accuracy: 0.7445

64/65 [============================>.] - ETA: 0s - loss: 0.9305 - accuracy: 0.7452

65/65 [==============================] - ETA: 0s - loss: 0.9296 - accuracy: 0.7454

65/65 [==============================] - 31s 467ms/step - loss: 0.9296 - accuracy: 0.7454 - val_loss: 1.5909 - val_accuracy: 0.5206 - lr: 0.0030
Epoch 4/30
 1/65 [..............................] - ETA: 45s - loss: 0.7544 - accuracy: 0.8076

 2/65 [..............................] - ETA: 30s - loss: 0.8006 - accuracy: 0.7891

 3/65 [>.............................] - ETA: 29s - loss: 0.8074 - accuracy: 0.7894

 4/65 [>.............................] - ETA: 29s - loss: 0.8154 - accuracy: 0.7891

 5/65 [=>............................] - ETA: 28s - loss: 0.8209 - accuracy: 0.7844

 6/65 [=>............................] - ETA: 28s - loss: 0.8128 - accuracy: 0.7863

 7/65 [==>...........................] - ETA: 27s - loss: 0.8062 - accuracy: 0.7868

 8/65 [==>...........................] - ETA: 27s - loss: 0.8066 - accuracy: 0.7865

 9/65 [===>..........................] - ETA: 26s - loss: 0.8046 - accuracy: 0.7875

10/65 [===>..........................] - ETA: 26s - loss: 0.8034 - accuracy: 0.7885

11/65 [====>.........................] - ETA: 25s - loss: 0.7973 - accuracy: 0.7894

12/65 [====>.........................] - ETA: 25s - loss: 0.7957 - accuracy: 0.7893

13/65 [=====>........................] - ETA: 24s - loss: 0.7949 - accuracy: 0.7897

14/65 [=====>........................] - ETA: 23s - loss: 0.7970 - accuracy: 0.7891

15/65 [=====>........................] - ETA: 23s - loss: 0.7967 - accuracy: 0.7889

16/65 [======>.......................] - ETA: 22s - loss: 0.7955 - accuracy: 0.7893

17/65 [======>.......................] - ETA: 22s - loss: 0.7977 - accuracy: 0.7887

18/65 [=======>......................] - ETA: 21s - loss: 0.7955 - accuracy: 0.7891

19/65 [=======>......................] - ETA: 21s - loss: 0.7925 - accuracy: 0.7900

20/65 [========>.....................] - ETA: 20s - loss: 0.7909 - accuracy: 0.7904

21/65 [========>.....................] - ETA: 20s - loss: 0.7908 - accuracy: 0.7905

22/65 [=========>....................] - ETA: 19s - loss: 0.7884 - accuracy: 0.7908

23/65 [=========>....................] - ETA: 19s - loss: 0.7870 - accuracy: 0.7913

24/65 [==========>...................] - ETA: 19s - loss: 0.7863 - accuracy: 0.7916

25/65 [==========>...................] - ETA: 18s - loss: 0.7843 - accuracy: 0.7924

26/65 [===========>..................] - ETA: 18s - loss: 0.7837 - accuracy: 0.7923

27/65 [===========>..................] - ETA: 17s - loss: 0.7835 - accuracy: 0.7920

28/65 [===========>..................] - ETA: 17s - loss: 0.7828 - accuracy: 0.7920

29/65 [============>.................] - ETA: 16s - loss: 0.7803 - accuracy: 0.7926

30/65 [============>.................] - ETA: 16s - loss: 0.7796 - accuracy: 0.7928

31/65 [=============>................] - ETA: 15s - loss: 0.7799 - accuracy: 0.7925

32/65 [=============>................] - ETA: 15s - loss: 0.7791 - accuracy: 0.7926

33/65 [==============>...............] - ETA: 14s - loss: 0.7788 - accuracy: 0.7924

34/65 [==============>...............] - ETA: 14s - loss: 0.7798 - accuracy: 0.7920

35/65 [===============>..............] - ETA: 13s - loss: 0.7778 - accuracy: 0.7928

36/65 [===============>..............] - ETA: 13s - loss: 0.7752 - accuracy: 0.7936

37/65 [================>.............] - ETA: 12s - loss: 0.7749 - accuracy: 0.7937

38/65 [================>.............] - ETA: 12s - loss: 0.7752 - accuracy: 0.7935

39/65 [=================>............] - ETA: 11s - loss: 0.7733 - accuracy: 0.7940

40/65 [=================>............] - ETA: 11s - loss: 0.7727 - accuracy: 0.7939

41/65 [=================>............] - ETA: 11s - loss: 0.7723 - accuracy: 0.7939

42/65 [==================>...........] - ETA: 10s - loss: 0.7700 - accuracy: 0.7946

43/65 [==================>...........] - ETA: 10s - loss: 0.7697 - accuracy: 0.7948

44/65 [===================>..........] - ETA: 9s - loss: 0.7691 - accuracy: 0.7950 

45/65 [===================>..........] - ETA: 9s - loss: 0.7682 - accuracy: 0.7952

46/65 [====================>.........] - ETA: 8s - loss: 0.7672 - accuracy: 0.7958

47/65 [====================>.........] - ETA: 8s - loss: 0.7667 - accuracy: 0.7962

48/65 [=====================>........] - ETA: 7s - loss: 0.7653 - accuracy: 0.7967

49/65 [=====================>........] - ETA: 7s - loss: 0.7650 - accuracy: 0.7968

50/65 [======================>.......] - ETA: 6s - loss: 0.7637 - accuracy: 0.7972

51/65 [======================>.......] - ETA: 6s - loss: 0.7636 - accuracy: 0.7972

52/65 [=======================>......] - ETA: 5s - loss: 0.7630 - accuracy: 0.7973

53/65 [=======================>......] - ETA: 5s - loss: 0.7625 - accuracy: 0.7976

54/65 [=======================>......] - ETA: 5s - loss: 0.7617 - accuracy: 0.7979

55/65 [========================>.....] - ETA: 4s - loss: 0.7602 - accuracy: 0.7984

56/65 [========================>.....] - ETA: 4s - loss: 0.7593 - accuracy: 0.7988

57/65 [=========================>....] - ETA: 3s - loss: 0.7582 - accuracy: 0.7989

58/65 [=========================>....] - ETA: 3s - loss: 0.7571 - accuracy: 0.7993

59/65 [==========================>...] - ETA: 2s - loss: 0.7559 - accuracy: 0.7997

60/65 [==========================>...] - ETA: 2s - loss: 0.7551 - accuracy: 0.7999

61/65 [===========================>..] - ETA: 1s - loss: 0.7545 - accuracy: 0.8001

62/65 [===========================>..] - ETA: 1s - loss: 0.7546 - accuracy: 0.8002

63/65 [============================>.] - ETA: 0s - loss: 0.7536 - accuracy: 0.8006

64/65 [============================>.] - ETA: 0s - loss: 0.7536 - accuracy: 0.8006

65/65 [==============================] - ETA: 0s - loss: 0.7537 - accuracy: 0.8005

65/65 [==============================] - 31s 470ms/step - loss: 0.7537 - accuracy: 0.8005 - val_loss: 1.4052 - val_accuracy: 0.5759 - lr: 0.0030
Epoch 5/30
 1/65 [..............................] - ETA: 42s - loss: 0.7009 - accuracy: 0.8330

 2/65 [..............................] - ETA: 28s - loss: 0.7183 - accuracy: 0.8208

 3/65 [>.............................] - ETA: 28s - loss: 0.7256 - accuracy: 0.8135

 4/65 [>.............................] - ETA: 27s - loss: 0.7347 - accuracy: 0.8096

 5/65 [=>............................] - ETA: 27s - loss: 0.7271 - accuracy: 0.8098

 6/65 [=>............................] - ETA: 26s - loss: 0.7303 - accuracy: 0.8065

 7/65 [==>...........................] - ETA: 26s - loss: 0.7305 - accuracy: 0.8068

 8/65 [==>...........................] - ETA: 26s - loss: 0.7326 - accuracy: 0.8069

 9/65 [===>..........................] - ETA: 25s - loss: 0.7251 - accuracy: 0.8099

10/65 [===>..........................] - ETA: 25s - loss: 0.7241 - accuracy: 0.8114

11/65 [====>.........................] - ETA: 25s - loss: 0.7224 - accuracy: 0.8114

12/65 [====>.........................] - ETA: 24s - loss: 0.7249 - accuracy: 0.8102

13/65 [=====>........................] - ETA: 24s - loss: 0.7245 - accuracy: 0.8105

14/65 [=====>........................] - ETA: 23s - loss: 0.7199 - accuracy: 0.8112

15/65 [=====>........................] - ETA: 23s - loss: 0.7235 - accuracy: 0.8104

16/65 [======>.......................] - ETA: 22s - loss: 0.7250 - accuracy: 0.8100

17/65 [======>.......................] - ETA: 22s - loss: 0.7227 - accuracy: 0.8103

18/65 [=======>......................] - ETA: 21s - loss: 0.7214 - accuracy: 0.8107

19/65 [=======>......................] - ETA: 21s - loss: 0.7194 - accuracy: 0.8118

20/65 [========>.....................] - ETA: 20s - loss: 0.7175 - accuracy: 0.8125

21/65 [========>.....................] - ETA: 20s - loss: 0.7142 - accuracy: 0.8136

22/65 [=========>....................] - ETA: 19s - loss: 0.7125 - accuracy: 0.8143

23/65 [=========>....................] - ETA: 19s - loss: 0.7135 - accuracy: 0.8139

24/65 [==========>...................] - ETA: 18s - loss: 0.7137 - accuracy: 0.8138

25/65 [==========>...................] - ETA: 18s - loss: 0.7110 - accuracy: 0.8143

26/65 [===========>..................] - ETA: 17s - loss: 0.7107 - accuracy: 0.8142

27/65 [===========>..................] - ETA: 17s - loss: 0.7105 - accuracy: 0.8139

28/65 [===========>..................] - ETA: 17s - loss: 0.7090 - accuracy: 0.8149

29/65 [============>.................] - ETA: 16s - loss: 0.7071 - accuracy: 0.8153

30/65 [============>.................] - ETA: 16s - loss: 0.7068 - accuracy: 0.8151

31/65 [=============>................] - ETA: 15s - loss: 0.7057 - accuracy: 0.8151

32/65 [=============>................] - ETA: 15s - loss: 0.7046 - accuracy: 0.8152

33/65 [==============>...............] - ETA: 14s - loss: 0.7052 - accuracy: 0.8149

34/65 [==============>...............] - ETA: 14s - loss: 0.7056 - accuracy: 0.8146

35/65 [===============>..............] - ETA: 13s - loss: 0.7040 - accuracy: 0.8152

36/65 [===============>..............] - ETA: 13s - loss: 0.7048 - accuracy: 0.8149

37/65 [================>.............] - ETA: 12s - loss: 0.7053 - accuracy: 0.8147

38/65 [================>.............] - ETA: 12s - loss: 0.7043 - accuracy: 0.8149

39/65 [=================>............] - ETA: 11s - loss: 0.7038 - accuracy: 0.8151

40/65 [=================>............] - ETA: 11s - loss: 0.7041 - accuracy: 0.8148

41/65 [=================>............] - ETA: 10s - loss: 0.7022 - accuracy: 0.8154

42/65 [==================>...........] - ETA: 10s - loss: 0.7006 - accuracy: 0.8156

43/65 [==================>...........] - ETA: 10s - loss: 0.7004 - accuracy: 0.8159

44/65 [===================>..........] - ETA: 9s - loss: 0.6994 - accuracy: 0.8162 

45/65 [===================>..........] - ETA: 9s - loss: 0.6991 - accuracy: 0.8164

46/65 [====================>.........] - ETA: 8s - loss: 0.6991 - accuracy: 0.8164

47/65 [====================>.........] - ETA: 8s - loss: 0.6978 - accuracy: 0.8169

48/65 [=====================>........] - ETA: 7s - loss: 0.6966 - accuracy: 0.8173

49/65 [=====================>........] - ETA: 7s - loss: 0.6956 - accuracy: 0.8175

50/65 [======================>.......] - ETA: 6s - loss: 0.6947 - accuracy: 0.8177

51/65 [======================>.......] - ETA: 6s - loss: 0.6943 - accuracy: 0.8178

52/65 [=======================>......] - ETA: 5s - loss: 0.6934 - accuracy: 0.8182

53/65 [=======================>......] - ETA: 5s - loss: 0.6920 - accuracy: 0.8189

54/65 [=======================>......] - ETA: 5s - loss: 0.6907 - accuracy: 0.8192

55/65 [========================>.....] - ETA: 4s - loss: 0.6895 - accuracy: 0.8195

56/65 [========================>.....] - ETA: 4s - loss: 0.6891 - accuracy: 0.8196

57/65 [=========================>....] - ETA: 3s - loss: 0.6881 - accuracy: 0.8199

58/65 [=========================>....] - ETA: 3s - loss: 0.6874 - accuracy: 0.8201

59/65 [==========================>...] - ETA: 2s - loss: 0.6858 - accuracy: 0.8206

60/65 [==========================>...] - ETA: 2s - loss: 0.6871 - accuracy: 0.8200

61/65 [===========================>..] - ETA: 1s - loss: 0.6894 - accuracy: 0.8193

62/65 [===========================>..] - ETA: 1s - loss: 0.6895 - accuracy: 0.8193

63/65 [============================>.] - ETA: 0s - loss: 0.6901 - accuracy: 0.8190

64/65 [============================>.] - ETA: 0s - loss: 0.6896 - accuracy: 0.8193

65/65 [==============================] - ETA: 0s - loss: 0.6893 - accuracy: 0.8193

65/65 [==============================] - 31s 470ms/step - loss: 0.6893 - accuracy: 0.8193 - val_loss: 1.2372 - val_accuracy: 0.6280 - lr: 0.0030
Epoch 6/30
 1/65 [..............................] - ETA: 45s - loss: 0.7161 - accuracy: 0.8008

 2/65 [..............................] - ETA: 27s - loss: 0.7126 - accuracy: 0.8149

 3/65 [>.............................] - ETA: 27s - loss: 0.7324 - accuracy: 0.8044

 4/65 [>.............................] - ETA: 27s - loss: 0.7197 - accuracy: 0.8103

 5/65 [=>............................] - ETA: 27s - loss: 0.7201 - accuracy: 0.8104

 6/65 [=>............................] - ETA: 26s - loss: 0.7113 - accuracy: 0.8127

 7/65 [==>...........................] - ETA: 26s - loss: 0.7068 - accuracy: 0.8133

 8/65 [==>...........................] - ETA: 25s - loss: 0.7066 - accuracy: 0.8130

 9/65 [===>..........................] - ETA: 25s - loss: 0.6989 - accuracy: 0.8151

10/65 [===>..........................] - ETA: 25s - loss: 0.7014 - accuracy: 0.8142

11/65 [====>.........................] - ETA: 24s - loss: 0.7010 - accuracy: 0.8150

12/65 [====>.........................] - ETA: 24s - loss: 0.6967 - accuracy: 0.8159

13/65 [=====>........................] - ETA: 23s - loss: 0.7012 - accuracy: 0.8139

14/65 [=====>........................] - ETA: 23s - loss: 0.6976 - accuracy: 0.8154

15/65 [=====>........................] - ETA: 23s - loss: 0.6940 - accuracy: 0.8175

16/65 [======>.......................] - ETA: 22s - loss: 0.6930 - accuracy: 0.8174

17/65 [======>.......................] - ETA: 22s - loss: 0.6934 - accuracy: 0.8165

18/65 [=======>......................] - ETA: 21s - loss: 0.6943 - accuracy: 0.8165

19/65 [=======>......................] - ETA: 21s - loss: 0.6905 - accuracy: 0.8180

20/65 [========>.....................] - ETA: 20s - loss: 0.6900 - accuracy: 0.8180

21/65 [========>.....................] - ETA: 20s - loss: 0.6870 - accuracy: 0.8185

22/65 [=========>....................] - ETA: 19s - loss: 0.6852 - accuracy: 0.8187

23/65 [=========>....................] - ETA: 19s - loss: 0.6829 - accuracy: 0.8193

24/65 [==========>...................] - ETA: 18s - loss: 0.6806 - accuracy: 0.8199

25/65 [==========>...................] - ETA: 18s - loss: 0.6810 - accuracy: 0.8197

26/65 [===========>..................] - ETA: 17s - loss: 0.6806 - accuracy: 0.8199

27/65 [===========>..................] - ETA: 17s - loss: 0.6797 - accuracy: 0.8200

28/65 [===========>..................] - ETA: 17s - loss: 0.6784 - accuracy: 0.8207

29/65 [============>.................] - ETA: 16s - loss: 0.6777 - accuracy: 0.8204

30/65 [============>.................] - ETA: 16s - loss: 0.6776 - accuracy: 0.8201

31/65 [=============>................] - ETA: 15s - loss: 0.6761 - accuracy: 0.8206

32/65 [=============>................] - ETA: 15s - loss: 0.6776 - accuracy: 0.8201

33/65 [==============>...............] - ETA: 14s - loss: 0.6755 - accuracy: 0.8206

34/65 [==============>...............] - ETA: 14s - loss: 0.6751 - accuracy: 0.8204

35/65 [===============>..............] - ETA: 13s - loss: 0.6741 - accuracy: 0.8207

36/65 [===============>..............] - ETA: 13s - loss: 0.6738 - accuracy: 0.8210

37/65 [================>.............] - ETA: 12s - loss: 0.6734 - accuracy: 0.8213

38/65 [================>.............] - ETA: 12s - loss: 0.6728 - accuracy: 0.8213

39/65 [=================>............] - ETA: 11s - loss: 0.6717 - accuracy: 0.8217

40/65 [=================>............] - ETA: 11s - loss: 0.6721 - accuracy: 0.8219

41/65 [=================>............] - ETA: 10s - loss: 0.6711 - accuracy: 0.8223

42/65 [==================>...........] - ETA: 10s - loss: 0.6699 - accuracy: 0.8228

43/65 [==================>...........] - ETA: 10s - loss: 0.6686 - accuracy: 0.8231

44/65 [===================>..........] - ETA: 9s - loss: 0.6700 - accuracy: 0.8227 

45/65 [===================>..........] - ETA: 9s - loss: 0.6693 - accuracy: 0.8228

46/65 [====================>.........] - ETA: 8s - loss: 0.6686 - accuracy: 0.8229

47/65 [====================>.........] - ETA: 8s - loss: 0.6684 - accuracy: 0.8230

48/65 [=====================>........] - ETA: 7s - loss: 0.6678 - accuracy: 0.8233

49/65 [=====================>........] - ETA: 7s - loss: 0.6673 - accuracy: 0.8235

50/65 [======================>.......] - ETA: 6s - loss: 0.6670 - accuracy: 0.8235

51/65 [======================>.......] - ETA: 6s - loss: 0.6666 - accuracy: 0.8237

52/65 [=======================>......] - ETA: 5s - loss: 0.6657 - accuracy: 0.8238

53/65 [=======================>......] - ETA: 5s - loss: 0.6654 - accuracy: 0.8239

54/65 [=======================>......] - ETA: 5s - loss: 0.6639 - accuracy: 0.8244

55/65 [========================>.....] - ETA: 4s - loss: 0.6629 - accuracy: 0.8245

56/65 [========================>.....] - ETA: 4s - loss: 0.6621 - accuracy: 0.8248

57/65 [=========================>....] - ETA: 3s - loss: 0.6614 - accuracy: 0.8251

58/65 [=========================>....] - ETA: 3s - loss: 0.6609 - accuracy: 0.8252

59/65 [==========================>...] - ETA: 2s - loss: 0.6612 - accuracy: 0.8252

60/65 [==========================>...] - ETA: 2s - loss: 0.6617 - accuracy: 0.8248

61/65 [===========================>..] - ETA: 1s - loss: 0.6613 - accuracy: 0.8248

62/65 [===========================>..] - ETA: 1s - loss: 0.6621 - accuracy: 0.8245

63/65 [============================>.] - ETA: 0s - loss: 0.6627 - accuracy: 0.8243

64/65 [============================>.] - ETA: 0s - loss: 0.6636 - accuracy: 0.8240

65/65 [==============================] - ETA: 0s - loss: 0.6639 - accuracy: 0.8238

65/65 [==============================] - 31s 467ms/step - loss: 0.6639 - accuracy: 0.8238 - val_loss: 1.1448 - val_accuracy: 0.6600 - lr: 0.0030
Epoch 7/30
 1/65 [..............................] - ETA: 46s - loss: 0.7594 - accuracy: 0.7920

 2/65 [..............................] - ETA: 29s - loss: 0.7351 - accuracy: 0.8008

 3/65 [>.............................] - ETA: 29s - loss: 0.6985 - accuracy: 0.8092

 4/65 [>.............................] - ETA: 28s - loss: 0.6963 - accuracy: 0.8120

 5/65 [=>............................] - ETA: 27s - loss: 0.6949 - accuracy: 0.8123

 6/65 [=>............................] - ETA: 26s - loss: 0.6947 - accuracy: 0.8128

 7/65 [==>...........................] - ETA: 26s - loss: 0.6942 - accuracy: 0.8119

 8/65 [==>...........................] - ETA: 25s - loss: 0.6911 - accuracy: 0.8146

 9/65 [===>..........................] - ETA: 25s - loss: 0.6812 - accuracy: 0.8178

10/65 [===>..........................] - ETA: 25s - loss: 0.6800 - accuracy: 0.8186

11/65 [====>.........................] - ETA: 24s - loss: 0.6797 - accuracy: 0.8183

12/65 [====>.........................] - ETA: 24s - loss: 0.6716 - accuracy: 0.8206

13/65 [=====>........................] - ETA: 23s - loss: 0.6700 - accuracy: 0.8212

14/65 [=====>........................] - ETA: 23s - loss: 0.6717 - accuracy: 0.8205

15/65 [=====>........................] - ETA: 23s - loss: 0.6746 - accuracy: 0.8197

16/65 [======>.......................] - ETA: 22s - loss: 0.6722 - accuracy: 0.8199

17/65 [======>.......................] - ETA: 22s - loss: 0.6724 - accuracy: 0.8189

18/65 [=======>......................] - ETA: 21s - loss: 0.6705 - accuracy: 0.8191

19/65 [=======>......................] - ETA: 21s - loss: 0.6687 - accuracy: 0.8189

20/65 [========>.....................] - ETA: 20s - loss: 0.6700 - accuracy: 0.8191

21/65 [========>.....................] - ETA: 20s - loss: 0.6703 - accuracy: 0.8195

22/65 [=========>....................] - ETA: 19s - loss: 0.6675 - accuracy: 0.8203

23/65 [=========>....................] - ETA: 19s - loss: 0.6655 - accuracy: 0.8211

24/65 [==========>...................] - ETA: 18s - loss: 0.6662 - accuracy: 0.8211

25/65 [==========>...................] - ETA: 18s - loss: 0.6668 - accuracy: 0.8211

26/65 [===========>..................] - ETA: 18s - loss: 0.6679 - accuracy: 0.8207

27/65 [===========>..................] - ETA: 17s - loss: 0.6662 - accuracy: 0.8208

28/65 [===========>..................] - ETA: 17s - loss: 0.6660 - accuracy: 0.8205

29/65 [============>.................] - ETA: 16s - loss: 0.6657 - accuracy: 0.8203

30/65 [============>.................] - ETA: 16s - loss: 0.6655 - accuracy: 0.8201

31/65 [=============>................] - ETA: 15s - loss: 0.6666 - accuracy: 0.8197

32/65 [=============>................] - ETA: 15s - loss: 0.6682 - accuracy: 0.8190

33/65 [==============>...............] - ETA: 14s - loss: 0.6674 - accuracy: 0.8190

34/65 [==============>...............] - ETA: 14s - loss: 0.6664 - accuracy: 0.8191

35/65 [===============>..............] - ETA: 13s - loss: 0.6656 - accuracy: 0.8194

36/65 [===============>..............] - ETA: 13s - loss: 0.6665 - accuracy: 0.8192

37/65 [================>.............] - ETA: 12s - loss: 0.6669 - accuracy: 0.8189

38/65 [================>.............] - ETA: 12s - loss: 0.6672 - accuracy: 0.8188

39/65 [=================>............] - ETA: 12s - loss: 0.6673 - accuracy: 0.8188

40/65 [=================>............] - ETA: 11s - loss: 0.6676 - accuracy: 0.8186

41/65 [=================>............] - ETA: 11s - loss: 0.6660 - accuracy: 0.8193

42/65 [==================>...........] - ETA: 10s - loss: 0.6669 - accuracy: 0.8190

43/65 [==================>...........] - ETA: 10s - loss: 0.6672 - accuracy: 0.8189

44/65 [===================>..........] - ETA: 9s - loss: 0.6662 - accuracy: 0.8191 

45/65 [===================>..........] - ETA: 9s - loss: 0.6644 - accuracy: 0.8200

46/65 [====================>.........] - ETA: 8s - loss: 0.6640 - accuracy: 0.8202

47/65 [====================>.........] - ETA: 8s - loss: 0.6642 - accuracy: 0.8203

48/65 [=====================>........] - ETA: 7s - loss: 0.6638 - accuracy: 0.8203

49/65 [=====================>........] - ETA: 7s - loss: 0.6635 - accuracy: 0.8203

50/65 [======================>.......] - ETA: 6s - loss: 0.6619 - accuracy: 0.8208

51/65 [======================>.......] - ETA: 6s - loss: 0.6603 - accuracy: 0.8213

52/65 [=======================>......] - ETA: 6s - loss: 0.6597 - accuracy: 0.8214

53/65 [=======================>......] - ETA: 5s - loss: 0.6594 - accuracy: 0.8214

54/65 [=======================>......] - ETA: 5s - loss: 0.6577 - accuracy: 0.8219

55/65 [========================>.....] - ETA: 4s - loss: 0.6566 - accuracy: 0.8222

56/65 [========================>.....] - ETA: 4s - loss: 0.6557 - accuracy: 0.8225

57/65 [=========================>....] - ETA: 3s - loss: 0.6545 - accuracy: 0.8228

58/65 [=========================>....] - ETA: 3s - loss: 0.6539 - accuracy: 0.8231

59/65 [==========================>...] - ETA: 2s - loss: 0.6537 - accuracy: 0.8231

60/65 [==========================>...] - ETA: 2s - loss: 0.6534 - accuracy: 0.8233

61/65 [===========================>..] - ETA: 1s - loss: 0.6527 - accuracy: 0.8235

62/65 [===========================>..] - ETA: 1s - loss: 0.6523 - accuracy: 0.8235

63/65 [============================>.] - ETA: 0s - loss: 0.6513 - accuracy: 0.8237

64/65 [============================>.] - ETA: 0s - loss: 0.6511 - accuracy: 0.8237

65/65 [==============================] - ETA: 0s - loss: 0.6511 - accuracy: 0.8236

65/65 [==============================] - 31s 472ms/step - loss: 0.6511 - accuracy: 0.8236 - val_loss: 1.1266 - val_accuracy: 0.6545 - lr: 0.0030
Epoch 8/30
 1/65 [..............................] - ETA: 44s - loss: 0.5746 - accuracy: 0.8447

 2/65 [..............................] - ETA: 28s - loss: 0.6057 - accuracy: 0.8403

 3/65 [>.............................] - ETA: 27s - loss: 0.6273 - accuracy: 0.8333

 4/65 [>.............................] - ETA: 27s - loss: 0.6279 - accuracy: 0.8308

 5/65 [=>............................] - ETA: 27s - loss: 0.6199 - accuracy: 0.8318

 6/65 [=>............................] - ETA: 26s - loss: 0.6151 - accuracy: 0.8333

 7/65 [==>...........................] - ETA: 26s - loss: 0.6135 - accuracy: 0.8324

 8/65 [==>...........................] - ETA: 25s - loss: 0.6168 - accuracy: 0.8312

 9/65 [===>..........................] - ETA: 25s - loss: 0.6138 - accuracy: 0.8326

10/65 [===>..........................] - ETA: 25s - loss: 0.6101 - accuracy: 0.8340

11/65 [====>.........................] - ETA: 24s - loss: 0.6060 - accuracy: 0.8352

12/65 [====>.........................] - ETA: 24s - loss: 0.6043 - accuracy: 0.8360

13/65 [=====>........................] - ETA: 23s - loss: 0.6033 - accuracy: 0.8368

14/65 [=====>........................] - ETA: 23s - loss: 0.6053 - accuracy: 0.8364

15/65 [=====>........................] - ETA: 23s - loss: 0.6046 - accuracy: 0.8374

16/65 [======>.......................] - ETA: 22s - loss: 0.6005 - accuracy: 0.8394

17/65 [======>.......................] - ETA: 22s - loss: 0.6008 - accuracy: 0.8392

18/65 [=======>......................] - ETA: 21s - loss: 0.6016 - accuracy: 0.8392

19/65 [=======>......................] - ETA: 21s - loss: 0.6016 - accuracy: 0.8397

20/65 [========>.....................] - ETA: 20s - loss: 0.6014 - accuracy: 0.8396

21/65 [========>.....................] - ETA: 20s - loss: 0.5992 - accuracy: 0.8405

22/65 [=========>....................] - ETA: 19s - loss: 0.6012 - accuracy: 0.8402

23/65 [=========>....................] - ETA: 19s - loss: 0.6006 - accuracy: 0.8408

24/65 [==========>...................] - ETA: 18s - loss: 0.5996 - accuracy: 0.8405

25/65 [==========>...................] - ETA: 18s - loss: 0.5989 - accuracy: 0.8410

26/65 [===========>..................] - ETA: 17s - loss: 0.5964 - accuracy: 0.8416

27/65 [===========>..................] - ETA: 17s - loss: 0.5952 - accuracy: 0.8418

28/65 [===========>..................] - ETA: 17s - loss: 0.5944 - accuracy: 0.8421

29/65 [============>.................] - ETA: 16s - loss: 0.5933 - accuracy: 0.8424

30/65 [============>.................] - ETA: 16s - loss: 0.5928 - accuracy: 0.8429

31/65 [=============>................] - ETA: 15s - loss: 0.5916 - accuracy: 0.8434

32/65 [=============>................] - ETA: 15s - loss: 0.5913 - accuracy: 0.8433

33/65 [==============>...............] - ETA: 14s - loss: 0.5937 - accuracy: 0.8424

34/65 [==============>...............] - ETA: 14s - loss: 0.5959 - accuracy: 0.8418

35/65 [===============>..............] - ETA: 13s - loss: 0.5964 - accuracy: 0.8420

36/65 [===============>..............] - ETA: 13s - loss: 0.5979 - accuracy: 0.8416

37/65 [================>.............] - ETA: 12s - loss: 0.5994 - accuracy: 0.8413

38/65 [================>.............] - ETA: 12s - loss: 0.5996 - accuracy: 0.8412

39/65 [=================>............] - ETA: 11s - loss: 0.5979 - accuracy: 0.8416

40/65 [=================>............] - ETA: 11s - loss: 0.5978 - accuracy: 0.8415

41/65 [=================>............] - ETA: 11s - loss: 0.5973 - accuracy: 0.8414

42/65 [==================>...........] - ETA: 10s - loss: 0.5984 - accuracy: 0.8413

43/65 [==================>...........] - ETA: 10s - loss: 0.5975 - accuracy: 0.8416

44/65 [===================>..........] - ETA: 9s - loss: 0.5987 - accuracy: 0.8410 

45/65 [===================>..........] - ETA: 9s - loss: 0.5990 - accuracy: 0.8406

46/65 [====================>.........] - ETA: 8s - loss: 0.5992 - accuracy: 0.8402

47/65 [====================>.........] - ETA: 8s - loss: 0.5989 - accuracy: 0.8405

48/65 [=====================>........] - ETA: 7s - loss: 0.5990 - accuracy: 0.8405

49/65 [=====================>........] - ETA: 7s - loss: 0.5989 - accuracy: 0.8409

50/65 [======================>.......] - ETA: 6s - loss: 0.5978 - accuracy: 0.8410

51/65 [======================>.......] - ETA: 6s - loss: 0.5983 - accuracy: 0.8409

52/65 [=======================>......] - ETA: 5s - loss: 0.5978 - accuracy: 0.8412

53/65 [=======================>......] - ETA: 5s - loss: 0.5970 - accuracy: 0.8414

54/65 [=======================>......] - ETA: 5s - loss: 0.5979 - accuracy: 0.8411

55/65 [========================>.....] - ETA: 4s - loss: 0.5974 - accuracy: 0.8413

56/65 [========================>.....] - ETA: 4s - loss: 0.5981 - accuracy: 0.8411

57/65 [=========================>....] - ETA: 3s - loss: 0.5982 - accuracy: 0.8411

58/65 [=========================>....] - ETA: 3s - loss: 0.5985 - accuracy: 0.8409

59/65 [==========================>...] - ETA: 2s - loss: 0.5970 - accuracy: 0.8413

60/65 [==========================>...] - ETA: 2s - loss: 0.5964 - accuracy: 0.8416

61/65 [===========================>..] - ETA: 1s - loss: 0.5966 - accuracy: 0.8414

62/65 [===========================>..] - ETA: 1s - loss: 0.5968 - accuracy: 0.8416

63/65 [============================>.] - ETA: 0s - loss: 0.5964 - accuracy: 0.8416

64/65 [============================>.] - ETA: 0s - loss: 0.5961 - accuracy: 0.8415

65/65 [==============================] - ETA: 0s - loss: 0.5956 - accuracy: 0.8416

65/65 [==============================] - 31s 467ms/step - loss: 0.5956 - accuracy: 0.8416 - val_loss: 0.9876 - val_accuracy: 0.7189 - lr: 0.0030
Epoch 9/30
 1/65 [..............................] - ETA: 44s - loss: 0.5799 - accuracy: 0.8486

 2/65 [..............................] - ETA: 28s - loss: 0.5855 - accuracy: 0.8481

 3/65 [>.............................] - ETA: 27s - loss: 0.5941 - accuracy: 0.8454

 4/65 [>.............................] - ETA: 27s - loss: 0.5871 - accuracy: 0.8486

 5/65 [=>............................] - ETA: 27s - loss: 0.5758 - accuracy: 0.8504

 6/65 [=>............................] - ETA: 27s - loss: 0.5843 - accuracy: 0.8465

 7/65 [==>...........................] - ETA: 26s - loss: 0.5847 - accuracy: 0.8460

 8/65 [==>...........................] - ETA: 26s - loss: 0.5816 - accuracy: 0.8455

 9/65 [===>..........................] - ETA: 25s - loss: 0.5802 - accuracy: 0.8461

10/65 [===>..........................] - ETA: 25s - loss: 0.5799 - accuracy: 0.8454

11/65 [====>.........................] - ETA: 24s - loss: 0.5807 - accuracy: 0.8454

12/65 [====>.........................] - ETA: 24s - loss: 0.5795 - accuracy: 0.8464

13/65 [=====>........................] - ETA: 24s - loss: 0.5821 - accuracy: 0.8466

14/65 [=====>........................] - ETA: 23s - loss: 0.5769 - accuracy: 0.8486

15/65 [=====>........................] - ETA: 22s - loss: 0.5790 - accuracy: 0.8484

16/65 [======>.......................] - ETA: 22s - loss: 0.5760 - accuracy: 0.8489

17/65 [======>.......................] - ETA: 21s - loss: 0.5775 - accuracy: 0.8485

18/65 [=======>......................] - ETA: 21s - loss: 0.5791 - accuracy: 0.8475

19/65 [=======>......................] - ETA: 20s - loss: 0.5795 - accuracy: 0.8471

20/65 [========>.....................] - ETA: 20s - loss: 0.5782 - accuracy: 0.8478

21/65 [========>.....................] - ETA: 20s - loss: 0.5768 - accuracy: 0.8480

22/65 [=========>....................] - ETA: 19s - loss: 0.5741 - accuracy: 0.8488

23/65 [=========>....................] - ETA: 19s - loss: 0.5736 - accuracy: 0.8493

24/65 [==========>...................] - ETA: 18s - loss: 0.5739 - accuracy: 0.8491

25/65 [==========>...................] - ETA: 18s - loss: 0.5744 - accuracy: 0.8482

26/65 [===========>..................] - ETA: 17s - loss: 0.5747 - accuracy: 0.8485

27/65 [===========>..................] - ETA: 17s - loss: 0.5732 - accuracy: 0.8488

28/65 [===========>..................] - ETA: 16s - loss: 0.5718 - accuracy: 0.8494

29/65 [============>.................] - ETA: 16s - loss: 0.5721 - accuracy: 0.8493

30/65 [============>.................] - ETA: 15s - loss: 0.5709 - accuracy: 0.8495

31/65 [=============>................] - ETA: 15s - loss: 0.5712 - accuracy: 0.8498

32/65 [=============>................] - ETA: 14s - loss: 0.5718 - accuracy: 0.8495

33/65 [==============>...............] - ETA: 14s - loss: 0.5719 - accuracy: 0.8492

34/65 [==============>...............] - ETA: 14s - loss: 0.5723 - accuracy: 0.8493

35/65 [===============>..............] - ETA: 13s - loss: 0.5719 - accuracy: 0.8492

36/65 [===============>..............] - ETA: 13s - loss: 0.5715 - accuracy: 0.8494

37/65 [================>.............] - ETA: 12s - loss: 0.5710 - accuracy: 0.8496

38/65 [================>.............] - ETA: 12s - loss: 0.5719 - accuracy: 0.8492

39/65 [=================>............] - ETA: 11s - loss: 0.5721 - accuracy: 0.8492

40/65 [=================>............] - ETA: 11s - loss: 0.5724 - accuracy: 0.8494

41/65 [=================>............] - ETA: 10s - loss: 0.5721 - accuracy: 0.8493

42/65 [==================>...........] - ETA: 10s - loss: 0.5724 - accuracy: 0.8492

43/65 [==================>...........] - ETA: 9s - loss: 0.5711 - accuracy: 0.8495 

44/65 [===================>..........] - ETA: 9s - loss: 0.5701 - accuracy: 0.8497

45/65 [===================>..........] - ETA: 9s - loss: 0.5702 - accuracy: 0.8497

46/65 [====================>.........] - ETA: 8s - loss: 0.5700 - accuracy: 0.8499

47/65 [====================>.........] - ETA: 8s - loss: 0.5714 - accuracy: 0.8495

48/65 [=====================>........] - ETA: 7s - loss: 0.5715 - accuracy: 0.8496

49/65 [=====================>........] - ETA: 7s - loss: 0.5711 - accuracy: 0.8496

50/65 [======================>.......] - ETA: 6s - loss: 0.5707 - accuracy: 0.8495

51/65 [======================>.......] - ETA: 6s - loss: 0.5688 - accuracy: 0.8502

52/65 [=======================>......] - ETA: 5s - loss: 0.5687 - accuracy: 0.8501

53/65 [=======================>......] - ETA: 5s - loss: 0.5679 - accuracy: 0.8504

54/65 [=======================>......] - ETA: 5s - loss: 0.5683 - accuracy: 0.8501

55/65 [========================>.....] - ETA: 4s - loss: 0.5678 - accuracy: 0.8502

56/65 [========================>.....] - ETA: 4s - loss: 0.5669 - accuracy: 0.8504

57/65 [=========================>....] - ETA: 3s - loss: 0.5663 - accuracy: 0.8507

58/65 [=========================>....] - ETA: 3s - loss: 0.5660 - accuracy: 0.8509

59/65 [==========================>...] - ETA: 2s - loss: 0.5653 - accuracy: 0.8510

60/65 [==========================>...] - ETA: 2s - loss: 0.5652 - accuracy: 0.8512

61/65 [===========================>..] - ETA: 1s - loss: 0.5649 - accuracy: 0.8513

62/65 [===========================>..] - ETA: 1s - loss: 0.5655 - accuracy: 0.8511

63/65 [============================>.] - ETA: 0s - loss: 0.5659 - accuracy: 0.8509

64/65 [============================>.] - ETA: 0s - loss: 0.5653 - accuracy: 0.8511

65/65 [==============================] - ETA: 0s - loss: 0.5656 - accuracy: 0.8510

65/65 [==============================] - 31s 466ms/step - loss: 0.5656 - accuracy: 0.8510 - val_loss: 1.0347 - val_accuracy: 0.6930 - lr: 0.0030
Epoch 10/30
 1/65 [..............................] - ETA: 43s - loss: 0.5624 - accuracy: 0.8613

 2/65 [..............................] - ETA: 29s - loss: 0.5711 - accuracy: 0.8525

 3/65 [>.............................] - ETA: 29s - loss: 0.5756 - accuracy: 0.8529

 4/65 [>.............................] - ETA: 29s - loss: 0.5587 - accuracy: 0.8557

 5/65 [=>............................] - ETA: 28s - loss: 0.5593 - accuracy: 0.8545

 6/65 [=>............................] - ETA: 27s - loss: 0.5568 - accuracy: 0.8551

 7/65 [==>...........................] - ETA: 27s - loss: 0.5604 - accuracy: 0.8537

 8/65 [==>...........................] - ETA: 26s - loss: 0.5636 - accuracy: 0.8512

 9/65 [===>..........................] - ETA: 25s - loss: 0.5560 - accuracy: 0.8530

10/65 [===>..........................] - ETA: 25s - loss: 0.5550 - accuracy: 0.8535

11/65 [====>.........................] - ETA: 24s - loss: 0.5533 - accuracy: 0.8542

12/65 [====>.........................] - ETA: 24s - loss: 0.5579 - accuracy: 0.8534

13/65 [=====>........................] - ETA: 23s - loss: 0.5555 - accuracy: 0.8536

14/65 [=====>........................] - ETA: 23s - loss: 0.5577 - accuracy: 0.8530

15/65 [=====>........................] - ETA: 22s - loss: 0.5562 - accuracy: 0.8533

16/65 [======>.......................] - ETA: 22s - loss: 0.5569 - accuracy: 0.8531

17/65 [======>.......................] - ETA: 22s - loss: 0.5573 - accuracy: 0.8527

18/65 [=======>......................] - ETA: 21s - loss: 0.5603 - accuracy: 0.8521

19/65 [=======>......................] - ETA: 21s - loss: 0.5601 - accuracy: 0.8517

20/65 [========>.....................] - ETA: 20s - loss: 0.5610 - accuracy: 0.8517

21/65 [========>.....................] - ETA: 20s - loss: 0.5612 - accuracy: 0.8507

22/65 [=========>....................] - ETA: 19s - loss: 0.5607 - accuracy: 0.8508

23/65 [=========>....................] - ETA: 19s - loss: 0.5603 - accuracy: 0.8504

24/65 [==========>...................] - ETA: 18s - loss: 0.5597 - accuracy: 0.8508

25/65 [==========>...................] - ETA: 18s - loss: 0.5597 - accuracy: 0.8505

26/65 [===========>..................] - ETA: 17s - loss: 0.5587 - accuracy: 0.8507

27/65 [===========>..................] - ETA: 17s - loss: 0.5592 - accuracy: 0.8508

28/65 [===========>..................] - ETA: 16s - loss: 0.5610 - accuracy: 0.8504

29/65 [============>.................] - ETA: 16s - loss: 0.5610 - accuracy: 0.8504

30/65 [============>.................] - ETA: 16s - loss: 0.5596 - accuracy: 0.8508

31/65 [=============>................] - ETA: 15s - loss: 0.5608 - accuracy: 0.8502

32/65 [=============>................] - ETA: 15s - loss: 0.5603 - accuracy: 0.8505

33/65 [==============>...............] - ETA: 14s - loss: 0.5622 - accuracy: 0.8501

34/65 [==============>...............] - ETA: 14s - loss: 0.5652 - accuracy: 0.8492

35/65 [===============>..............] - ETA: 13s - loss: 0.5665 - accuracy: 0.8489

36/65 [===============>..............] - ETA: 13s - loss: 0.5664 - accuracy: 0.8487

37/65 [================>.............] - ETA: 12s - loss: 0.5678 - accuracy: 0.8483

38/65 [================>.............] - ETA: 12s - loss: 0.5692 - accuracy: 0.8476

39/65 [=================>............] - ETA: 11s - loss: 0.5685 - accuracy: 0.8481

40/65 [=================>............] - ETA: 11s - loss: 0.5694 - accuracy: 0.8478

41/65 [=================>............] - ETA: 10s - loss: 0.5692 - accuracy: 0.8478

42/65 [==================>...........] - ETA: 10s - loss: 0.5687 - accuracy: 0.8478

43/65 [==================>...........] - ETA: 10s - loss: 0.5681 - accuracy: 0.8480

44/65 [===================>..........] - ETA: 9s - loss: 0.5685 - accuracy: 0.8478 

45/65 [===================>..........] - ETA: 9s - loss: 0.5699 - accuracy: 0.8475

46/65 [====================>.........] - ETA: 8s - loss: 0.5700 - accuracy: 0.8476

47/65 [====================>.........] - ETA: 8s - loss: 0.5703 - accuracy: 0.8476

48/65 [=====================>........] - ETA: 7s - loss: 0.5718 - accuracy: 0.8473

49/65 [=====================>........] - ETA: 7s - loss: 0.5708 - accuracy: 0.8475

50/65 [======================>.......] - ETA: 6s - loss: 0.5703 - accuracy: 0.8474

51/65 [======================>.......] - ETA: 6s - loss: 0.5695 - accuracy: 0.8476

52/65 [=======================>......] - ETA: 5s - loss: 0.5690 - accuracy: 0.8478

53/65 [=======================>......] - ETA: 5s - loss: 0.5686 - accuracy: 0.8479

54/65 [=======================>......] - ETA: 5s - loss: 0.5677 - accuracy: 0.8481

55/65 [========================>.....] - ETA: 4s - loss: 0.5677 - accuracy: 0.8481

56/65 [========================>.....] - ETA: 4s - loss: 0.5673 - accuracy: 0.8482

57/65 [=========================>....] - ETA: 3s - loss: 0.5664 - accuracy: 0.8486

58/65 [=========================>....] - ETA: 3s - loss: 0.5662 - accuracy: 0.8487

59/65 [==========================>...] - ETA: 2s - loss: 0.5663 - accuracy: 0.8486

60/65 [==========================>...] - ETA: 2s - loss: 0.5668 - accuracy: 0.8486

61/65 [===========================>..] - ETA: 1s - loss: 0.5672 - accuracy: 0.8485

62/65 [===========================>..] - ETA: 1s - loss: 0.5669 - accuracy: 0.8485

63/65 [============================>.] - ETA: 0s - loss: 0.5663 - accuracy: 0.8488

64/65 [============================>.] - ETA: 0s - loss: 0.5666 - accuracy: 0.8486

65/65 [==============================] - ETA: 0s - loss: 0.5665 - accuracy: 0.8486

65/65 [==============================] - 31s 468ms/step - loss: 0.5665 - accuracy: 0.8486 - val_loss: 0.8361 - val_accuracy: 0.7548 - lr: 0.0030
Epoch 11/30
 1/65 [..............................] - ETA: 43s - loss: 0.5768 - accuracy: 0.8486

 2/65 [..............................] - ETA: 29s - loss: 0.5859 - accuracy: 0.8462

 3/65 [>.............................] - ETA: 28s - loss: 0.5753 - accuracy: 0.8538

 4/65 [>.............................] - ETA: 28s - loss: 0.5681 - accuracy: 0.8525

 5/65 [=>............................] - ETA: 28s - loss: 0.5586 - accuracy: 0.8525

 6/65 [=>............................] - ETA: 27s - loss: 0.5609 - accuracy: 0.8514

 7/65 [==>...........................] - ETA: 27s - loss: 0.5597 - accuracy: 0.8516

 8/65 [==>...........................] - ETA: 26s - loss: 0.5544 - accuracy: 0.8535

 9/65 [===>..........................] - ETA: 26s - loss: 0.5556 - accuracy: 0.8532

10/65 [===>..........................] - ETA: 25s - loss: 0.5544 - accuracy: 0.8534

11/65 [====>.........................] - ETA: 25s - loss: 0.5555 - accuracy: 0.8523

12/65 [====>.........................] - ETA: 24s - loss: 0.5562 - accuracy: 0.8516

13/65 [=====>........................] - ETA: 24s - loss: 0.5599 - accuracy: 0.8507

14/65 [=====>........................] - ETA: 23s - loss: 0.5581 - accuracy: 0.8518

15/65 [=====>........................] - ETA: 23s - loss: 0.5599 - accuracy: 0.8511

16/65 [======>.......................] - ETA: 22s - loss: 0.5562 - accuracy: 0.8525

17/65 [======>.......................] - ETA: 22s - loss: 0.5561 - accuracy: 0.8524

18/65 [=======>......................] - ETA: 21s - loss: 0.5541 - accuracy: 0.8529

19/65 [=======>......................] - ETA: 21s - loss: 0.5563 - accuracy: 0.8522

20/65 [========>.....................] - ETA: 20s - loss: 0.5559 - accuracy: 0.8521

21/65 [========>.....................] - ETA: 20s - loss: 0.5549 - accuracy: 0.8522

22/65 [=========>....................] - ETA: 19s - loss: 0.5529 - accuracy: 0.8524

23/65 [=========>....................] - ETA: 19s - loss: 0.5526 - accuracy: 0.8524

24/65 [==========>...................] - ETA: 19s - loss: 0.5529 - accuracy: 0.8520

25/65 [==========>...................] - ETA: 18s - loss: 0.5527 - accuracy: 0.8518

26/65 [===========>..................] - ETA: 18s - loss: 0.5522 - accuracy: 0.8517

27/65 [===========>..................] - ETA: 17s - loss: 0.5513 - accuracy: 0.8521

28/65 [===========>..................] - ETA: 17s - loss: 0.5508 - accuracy: 0.8525

29/65 [============>.................] - ETA: 16s - loss: 0.5492 - accuracy: 0.8530

30/65 [============>.................] - ETA: 16s - loss: 0.5482 - accuracy: 0.8533

31/65 [=============>................] - ETA: 15s - loss: 0.5472 - accuracy: 0.8538

32/65 [=============>................] - ETA: 15s - loss: 0.5497 - accuracy: 0.8529

33/65 [==============>...............] - ETA: 14s - loss: 0.5496 - accuracy: 0.8530

34/65 [==============>...............] - ETA: 14s - loss: 0.5496 - accuracy: 0.8530

35/65 [===============>..............] - ETA: 13s - loss: 0.5500 - accuracy: 0.8527

36/65 [===============>..............] - ETA: 13s - loss: 0.5490 - accuracy: 0.8533

37/65 [================>.............] - ETA: 12s - loss: 0.5470 - accuracy: 0.8540

38/65 [================>.............] - ETA: 12s - loss: 0.5480 - accuracy: 0.8535

39/65 [=================>............] - ETA: 11s - loss: 0.5480 - accuracy: 0.8536

40/65 [=================>............] - ETA: 11s - loss: 0.5493 - accuracy: 0.8530

41/65 [=================>............] - ETA: 10s - loss: 0.5500 - accuracy: 0.8528

42/65 [==================>...........] - ETA: 10s - loss: 0.5500 - accuracy: 0.8527

43/65 [==================>...........] - ETA: 10s - loss: 0.5504 - accuracy: 0.8527

44/65 [===================>..........] - ETA: 9s - loss: 0.5511 - accuracy: 0.8525 

45/65 [===================>..........] - ETA: 9s - loss: 0.5506 - accuracy: 0.8527

46/65 [====================>.........] - ETA: 8s - loss: 0.5511 - accuracy: 0.8525

47/65 [====================>.........] - ETA: 8s - loss: 0.5504 - accuracy: 0.8530

48/65 [=====================>........] - ETA: 7s - loss: 0.5503 - accuracy: 0.8531

49/65 [=====================>........] - ETA: 7s - loss: 0.5500 - accuracy: 0.8531

50/65 [======================>.......] - ETA: 6s - loss: 0.5496 - accuracy: 0.8531

51/65 [======================>.......] - ETA: 6s - loss: 0.5497 - accuracy: 0.8534

52/65 [=======================>......] - ETA: 5s - loss: 0.5492 - accuracy: 0.8535

53/65 [=======================>......] - ETA: 5s - loss: 0.5494 - accuracy: 0.8533

54/65 [=======================>......] - ETA: 5s - loss: 0.5484 - accuracy: 0.8535

55/65 [========================>.....] - ETA: 4s - loss: 0.5482 - accuracy: 0.8538

56/65 [========================>.....] - ETA: 4s - loss: 0.5475 - accuracy: 0.8541

57/65 [=========================>....] - ETA: 3s - loss: 0.5479 - accuracy: 0.8540

58/65 [=========================>....] - ETA: 3s - loss: 0.5474 - accuracy: 0.8542

59/65 [==========================>...] - ETA: 2s - loss: 0.5480 - accuracy: 0.8541

60/65 [==========================>...] - ETA: 2s - loss: 0.5482 - accuracy: 0.8541

61/65 [===========================>..] - ETA: 1s - loss: 0.5478 - accuracy: 0.8543

62/65 [===========================>..] - ETA: 1s - loss: 0.5476 - accuracy: 0.8544

63/65 [============================>.] - ETA: 0s - loss: 0.5474 - accuracy: 0.8545

64/65 [============================>.] - ETA: 0s - loss: 0.5463 - accuracy: 0.8548

65/65 [==============================] - ETA: 0s - loss: 0.5464 - accuracy: 0.8546

65/65 [==============================] - 31s 469ms/step - loss: 0.5464 - accuracy: 0.8546 - val_loss: 0.7943 - val_accuracy: 0.7673 - lr: 0.0030
Epoch 12/30
 1/65 [..............................] - ETA: 45s - loss: 0.5417 - accuracy: 0.8438

 2/65 [..............................] - ETA: 29s - loss: 0.5445 - accuracy: 0.8457

 3/65 [>.............................] - ETA: 29s - loss: 0.5382 - accuracy: 0.8519

 4/65 [>.............................] - ETA: 28s - loss: 0.5453 - accuracy: 0.8530

 5/65 [=>............................] - ETA: 28s - loss: 0.5526 - accuracy: 0.8494

 6/65 [=>............................] - ETA: 28s - loss: 0.5530 - accuracy: 0.8506

 7/65 [==>...........................] - ETA: 27s - loss: 0.5599 - accuracy: 0.8496

 8/65 [==>...........................] - ETA: 27s - loss: 0.5558 - accuracy: 0.8511

 9/65 [===>..........................] - ETA: 26s - loss: 0.5564 - accuracy: 0.8510

10/65 [===>..........................] - ETA: 26s - loss: 0.5501 - accuracy: 0.8528

11/65 [====>.........................] - ETA: 25s - loss: 0.5539 - accuracy: 0.8524

12/65 [====>.........................] - ETA: 25s - loss: 0.5492 - accuracy: 0.8534

13/65 [=====>........................] - ETA: 24s - loss: 0.5457 - accuracy: 0.8552

14/65 [=====>........................] - ETA: 24s - loss: 0.5433 - accuracy: 0.8554

15/65 [=====>........................] - ETA: 23s - loss: 0.5428 - accuracy: 0.8557

16/65 [======>.......................] - ETA: 23s - loss: 0.5426 - accuracy: 0.8555

17/65 [======>.......................] - ETA: 22s - loss: 0.5437 - accuracy: 0.8555

18/65 [=======>......................] - ETA: 22s - loss: 0.5418 - accuracy: 0.8559

19/65 [=======>......................] - ETA: 21s - loss: 0.5418 - accuracy: 0.8563

20/65 [========>.....................] - ETA: 21s - loss: 0.5398 - accuracy: 0.8569

21/65 [========>.....................] - ETA: 20s - loss: 0.5362 - accuracy: 0.8582

22/65 [=========>....................] - ETA: 20s - loss: 0.5362 - accuracy: 0.8583

23/65 [=========>....................] - ETA: 19s - loss: 0.5341 - accuracy: 0.8587

24/65 [==========>...................] - ETA: 19s - loss: 0.5335 - accuracy: 0.8588

25/65 [==========>...................] - ETA: 18s - loss: 0.5328 - accuracy: 0.8590

26/65 [===========>..................] - ETA: 18s - loss: 0.5316 - accuracy: 0.8589

27/65 [===========>..................] - ETA: 17s - loss: 0.5310 - accuracy: 0.8593

28/65 [===========>..................] - ETA: 17s - loss: 0.5299 - accuracy: 0.8597

29/65 [============>.................] - ETA: 16s - loss: 0.5304 - accuracy: 0.8592

30/65 [============>.................] - ETA: 16s - loss: 0.5318 - accuracy: 0.8590

31/65 [=============>................] - ETA: 15s - loss: 0.5323 - accuracy: 0.8587

32/65 [=============>................] - ETA: 15s - loss: 0.5338 - accuracy: 0.8582

33/65 [==============>...............] - ETA: 14s - loss: 0.5346 - accuracy: 0.8580

34/65 [==============>...............] - ETA: 14s - loss: 0.5357 - accuracy: 0.8579

35/65 [===============>..............] - ETA: 13s - loss: 0.5348 - accuracy: 0.8583

36/65 [===============>..............] - ETA: 13s - loss: 0.5359 - accuracy: 0.8580

37/65 [================>.............] - ETA: 12s - loss: 0.5342 - accuracy: 0.8586

38/65 [================>.............] - ETA: 12s - loss: 0.5333 - accuracy: 0.8585

39/65 [=================>............] - ETA: 11s - loss: 0.5341 - accuracy: 0.8582

40/65 [=================>............] - ETA: 11s - loss: 0.5334 - accuracy: 0.8585

41/65 [=================>............] - ETA: 11s - loss: 0.5338 - accuracy: 0.8585

42/65 [==================>...........] - ETA: 10s - loss: 0.5338 - accuracy: 0.8585

43/65 [==================>...........] - ETA: 10s - loss: 0.5331 - accuracy: 0.8586

44/65 [===================>..........] - ETA: 9s - loss: 0.5324 - accuracy: 0.8587 

45/65 [===================>..........] - ETA: 9s - loss: 0.5324 - accuracy: 0.8588

46/65 [====================>.........] - ETA: 8s - loss: 0.5332 - accuracy: 0.8584

47/65 [====================>.........] - ETA: 8s - loss: 0.5329 - accuracy: 0.8585

48/65 [=====================>........] - ETA: 7s - loss: 0.5329 - accuracy: 0.8585

49/65 [=====================>........] - ETA: 7s - loss: 0.5316 - accuracy: 0.8589

50/65 [======================>.......] - ETA: 6s - loss: 0.5317 - accuracy: 0.8588

51/65 [======================>.......] - ETA: 6s - loss: 0.5311 - accuracy: 0.8592

52/65 [=======================>......] - ETA: 5s - loss: 0.5313 - accuracy: 0.8593

53/65 [=======================>......] - ETA: 5s - loss: 0.5298 - accuracy: 0.8597

54/65 [=======================>......] - ETA: 5s - loss: 0.5292 - accuracy: 0.8601

55/65 [========================>.....] - ETA: 4s - loss: 0.5290 - accuracy: 0.8603

56/65 [========================>.....] - ETA: 4s - loss: 0.5288 - accuracy: 0.8605

57/65 [=========================>....] - ETA: 3s - loss: 0.5286 - accuracy: 0.8607

58/65 [=========================>....] - ETA: 3s - loss: 0.5280 - accuracy: 0.8610

59/65 [==========================>...] - ETA: 2s - loss: 0.5282 - accuracy: 0.8610

60/65 [==========================>...] - ETA: 2s - loss: 0.5283 - accuracy: 0.8610

61/65 [===========================>..] - ETA: 1s - loss: 0.5276 - accuracy: 0.8613

62/65 [===========================>..] - ETA: 1s - loss: 0.5262 - accuracy: 0.8618

63/65 [============================>.] - ETA: 0s - loss: 0.5264 - accuracy: 0.8617

64/65 [============================>.] - ETA: 0s - loss: 0.5266 - accuracy: 0.8616

65/65 [==============================] - ETA: 0s - loss: 0.5264 - accuracy: 0.8617

65/65 [==============================] - 31s 471ms/step - loss: 0.5264 - accuracy: 0.8617 - val_loss: 0.7808 - val_accuracy: 0.7714 - lr: 0.0030
Epoch 13/30
 1/65 [..............................] - ETA: 43s - loss: 0.4988 - accuracy: 0.8633

 2/65 [..............................] - ETA: 28s - loss: 0.5084 - accuracy: 0.8579

 3/65 [>.............................] - ETA: 28s - loss: 0.5084 - accuracy: 0.8620

 4/65 [>.............................] - ETA: 27s - loss: 0.5113 - accuracy: 0.8618

 5/65 [=>............................] - ETA: 27s - loss: 0.5099 - accuracy: 0.8615

 6/65 [=>............................] - ETA: 27s - loss: 0.5103 - accuracy: 0.8618

 7/65 [==>...........................] - ETA: 26s - loss: 0.5130 - accuracy: 0.8616

 8/65 [==>...........................] - ETA: 26s - loss: 0.5132 - accuracy: 0.8615

 9/65 [===>..........................] - ETA: 25s - loss: 0.5122 - accuracy: 0.8631

10/65 [===>..........................] - ETA: 25s - loss: 0.5177 - accuracy: 0.8625

11/65 [====>.........................] - ETA: 24s - loss: 0.5181 - accuracy: 0.8622

12/65 [====>.........................] - ETA: 24s - loss: 0.5163 - accuracy: 0.8627

13/65 [=====>........................] - ETA: 23s - loss: 0.5160 - accuracy: 0.8631

14/65 [=====>........................] - ETA: 23s - loss: 0.5174 - accuracy: 0.8631

15/65 [=====>........................] - ETA: 22s - loss: 0.5172 - accuracy: 0.8629

16/65 [======>.......................] - ETA: 22s - loss: 0.5160 - accuracy: 0.8638

17/65 [======>.......................] - ETA: 21s - loss: 0.5156 - accuracy: 0.8637

18/65 [=======>......................] - ETA: 21s - loss: 0.5141 - accuracy: 0.8634

19/65 [=======>......................] - ETA: 21s - loss: 0.5141 - accuracy: 0.8632

20/65 [========>.....................] - ETA: 20s - loss: 0.5163 - accuracy: 0.8625

21/65 [========>.....................] - ETA: 20s - loss: 0.5153 - accuracy: 0.8624

22/65 [=========>....................] - ETA: 19s - loss: 0.5142 - accuracy: 0.8627

23/65 [=========>....................] - ETA: 19s - loss: 0.5153 - accuracy: 0.8629

24/65 [==========>...................] - ETA: 18s - loss: 0.5126 - accuracy: 0.8637

25/65 [==========>...................] - ETA: 18s - loss: 0.5144 - accuracy: 0.8634

26/65 [===========>..................] - ETA: 17s - loss: 0.5139 - accuracy: 0.8632

27/65 [===========>..................] - ETA: 17s - loss: 0.5120 - accuracy: 0.8637

28/65 [===========>..................] - ETA: 16s - loss: 0.5107 - accuracy: 0.8638

29/65 [============>.................] - ETA: 16s - loss: 0.5101 - accuracy: 0.8640

30/65 [============>.................] - ETA: 15s - loss: 0.5105 - accuracy: 0.8641

31/65 [=============>................] - ETA: 15s - loss: 0.5104 - accuracy: 0.8638

32/65 [=============>................] - ETA: 14s - loss: 0.5120 - accuracy: 0.8636

33/65 [==============>...............] - ETA: 14s - loss: 0.5125 - accuracy: 0.8637

34/65 [==============>...............] - ETA: 14s - loss: 0.5131 - accuracy: 0.8636

35/65 [===============>..............] - ETA: 13s - loss: 0.5152 - accuracy: 0.8631

36/65 [===============>..............] - ETA: 13s - loss: 0.5152 - accuracy: 0.8631

37/65 [================>.............] - ETA: 12s - loss: 0.5164 - accuracy: 0.8628

38/65 [================>.............] - ETA: 12s - loss: 0.5161 - accuracy: 0.8629

39/65 [=================>............] - ETA: 11s - loss: 0.5157 - accuracy: 0.8625

40/65 [=================>............] - ETA: 11s - loss: 0.5149 - accuracy: 0.8628

41/65 [=================>............] - ETA: 10s - loss: 0.5161 - accuracy: 0.8627

42/65 [==================>...........] - ETA: 10s - loss: 0.5150 - accuracy: 0.8635

43/65 [==================>...........] - ETA: 10s - loss: 0.5151 - accuracy: 0.8632

44/65 [===================>..........] - ETA: 9s - loss: 0.5153 - accuracy: 0.8632 

45/65 [===================>..........] - ETA: 9s - loss: 0.5159 - accuracy: 0.8626

46/65 [====================>.........] - ETA: 8s - loss: 0.5162 - accuracy: 0.8624

47/65 [====================>.........] - ETA: 8s - loss: 0.5165 - accuracy: 0.8623

48/65 [=====================>........] - ETA: 7s - loss: 0.5158 - accuracy: 0.8624

49/65 [=====================>........] - ETA: 7s - loss: 0.5158 - accuracy: 0.8625

50/65 [======================>.......] - ETA: 6s - loss: 0.5152 - accuracy: 0.8629

51/65 [======================>.......] - ETA: 6s - loss: 0.5155 - accuracy: 0.8629

52/65 [=======================>......] - ETA: 5s - loss: 0.5154 - accuracy: 0.8630

53/65 [=======================>......] - ETA: 5s - loss: 0.5151 - accuracy: 0.8632

54/65 [=======================>......] - ETA: 5s - loss: 0.5147 - accuracy: 0.8632

55/65 [========================>.....] - ETA: 4s - loss: 0.5136 - accuracy: 0.8635

56/65 [========================>.....] - ETA: 4s - loss: 0.5128 - accuracy: 0.8638

57/65 [=========================>....] - ETA: 3s - loss: 0.5135 - accuracy: 0.8638

58/65 [=========================>....] - ETA: 3s - loss: 0.5136 - accuracy: 0.8638

59/65 [==========================>...] - ETA: 2s - loss: 0.5143 - accuracy: 0.8636

60/65 [==========================>...] - ETA: 2s - loss: 0.5140 - accuracy: 0.8637

61/65 [===========================>..] - ETA: 1s - loss: 0.5131 - accuracy: 0.8639

62/65 [===========================>..] - ETA: 1s - loss: 0.5129 - accuracy: 0.8639

63/65 [============================>.] - ETA: 0s - loss: 0.5123 - accuracy: 0.8641

64/65 [============================>.] - ETA: 0s - loss: 0.5121 - accuracy: 0.8642

65/65 [==============================] - ETA: 0s - loss: 0.5118 - accuracy: 0.8643

65/65 [==============================] - 31s 467ms/step - loss: 0.5118 - accuracy: 0.8643 - val_loss: 0.6206 - val_accuracy: 0.8242 - lr: 0.0030
Epoch 14/30
 1/65 [..............................] - ETA: 44s - loss: 0.5438 - accuracy: 0.8438

 2/65 [..............................] - ETA: 29s - loss: 0.5347 - accuracy: 0.8525

 3/65 [>.............................] - ETA: 28s - loss: 0.5348 - accuracy: 0.8564

 4/65 [>.............................] - ETA: 28s - loss: 0.5348 - accuracy: 0.8557

 5/65 [=>............................] - ETA: 27s - loss: 0.5345 - accuracy: 0.8557

 6/65 [=>............................] - ETA: 26s - loss: 0.5246 - accuracy: 0.8589

 7/65 [==>...........................] - ETA: 26s - loss: 0.5208 - accuracy: 0.8604

 8/65 [==>...........................] - ETA: 25s - loss: 0.5223 - accuracy: 0.8604

 9/65 [===>..........................] - ETA: 25s - loss: 0.5152 - accuracy: 0.8627

10/65 [===>..........................] - ETA: 25s - loss: 0.5155 - accuracy: 0.8634

11/65 [====>.........................] - ETA: 24s - loss: 0.5109 - accuracy: 0.8647

12/65 [====>.........................] - ETA: 24s - loss: 0.5092 - accuracy: 0.8646

13/65 [=====>........................] - ETA: 24s - loss: 0.5077 - accuracy: 0.8651

14/65 [=====>........................] - ETA: 23s - loss: 0.5058 - accuracy: 0.8657

15/65 [=====>........................] - ETA: 23s - loss: 0.5066 - accuracy: 0.8658

16/65 [======>.......................] - ETA: 22s - loss: 0.5094 - accuracy: 0.8648

17/65 [======>.......................] - ETA: 22s - loss: 0.5093 - accuracy: 0.8652

18/65 [=======>......................] - ETA: 21s - loss: 0.5098 - accuracy: 0.8651

19/65 [=======>......................] - ETA: 21s - loss: 0.5089 - accuracy: 0.8652

20/65 [========>.....................] - ETA: 20s - loss: 0.5090 - accuracy: 0.8648

21/65 [========>.....................] - ETA: 20s - loss: 0.5106 - accuracy: 0.8639

22/65 [=========>....................] - ETA: 19s - loss: 0.5081 - accuracy: 0.8650

23/65 [=========>....................] - ETA: 19s - loss: 0.5065 - accuracy: 0.8653

24/65 [==========>...................] - ETA: 18s - loss: 0.5051 - accuracy: 0.8656

25/65 [==========>...................] - ETA: 18s - loss: 0.5035 - accuracy: 0.8664

26/65 [===========>..................] - ETA: 17s - loss: 0.5045 - accuracy: 0.8661

27/65 [===========>..................] - ETA: 17s - loss: 0.5026 - accuracy: 0.8668

28/65 [===========>..................] - ETA: 16s - loss: 0.5025 - accuracy: 0.8668

29/65 [============>.................] - ETA: 16s - loss: 0.5039 - accuracy: 0.8664

30/65 [============>.................] - ETA: 16s - loss: 0.5043 - accuracy: 0.8665

31/65 [=============>................] - ETA: 15s - loss: 0.5047 - accuracy: 0.8666

32/65 [=============>................] - ETA: 15s - loss: 0.5032 - accuracy: 0.8669

33/65 [==============>...............] - ETA: 14s - loss: 0.5042 - accuracy: 0.8667

34/65 [==============>...............] - ETA: 14s - loss: 0.5054 - accuracy: 0.8666

35/65 [===============>..............] - ETA: 13s - loss: 0.5051 - accuracy: 0.8668

36/65 [===============>..............] - ETA: 13s - loss: 0.5059 - accuracy: 0.8669

37/65 [================>.............] - ETA: 12s - loss: 0.5064 - accuracy: 0.8669

38/65 [================>.............] - ETA: 12s - loss: 0.5069 - accuracy: 0.8666

39/65 [=================>............] - ETA: 11s - loss: 0.5064 - accuracy: 0.8666

40/65 [=================>............] - ETA: 11s - loss: 0.5054 - accuracy: 0.8671

41/65 [=================>............] - ETA: 10s - loss: 0.5056 - accuracy: 0.8672

42/65 [==================>...........] - ETA: 10s - loss: 0.5040 - accuracy: 0.8675

43/65 [==================>...........] - ETA: 10s - loss: 0.5040 - accuracy: 0.8676

44/65 [===================>..........] - ETA: 9s - loss: 0.5046 - accuracy: 0.8674 

45/65 [===================>..........] - ETA: 9s - loss: 0.5064 - accuracy: 0.8669

46/65 [====================>.........] - ETA: 8s - loss: 0.5069 - accuracy: 0.8668

47/65 [====================>.........] - ETA: 8s - loss: 0.5071 - accuracy: 0.8665

48/65 [=====================>........] - ETA: 7s - loss: 0.5063 - accuracy: 0.8668

49/65 [=====================>........] - ETA: 7s - loss: 0.5056 - accuracy: 0.8667

50/65 [======================>.......] - ETA: 6s - loss: 0.5055 - accuracy: 0.8667

51/65 [======================>.......] - ETA: 6s - loss: 0.5045 - accuracy: 0.8670

52/65 [=======================>......] - ETA: 5s - loss: 0.5046 - accuracy: 0.8670

53/65 [=======================>......] - ETA: 5s - loss: 0.5048 - accuracy: 0.8670

54/65 [=======================>......] - ETA: 5s - loss: 0.5051 - accuracy: 0.8667

55/65 [========================>.....] - ETA: 4s - loss: 0.5049 - accuracy: 0.8667

56/65 [========================>.....] - ETA: 4s - loss: 0.5053 - accuracy: 0.8667

57/65 [=========================>....] - ETA: 3s - loss: 0.5052 - accuracy: 0.8666

58/65 [=========================>....] - ETA: 3s - loss: 0.5041 - accuracy: 0.8670

59/65 [==========================>...] - ETA: 2s - loss: 0.5040 - accuracy: 0.8669

60/65 [==========================>...] - ETA: 2s - loss: 0.5040 - accuracy: 0.8669

61/65 [===========================>..] - ETA: 1s - loss: 0.5034 - accuracy: 0.8669

62/65 [===========================>..] - ETA: 1s - loss: 0.5032 - accuracy: 0.8670

63/65 [============================>.] - ETA: 0s - loss: 0.5035 - accuracy: 0.8671

64/65 [============================>.] - ETA: 0s - loss: 0.5038 - accuracy: 0.8670

65/65 [==============================] - ETA: 0s - loss: 0.5043 - accuracy: 0.8668

65/65 [==============================] - 31s 467ms/step - loss: 0.5043 - accuracy: 0.8668 - val_loss: 0.5875 - val_accuracy: 0.8347 - lr: 0.0030
Epoch 15/30
 1/65 [..............................] - ETA: 44s - loss: 0.4902 - accuracy: 0.8711

 2/65 [..............................] - ETA: 30s - loss: 0.5353 - accuracy: 0.8569

 3/65 [>.............................] - ETA: 29s - loss: 0.5267 - accuracy: 0.8597

 4/65 [>.............................] - ETA: 28s - loss: 0.5241 - accuracy: 0.8596

 5/65 [=>............................] - ETA: 27s - loss: 0.5279 - accuracy: 0.8586

 6/65 [=>............................] - ETA: 27s - loss: 0.5183 - accuracy: 0.8600

 7/65 [==>...........................] - ETA: 26s - loss: 0.5138 - accuracy: 0.8624

 8/65 [==>...........................] - ETA: 26s - loss: 0.5119 - accuracy: 0.8640

 9/65 [===>..........................] - ETA: 25s - loss: 0.5191 - accuracy: 0.8621

10/65 [===>..........................] - ETA: 25s - loss: 0.5193 - accuracy: 0.8624

11/65 [====>.........................] - ETA: 24s - loss: 0.5214 - accuracy: 0.8609

12/65 [====>.........................] - ETA: 24s - loss: 0.5236 - accuracy: 0.8608

13/65 [=====>........................] - ETA: 23s - loss: 0.5211 - accuracy: 0.8613

14/65 [=====>........................] - ETA: 23s - loss: 0.5218 - accuracy: 0.8610

15/65 [=====>........................] - ETA: 23s - loss: 0.5216 - accuracy: 0.8617

16/65 [======>.......................] - ETA: 22s - loss: 0.5231 - accuracy: 0.8608

17/65 [======>.......................] - ETA: 22s - loss: 0.5223 - accuracy: 0.8608

18/65 [=======>......................] - ETA: 21s - loss: 0.5214 - accuracy: 0.8608

19/65 [=======>......................] - ETA: 21s - loss: 0.5201 - accuracy: 0.8604

20/65 [========>.....................] - ETA: 20s - loss: 0.5220 - accuracy: 0.8601

21/65 [========>.....................] - ETA: 20s - loss: 0.5235 - accuracy: 0.8593

22/65 [=========>....................] - ETA: 19s - loss: 0.5229 - accuracy: 0.8596

23/65 [=========>....................] - ETA: 19s - loss: 0.5233 - accuracy: 0.8596

24/65 [==========>...................] - ETA: 18s - loss: 0.5220 - accuracy: 0.8600

25/65 [==========>...................] - ETA: 18s - loss: 0.5200 - accuracy: 0.8608

26/65 [===========>..................] - ETA: 17s - loss: 0.5184 - accuracy: 0.8615

27/65 [===========>..................] - ETA: 17s - loss: 0.5188 - accuracy: 0.8614

28/65 [===========>..................] - ETA: 16s - loss: 0.5180 - accuracy: 0.8617

29/65 [============>.................] - ETA: 16s - loss: 0.5179 - accuracy: 0.8616

30/65 [============>.................] - ETA: 15s - loss: 0.5175 - accuracy: 0.8617

31/65 [=============>................] - ETA: 15s - loss: 0.5159 - accuracy: 0.8621

32/65 [=============>................] - ETA: 15s - loss: 0.5156 - accuracy: 0.8618

33/65 [==============>...............] - ETA: 14s - loss: 0.5145 - accuracy: 0.8621

34/65 [==============>...............] - ETA: 14s - loss: 0.5159 - accuracy: 0.8617

35/65 [===============>..............] - ETA: 13s - loss: 0.5170 - accuracy: 0.8616

36/65 [===============>..............] - ETA: 13s - loss: 0.5152 - accuracy: 0.8620

37/65 [================>.............] - ETA: 12s - loss: 0.5164 - accuracy: 0.8616

38/65 [================>.............] - ETA: 12s - loss: 0.5166 - accuracy: 0.8613

39/65 [=================>............] - ETA: 11s - loss: 0.5165 - accuracy: 0.8613

40/65 [=================>............] - ETA: 11s - loss: 0.5173 - accuracy: 0.8615

41/65 [=================>............] - ETA: 11s - loss: 0.5166 - accuracy: 0.8618

42/65 [==================>...........] - ETA: 10s - loss: 0.5168 - accuracy: 0.8617

43/65 [==================>...........] - ETA: 10s - loss: 0.5162 - accuracy: 0.8618

44/65 [===================>..........] - ETA: 9s - loss: 0.5163 - accuracy: 0.8617 

45/65 [===================>..........] - ETA: 9s - loss: 0.5151 - accuracy: 0.8620

46/65 [====================>.........] - ETA: 8s - loss: 0.5142 - accuracy: 0.8620

47/65 [====================>.........] - ETA: 8s - loss: 0.5132 - accuracy: 0.8624

48/65 [=====================>........] - ETA: 7s - loss: 0.5131 - accuracy: 0.8622

49/65 [=====================>........] - ETA: 7s - loss: 0.5128 - accuracy: 0.8623

50/65 [======================>.......] - ETA: 6s - loss: 0.5123 - accuracy: 0.8625

51/65 [======================>.......] - ETA: 6s - loss: 0.5138 - accuracy: 0.8621

52/65 [=======================>......] - ETA: 5s - loss: 0.5128 - accuracy: 0.8627

53/65 [=======================>......] - ETA: 5s - loss: 0.5125 - accuracy: 0.8627

54/65 [=======================>......] - ETA: 5s - loss: 0.5124 - accuracy: 0.8628

55/65 [========================>.....] - ETA: 4s - loss: 0.5125 - accuracy: 0.8627

56/65 [========================>.....] - ETA: 4s - loss: 0.5126 - accuracy: 0.8627

57/65 [=========================>....] - ETA: 3s - loss: 0.5125 - accuracy: 0.8626

58/65 [=========================>....] - ETA: 3s - loss: 0.5123 - accuracy: 0.8627

59/65 [==========================>...] - ETA: 2s - loss: 0.5118 - accuracy: 0.8628

60/65 [==========================>...] - ETA: 2s - loss: 0.5112 - accuracy: 0.8630

61/65 [===========================>..] - ETA: 1s - loss: 0.5104 - accuracy: 0.8633

62/65 [===========================>..] - ETA: 1s - loss: 0.5106 - accuracy: 0.8632

63/65 [============================>.] - ETA: 0s - loss: 0.5104 - accuracy: 0.8633

64/65 [============================>.] - ETA: 0s - loss: 0.5108 - accuracy: 0.8633

65/65 [==============================] - ETA: 0s - loss: 0.5107 - accuracy: 0.8633

65/65 [==============================] - 31s 469ms/step - loss: 0.5107 - accuracy: 0.8633 - val_loss: 0.6556 - val_accuracy: 0.8137 - lr: 0.0030
Epoch 16/30
 1/65 [..............................] - ETA: 45s - loss: 0.5072 - accuracy: 0.8672

 2/65 [..............................] - ETA: 29s - loss: 0.4913 - accuracy: 0.8696

 3/65 [>.............................] - ETA: 28s - loss: 0.4970 - accuracy: 0.8636

 4/65 [>.............................] - ETA: 28s - loss: 0.5050 - accuracy: 0.8665

 5/65 [=>............................] - ETA: 28s - loss: 0.5130 - accuracy: 0.8633

 6/65 [=>............................] - ETA: 27s - loss: 0.5134 - accuracy: 0.8612

 7/65 [==>...........................] - ETA: 27s - loss: 0.5170 - accuracy: 0.8591

 8/65 [==>...........................] - ETA: 26s - loss: 0.5157 - accuracy: 0.8608

 9/65 [===>..........................] - ETA: 26s - loss: 0.5160 - accuracy: 0.8612

10/65 [===>..........................] - ETA: 25s - loss: 0.5172 - accuracy: 0.8603

11/65 [====>.........................] - ETA: 25s - loss: 0.5163 - accuracy: 0.8604

12/65 [====>.........................] - ETA: 24s - loss: 0.5168 - accuracy: 0.8605

13/65 [=====>........................] - ETA: 24s - loss: 0.5149 - accuracy: 0.8616

14/65 [=====>........................] - ETA: 23s - loss: 0.5094 - accuracy: 0.8628

15/65 [=====>........................] - ETA: 23s - loss: 0.5106 - accuracy: 0.8628

16/65 [======>.......................] - ETA: 22s - loss: 0.5087 - accuracy: 0.8629

17/65 [======>.......................] - ETA: 22s - loss: 0.5105 - accuracy: 0.8624

18/65 [=======>......................] - ETA: 21s - loss: 0.5112 - accuracy: 0.8622

19/65 [=======>......................] - ETA: 21s - loss: 0.5102 - accuracy: 0.8622

20/65 [========>.....................] - ETA: 20s - loss: 0.5090 - accuracy: 0.8624

21/65 [========>.....................] - ETA: 20s - loss: 0.5076 - accuracy: 0.8625

22/65 [=========>....................] - ETA: 19s - loss: 0.5090 - accuracy: 0.8620

23/65 [=========>....................] - ETA: 19s - loss: 0.5084 - accuracy: 0.8624

24/65 [==========>...................] - ETA: 18s - loss: 0.5076 - accuracy: 0.8630

25/65 [==========>...................] - ETA: 18s - loss: 0.5065 - accuracy: 0.8629

26/65 [===========>..................] - ETA: 17s - loss: 0.5052 - accuracy: 0.8633

27/65 [===========>..................] - ETA: 17s - loss: 0.5045 - accuracy: 0.8632

28/65 [===========>..................] - ETA: 16s - loss: 0.5044 - accuracy: 0.8631

29/65 [============>.................] - ETA: 16s - loss: 0.5017 - accuracy: 0.8641

30/65 [============>.................] - ETA: 15s - loss: 0.5028 - accuracy: 0.8639

31/65 [=============>................] - ETA: 15s - loss: 0.5026 - accuracy: 0.8640

32/65 [=============>................] - ETA: 15s - loss: 0.5022 - accuracy: 0.8643

33/65 [==============>...............] - ETA: 14s - loss: 0.5017 - accuracy: 0.8646

34/65 [==============>...............] - ETA: 14s - loss: 0.5029 - accuracy: 0.8641

35/65 [===============>..............] - ETA: 13s - loss: 0.5027 - accuracy: 0.8643

36/65 [===============>..............] - ETA: 13s - loss: 0.5021 - accuracy: 0.8645

37/65 [================>.............] - ETA: 12s - loss: 0.5024 - accuracy: 0.8644

38/65 [================>.............] - ETA: 12s - loss: 0.5027 - accuracy: 0.8644

39/65 [=================>............] - ETA: 11s - loss: 0.5037 - accuracy: 0.8641

40/65 [=================>............] - ETA: 11s - loss: 0.5043 - accuracy: 0.8639

41/65 [=================>............] - ETA: 11s - loss: 0.5039 - accuracy: 0.8641

42/65 [==================>...........] - ETA: 10s - loss: 0.5024 - accuracy: 0.8646

43/65 [==================>...........] - ETA: 10s - loss: 0.5022 - accuracy: 0.8646

44/65 [===================>..........] - ETA: 9s - loss: 0.5014 - accuracy: 0.8650 

45/65 [===================>..........] - ETA: 9s - loss: 0.5010 - accuracy: 0.8651

46/65 [====================>.........] - ETA: 8s - loss: 0.5005 - accuracy: 0.8649

47/65 [====================>.........] - ETA: 8s - loss: 0.5003 - accuracy: 0.8652

48/65 [=====================>........] - ETA: 7s - loss: 0.5000 - accuracy: 0.8653

49/65 [=====================>........] - ETA: 7s - loss: 0.5006 - accuracy: 0.8651

50/65 [======================>.......] - ETA: 6s - loss: 0.4999 - accuracy: 0.8653

51/65 [======================>.......] - ETA: 6s - loss: 0.5000 - accuracy: 0.8653

52/65 [=======================>......] - ETA: 5s - loss: 0.4991 - accuracy: 0.8656

53/65 [=======================>......] - ETA: 5s - loss: 0.4984 - accuracy: 0.8659

54/65 [=======================>......] - ETA: 5s - loss: 0.4985 - accuracy: 0.8658

55/65 [========================>.....] - ETA: 4s - loss: 0.4973 - accuracy: 0.8664

56/65 [========================>.....] - ETA: 4s - loss: 0.4978 - accuracy: 0.8661

57/65 [=========================>....] - ETA: 3s - loss: 0.4974 - accuracy: 0.8661

58/65 [=========================>....] - ETA: 3s - loss: 0.4972 - accuracy: 0.8662

59/65 [==========================>...] - ETA: 2s - loss: 0.4973 - accuracy: 0.8662

60/65 [==========================>...] - ETA: 2s - loss: 0.4970 - accuracy: 0.8663

61/65 [===========================>..] - ETA: 1s - loss: 0.4974 - accuracy: 0.8662

62/65 [===========================>..] - ETA: 1s - loss: 0.4977 - accuracy: 0.8661

63/65 [============================>.] - ETA: 0s - loss: 0.4982 - accuracy: 0.8660

64/65 [============================>.] - ETA: 0s - loss: 0.4980 - accuracy: 0.8660

65/65 [==============================] - ETA: 0s - loss: 0.4978 - accuracy: 0.8662

65/65 [==============================] - 31s 470ms/step - loss: 0.4978 - accuracy: 0.8662 - val_loss: 0.6546 - val_accuracy: 0.8190 - lr: 0.0030
Epoch 17/30
 1/65 [..............................] - ETA: 45s - loss: 0.5554 - accuracy: 0.8535

 2/65 [..............................] - ETA: 29s - loss: 0.5430 - accuracy: 0.8584

 3/65 [>.............................] - ETA: 29s - loss: 0.5041 - accuracy: 0.8714

 4/65 [>.............................] - ETA: 28s - loss: 0.5083 - accuracy: 0.8687

 5/65 [=>............................] - ETA: 28s - loss: 0.5085 - accuracy: 0.8662

 6/65 [=>............................] - ETA: 27s - loss: 0.5074 - accuracy: 0.8672

 7/65 [==>...........................] - ETA: 27s - loss: 0.5060 - accuracy: 0.8672

 8/65 [==>...........................] - ETA: 26s - loss: 0.5049 - accuracy: 0.8682

 9/65 [===>..........................] - ETA: 26s - loss: 0.5074 - accuracy: 0.8679

10/65 [===>..........................] - ETA: 25s - loss: 0.5033 - accuracy: 0.8687

11/65 [====>.........................] - ETA: 25s - loss: 0.4984 - accuracy: 0.8693

12/65 [====>.........................] - ETA: 24s - loss: 0.4994 - accuracy: 0.8686

13/65 [=====>........................] - ETA: 24s - loss: 0.5004 - accuracy: 0.8680

14/65 [=====>........................] - ETA: 23s - loss: 0.4988 - accuracy: 0.8682

15/65 [=====>........................] - ETA: 23s - loss: 0.4995 - accuracy: 0.8683

16/65 [======>.......................] - ETA: 22s - loss: 0.4990 - accuracy: 0.8680

17/65 [======>.......................] - ETA: 22s - loss: 0.5010 - accuracy: 0.8678

18/65 [=======>......................] - ETA: 21s - loss: 0.5007 - accuracy: 0.8678

19/65 [=======>......................] - ETA: 21s - loss: 0.5004 - accuracy: 0.8678

20/65 [========>.....................] - ETA: 20s - loss: 0.4993 - accuracy: 0.8672

21/65 [========>.....................] - ETA: 20s - loss: 0.5007 - accuracy: 0.8668

22/65 [=========>....................] - ETA: 19s - loss: 0.4982 - accuracy: 0.8672

23/65 [=========>....................] - ETA: 19s - loss: 0.4974 - accuracy: 0.8670

24/65 [==========>...................] - ETA: 18s - loss: 0.4941 - accuracy: 0.8676

25/65 [==========>...................] - ETA: 18s - loss: 0.4935 - accuracy: 0.8688

26/65 [===========>..................] - ETA: 17s - loss: 0.4931 - accuracy: 0.8690

27/65 [===========>..................] - ETA: 17s - loss: 0.4950 - accuracy: 0.8685

28/65 [===========>..................] - ETA: 16s - loss: 0.4938 - accuracy: 0.8686

29/65 [============>.................] - ETA: 16s - loss: 0.4943 - accuracy: 0.8686

30/65 [============>.................] - ETA: 15s - loss: 0.4937 - accuracy: 0.8688

31/65 [=============>................] - ETA: 15s - loss: 0.4936 - accuracy: 0.8690

32/65 [=============>................] - ETA: 15s - loss: 0.4930 - accuracy: 0.8693

33/65 [==============>...............] - ETA: 14s - loss: 0.4947 - accuracy: 0.8689

34/65 [==============>...............] - ETA: 14s - loss: 0.4941 - accuracy: 0.8693

35/65 [===============>..............] - ETA: 13s - loss: 0.4938 - accuracy: 0.8690

36/65 [===============>..............] - ETA: 13s - loss: 0.4934 - accuracy: 0.8692

37/65 [================>.............] - ETA: 12s - loss: 0.4954 - accuracy: 0.8688

38/65 [================>.............] - ETA: 12s - loss: 0.4947 - accuracy: 0.8688

39/65 [=================>............] - ETA: 11s - loss: 0.4946 - accuracy: 0.8688

40/65 [=================>............] - ETA: 11s - loss: 0.4945 - accuracy: 0.8687

41/65 [=================>............] - ETA: 11s - loss: 0.4944 - accuracy: 0.8687

42/65 [==================>...........] - ETA: 10s - loss: 0.4940 - accuracy: 0.8690

43/65 [==================>...........] - ETA: 10s - loss: 0.4931 - accuracy: 0.8692

44/65 [===================>..........] - ETA: 9s - loss: 0.4930 - accuracy: 0.8694 

45/65 [===================>..........] - ETA: 9s - loss: 0.4922 - accuracy: 0.8696

46/65 [====================>.........] - ETA: 8s - loss: 0.4915 - accuracy: 0.8697

47/65 [====================>.........] - ETA: 8s - loss: 0.4917 - accuracy: 0.8696

48/65 [=====================>........] - ETA: 7s - loss: 0.4915 - accuracy: 0.8697

49/65 [=====================>........] - ETA: 7s - loss: 0.4911 - accuracy: 0.8699

50/65 [======================>.......] - ETA: 6s - loss: 0.4924 - accuracy: 0.8695

51/65 [======================>.......] - ETA: 6s - loss: 0.4913 - accuracy: 0.8699

52/65 [=======================>......] - ETA: 5s - loss: 0.4895 - accuracy: 0.8705

53/65 [=======================>......] - ETA: 5s - loss: 0.4891 - accuracy: 0.8707

54/65 [=======================>......] - ETA: 5s - loss: 0.4888 - accuracy: 0.8709

55/65 [========================>.....] - ETA: 4s - loss: 0.4882 - accuracy: 0.8710

56/65 [========================>.....] - ETA: 4s - loss: 0.4884 - accuracy: 0.8709

57/65 [=========================>....] - ETA: 3s - loss: 0.4881 - accuracy: 0.8711

58/65 [=========================>....] - ETA: 3s - loss: 0.4883 - accuracy: 0.8711

59/65 [==========================>...] - ETA: 2s - loss: 0.4883 - accuracy: 0.8712

60/65 [==========================>...] - ETA: 2s - loss: 0.4869 - accuracy: 0.8715

61/65 [===========================>..] - ETA: 1s - loss: 0.4865 - accuracy: 0.8715

62/65 [===========================>..] - ETA: 1s - loss: 0.4859 - accuracy: 0.8718

63/65 [============================>.] - ETA: 0s - loss: 0.4864 - accuracy: 0.8716

64/65 [============================>.] - ETA: 0s - loss: 0.4872 - accuracy: 0.8711

65/65 [==============================] - ETA: 0s - loss: 0.4869 - accuracy: 0.8711
Epoch 17: ReduceLROnPlateau reducing learning rate to 0.001500000013038516.

65/65 [==============================] - 31s 471ms/step - loss: 0.4869 - accuracy: 0.8711 - val_loss: 0.6634 - val_accuracy: 0.8109 - lr: 0.0030
Epoch 18/30
 1/65 [..............................] - ETA: 44s - loss: 0.4791 - accuracy: 0.8691

 2/65 [..............................] - ETA: 29s - loss: 0.4969 - accuracy: 0.8687

 3/65 [>.............................] - ETA: 29s - loss: 0.4887 - accuracy: 0.8717

 4/65 [>.............................] - ETA: 28s - loss: 0.4837 - accuracy: 0.8728

 5/65 [=>............................] - ETA: 28s - loss: 0.4888 - accuracy: 0.8729

 6/65 [=>............................] - ETA: 27s - loss: 0.4818 - accuracy: 0.8765

 7/65 [==>...........................] - ETA: 27s - loss: 0.4850 - accuracy: 0.8723

 8/65 [==>...........................] - ETA: 26s - loss: 0.4821 - accuracy: 0.8734

 9/65 [===>..........................] - ETA: 26s - loss: 0.4867 - accuracy: 0.8721

10/65 [===>..........................] - ETA: 25s - loss: 0.4903 - accuracy: 0.8710

11/65 [====>.........................] - ETA: 24s - loss: 0.4895 - accuracy: 0.8711

12/65 [====>.........................] - ETA: 24s - loss: 0.4941 - accuracy: 0.8711

13/65 [=====>........................] - ETA: 23s - loss: 0.4927 - accuracy: 0.8707

14/65 [=====>........................] - ETA: 23s - loss: 0.4901 - accuracy: 0.8715

15/65 [=====>........................] - ETA: 22s - loss: 0.4864 - accuracy: 0.8723

16/65 [======>.......................] - ETA: 22s - loss: 0.4862 - accuracy: 0.8726

17/65 [======>.......................] - ETA: 22s - loss: 0.4869 - accuracy: 0.8728

18/65 [=======>......................] - ETA: 21s - loss: 0.4838 - accuracy: 0.8741

19/65 [=======>......................] - ETA: 21s - loss: 0.4841 - accuracy: 0.8737

20/65 [========>.....................] - ETA: 20s - loss: 0.4857 - accuracy: 0.8731

21/65 [========>.....................] - ETA: 20s - loss: 0.4845 - accuracy: 0.8734

22/65 [=========>....................] - ETA: 19s - loss: 0.4838 - accuracy: 0.8736

23/65 [=========>....................] - ETA: 19s - loss: 0.4845 - accuracy: 0.8733

24/65 [==========>...................] - ETA: 18s - loss: 0.4814 - accuracy: 0.8742

25/65 [==========>...................] - ETA: 18s - loss: 0.4803 - accuracy: 0.8745

26/65 [===========>..................] - ETA: 17s - loss: 0.4799 - accuracy: 0.8745

27/65 [===========>..................] - ETA: 17s - loss: 0.4787 - accuracy: 0.8753

28/65 [===========>..................] - ETA: 16s - loss: 0.4786 - accuracy: 0.8753

29/65 [============>.................] - ETA: 16s - loss: 0.4790 - accuracy: 0.8752

30/65 [============>.................] - ETA: 15s - loss: 0.4785 - accuracy: 0.8752

31/65 [=============>................] - ETA: 15s - loss: 0.4785 - accuracy: 0.8750

32/65 [=============>................] - ETA: 14s - loss: 0.4774 - accuracy: 0.8752

33/65 [==============>...............] - ETA: 14s - loss: 0.4771 - accuracy: 0.8754

34/65 [==============>...............] - ETA: 14s - loss: 0.4777 - accuracy: 0.8751

35/65 [===============>..............] - ETA: 13s - loss: 0.4779 - accuracy: 0.8750

36/65 [===============>..............] - ETA: 13s - loss: 0.4778 - accuracy: 0.8752

37/65 [================>.............] - ETA: 12s - loss: 0.4781 - accuracy: 0.8754

38/65 [================>.............] - ETA: 12s - loss: 0.4780 - accuracy: 0.8754

39/65 [=================>............] - ETA: 11s - loss: 0.4778 - accuracy: 0.8754

40/65 [=================>............] - ETA: 11s - loss: 0.4771 - accuracy: 0.8758

41/65 [=================>............] - ETA: 10s - loss: 0.4755 - accuracy: 0.8764

42/65 [==================>...........] - ETA: 10s - loss: 0.4754 - accuracy: 0.8763

43/65 [==================>...........] - ETA: 10s - loss: 0.4762 - accuracy: 0.8760

44/65 [===================>..........] - ETA: 9s - loss: 0.4756 - accuracy: 0.8762 

45/65 [===================>..........] - ETA: 9s - loss: 0.4754 - accuracy: 0.8762

46/65 [====================>.........] - ETA: 8s - loss: 0.4748 - accuracy: 0.8762

47/65 [====================>.........] - ETA: 8s - loss: 0.4748 - accuracy: 0.8762

48/65 [=====================>........] - ETA: 7s - loss: 0.4733 - accuracy: 0.8766

49/65 [=====================>........] - ETA: 7s - loss: 0.4727 - accuracy: 0.8768

50/65 [======================>.......] - ETA: 6s - loss: 0.4732 - accuracy: 0.8767

51/65 [======================>.......] - ETA: 6s - loss: 0.4734 - accuracy: 0.8764

52/65 [=======================>......] - ETA: 5s - loss: 0.4724 - accuracy: 0.8767

53/65 [=======================>......] - ETA: 5s - loss: 0.4715 - accuracy: 0.8768

54/65 [=======================>......] - ETA: 5s - loss: 0.4714 - accuracy: 0.8768

55/65 [========================>.....] - ETA: 4s - loss: 0.4709 - accuracy: 0.8769

56/65 [========================>.....] - ETA: 4s - loss: 0.4705 - accuracy: 0.8771

57/65 [=========================>....] - ETA: 3s - loss: 0.4709 - accuracy: 0.8768

58/65 [=========================>....] - ETA: 3s - loss: 0.4701 - accuracy: 0.8769

59/65 [==========================>...] - ETA: 2s - loss: 0.4698 - accuracy: 0.8770

60/65 [==========================>...] - ETA: 2s - loss: 0.4697 - accuracy: 0.8771

61/65 [===========================>..] - ETA: 1s - loss: 0.4698 - accuracy: 0.8770

62/65 [===========================>..] - ETA: 1s - loss: 0.4694 - accuracy: 0.8769

63/65 [============================>.] - ETA: 0s - loss: 0.4694 - accuracy: 0.8769

64/65 [============================>.] - ETA: 0s - loss: 0.4694 - accuracy: 0.8769

65/65 [==============================] - ETA: 0s - loss: 0.4691 - accuracy: 0.8770

65/65 [==============================] - 31s 466ms/step - loss: 0.4691 - accuracy: 0.8770 - val_loss: 0.6014 - val_accuracy: 0.8344 - lr: 0.0015
Epoch 19/30
 1/65 [..............................] - ETA: 44s - loss: 0.5265 - accuracy: 0.8633

 2/65 [..............................] - ETA: 30s - loss: 0.5059 - accuracy: 0.8652

 3/65 [>.............................] - ETA: 29s - loss: 0.5059 - accuracy: 0.8662

 4/65 [>.............................] - ETA: 28s - loss: 0.5018 - accuracy: 0.8699

 5/65 [=>............................] - ETA: 28s - loss: 0.4864 - accuracy: 0.8748

 6/65 [=>............................] - ETA: 27s - loss: 0.4883 - accuracy: 0.8734

 7/65 [==>...........................] - ETA: 26s - loss: 0.4930 - accuracy: 0.8717

 8/65 [==>...........................] - ETA: 26s - loss: 0.4887 - accuracy: 0.8728

 9/65 [===>..........................] - ETA: 25s - loss: 0.4873 - accuracy: 0.8729

10/65 [===>..........................] - ETA: 25s - loss: 0.4841 - accuracy: 0.8735

11/65 [====>.........................] - ETA: 24s - loss: 0.4796 - accuracy: 0.8743

12/65 [====>.........................] - ETA: 24s - loss: 0.4778 - accuracy: 0.8743

13/65 [=====>........................] - ETA: 23s - loss: 0.4764 - accuracy: 0.8743

14/65 [=====>........................] - ETA: 23s - loss: 0.4757 - accuracy: 0.8744

15/65 [=====>........................] - ETA: 22s - loss: 0.4750 - accuracy: 0.8739

16/65 [======>.......................] - ETA: 22s - loss: 0.4760 - accuracy: 0.8738

17/65 [======>.......................] - ETA: 21s - loss: 0.4768 - accuracy: 0.8733

18/65 [=======>......................] - ETA: 21s - loss: 0.4740 - accuracy: 0.8747

19/65 [=======>......................] - ETA: 20s - loss: 0.4691 - accuracy: 0.8758

20/65 [========>.....................] - ETA: 20s - loss: 0.4690 - accuracy: 0.8756

21/65 [========>.....................] - ETA: 20s - loss: 0.4692 - accuracy: 0.8755

22/65 [=========>....................] - ETA: 19s - loss: 0.4682 - accuracy: 0.8757

23/65 [=========>....................] - ETA: 19s - loss: 0.4662 - accuracy: 0.8761

24/65 [==========>...................] - ETA: 18s - loss: 0.4661 - accuracy: 0.8764

25/65 [==========>...................] - ETA: 18s - loss: 0.4673 - accuracy: 0.8766

26/65 [===========>..................] - ETA: 17s - loss: 0.4659 - accuracy: 0.8768

27/65 [===========>..................] - ETA: 17s - loss: 0.4629 - accuracy: 0.8781

28/65 [===========>..................] - ETA: 16s - loss: 0.4635 - accuracy: 0.8782

29/65 [============>.................] - ETA: 16s - loss: 0.4646 - accuracy: 0.8779

30/65 [============>.................] - ETA: 15s - loss: 0.4644 - accuracy: 0.8782

31/65 [=============>................] - ETA: 15s - loss: 0.4641 - accuracy: 0.8783

32/65 [=============>................] - ETA: 15s - loss: 0.4649 - accuracy: 0.8783

33/65 [==============>...............] - ETA: 14s - loss: 0.4645 - accuracy: 0.8783

34/65 [==============>...............] - ETA: 14s - loss: 0.4647 - accuracy: 0.8781

35/65 [===============>..............] - ETA: 13s - loss: 0.4651 - accuracy: 0.8780

36/65 [===============>..............] - ETA: 13s - loss: 0.4659 - accuracy: 0.8780

37/65 [================>.............] - ETA: 12s - loss: 0.4653 - accuracy: 0.8782

38/65 [================>.............] - ETA: 12s - loss: 0.4649 - accuracy: 0.8780

39/65 [=================>............] - ETA: 11s - loss: 0.4640 - accuracy: 0.8780

40/65 [=================>............] - ETA: 11s - loss: 0.4644 - accuracy: 0.8783

41/65 [=================>............] - ETA: 10s - loss: 0.4642 - accuracy: 0.8783

42/65 [==================>...........] - ETA: 10s - loss: 0.4652 - accuracy: 0.8781

43/65 [==================>...........] - ETA: 10s - loss: 0.4642 - accuracy: 0.8784

44/65 [===================>..........] - ETA: 9s - loss: 0.4651 - accuracy: 0.8781 

45/65 [===================>..........] - ETA: 9s - loss: 0.4650 - accuracy: 0.8780

46/65 [====================>.........] - ETA: 8s - loss: 0.4648 - accuracy: 0.8779

47/65 [====================>.........] - ETA: 8s - loss: 0.4651 - accuracy: 0.8778

48/65 [=====================>........] - ETA: 7s - loss: 0.4646 - accuracy: 0.8778

49/65 [=====================>........] - ETA: 7s - loss: 0.4641 - accuracy: 0.8780

50/65 [======================>.......] - ETA: 6s - loss: 0.4633 - accuracy: 0.8782

51/65 [======================>.......] - ETA: 6s - loss: 0.4619 - accuracy: 0.8786

52/65 [=======================>......] - ETA: 5s - loss: 0.4612 - accuracy: 0.8788

53/65 [=======================>......] - ETA: 5s - loss: 0.4611 - accuracy: 0.8787

54/65 [=======================>......] - ETA: 5s - loss: 0.4614 - accuracy: 0.8786

55/65 [========================>.....] - ETA: 4s - loss: 0.4615 - accuracy: 0.8785

56/65 [========================>.....] - ETA: 4s - loss: 0.4616 - accuracy: 0.8786

57/65 [=========================>....] - ETA: 3s - loss: 0.4607 - accuracy: 0.8789

58/65 [=========================>....] - ETA: 3s - loss: 0.4602 - accuracy: 0.8791

59/65 [==========================>...] - ETA: 2s - loss: 0.4602 - accuracy: 0.8791

60/65 [==========================>...] - ETA: 2s - loss: 0.4600 - accuracy: 0.8793

61/65 [===========================>..] - ETA: 1s - loss: 0.4599 - accuracy: 0.8792

62/65 [===========================>..] - ETA: 1s - loss: 0.4600 - accuracy: 0.8793

63/65 [============================>.] - ETA: 0s - loss: 0.4602 - accuracy: 0.8792

64/65 [============================>.] - ETA: 0s - loss: 0.4597 - accuracy: 0.8793

65/65 [==============================] - ETA: 0s - loss: 0.4596 - accuracy: 0.8793

65/65 [==============================] - 30s 465ms/step - loss: 0.4596 - accuracy: 0.8793 - val_loss: 0.5456 - val_accuracy: 0.8531 - lr: 0.0015
Epoch 20/30
 1/65 [..............................] - ETA: 43s - loss: 0.4298 - accuracy: 0.8926

 2/65 [..............................] - ETA: 27s - loss: 0.4361 - accuracy: 0.8892

 3/65 [>.............................] - ETA: 27s - loss: 0.4573 - accuracy: 0.8812

 4/65 [>.............................] - ETA: 27s - loss: 0.4588 - accuracy: 0.8823

 5/65 [=>............................] - ETA: 27s - loss: 0.4599 - accuracy: 0.8809

 6/65 [=>............................] - ETA: 27s - loss: 0.4603 - accuracy: 0.8797

 7/65 [==>...........................] - ETA: 26s - loss: 0.4601 - accuracy: 0.8796

 8/65 [==>...........................] - ETA: 26s - loss: 0.4638 - accuracy: 0.8785

 9/65 [===>..........................] - ETA: 25s - loss: 0.4653 - accuracy: 0.8786

10/65 [===>..........................] - ETA: 25s - loss: 0.4605 - accuracy: 0.8804

11/65 [====>.........................] - ETA: 24s - loss: 0.4619 - accuracy: 0.8793

12/65 [====>.........................] - ETA: 24s - loss: 0.4594 - accuracy: 0.8800

13/65 [=====>........................] - ETA: 23s - loss: 0.4606 - accuracy: 0.8793

14/65 [=====>........................] - ETA: 23s - loss: 0.4598 - accuracy: 0.8793

15/65 [=====>........................] - ETA: 22s - loss: 0.4626 - accuracy: 0.8781

16/65 [======>.......................] - ETA: 22s - loss: 0.4638 - accuracy: 0.8775

17/65 [======>.......................] - ETA: 21s - loss: 0.4612 - accuracy: 0.8777

18/65 [=======>......................] - ETA: 21s - loss: 0.4601 - accuracy: 0.8779

19/65 [=======>......................] - ETA: 20s - loss: 0.4609 - accuracy: 0.8778

20/65 [========>.....................] - ETA: 20s - loss: 0.4598 - accuracy: 0.8781

21/65 [========>.....................] - ETA: 19s - loss: 0.4577 - accuracy: 0.8788

22/65 [=========>....................] - ETA: 19s - loss: 0.4580 - accuracy: 0.8782

23/65 [=========>....................] - ETA: 19s - loss: 0.4585 - accuracy: 0.8783

24/65 [==========>...................] - ETA: 18s - loss: 0.4580 - accuracy: 0.8784

25/65 [==========>...................] - ETA: 18s - loss: 0.4553 - accuracy: 0.8797

26/65 [===========>..................] - ETA: 17s - loss: 0.4548 - accuracy: 0.8798

27/65 [===========>..................] - ETA: 17s - loss: 0.4546 - accuracy: 0.8797

28/65 [===========>..................] - ETA: 16s - loss: 0.4545 - accuracy: 0.8799

29/65 [============>.................] - ETA: 16s - loss: 0.4566 - accuracy: 0.8792

30/65 [============>.................] - ETA: 15s - loss: 0.4574 - accuracy: 0.8790

31/65 [=============>................] - ETA: 15s - loss: 0.4582 - accuracy: 0.8787

32/65 [=============>................] - ETA: 15s - loss: 0.4569 - accuracy: 0.8788

33/65 [==============>...............] - ETA: 14s - loss: 0.4581 - accuracy: 0.8786

34/65 [==============>...............] - ETA: 14s - loss: 0.4583 - accuracy: 0.8786

35/65 [===============>..............] - ETA: 13s - loss: 0.4585 - accuracy: 0.8784

36/65 [===============>..............] - ETA: 13s - loss: 0.4575 - accuracy: 0.8790

37/65 [================>.............] - ETA: 12s - loss: 0.4583 - accuracy: 0.8786

38/65 [================>.............] - ETA: 12s - loss: 0.4575 - accuracy: 0.8789

39/65 [=================>............] - ETA: 11s - loss: 0.4581 - accuracy: 0.8788

40/65 [=================>............] - ETA: 11s - loss: 0.4589 - accuracy: 0.8790

41/65 [=================>............] - ETA: 10s - loss: 0.4584 - accuracy: 0.8791

42/65 [==================>...........] - ETA: 10s - loss: 0.4587 - accuracy: 0.8794

43/65 [==================>...........] - ETA: 10s - loss: 0.4586 - accuracy: 0.8794

44/65 [===================>..........] - ETA: 9s - loss: 0.4584 - accuracy: 0.8795 

45/65 [===================>..........] - ETA: 9s - loss: 0.4586 - accuracy: 0.8796

46/65 [====================>.........] - ETA: 8s - loss: 0.4591 - accuracy: 0.8794

47/65 [====================>.........] - ETA: 8s - loss: 0.4588 - accuracy: 0.8795

48/65 [=====================>........] - ETA: 7s - loss: 0.4576 - accuracy: 0.8798

49/65 [=====================>........] - ETA: 7s - loss: 0.4580 - accuracy: 0.8798

50/65 [======================>.......] - ETA: 6s - loss: 0.4582 - accuracy: 0.8797

51/65 [======================>.......] - ETA: 6s - loss: 0.4577 - accuracy: 0.8799

52/65 [=======================>......] - ETA: 5s - loss: 0.4574 - accuracy: 0.8801

53/65 [=======================>......] - ETA: 5s - loss: 0.4563 - accuracy: 0.8805

54/65 [=======================>......] - ETA: 5s - loss: 0.4571 - accuracy: 0.8804

55/65 [========================>.....] - ETA: 4s - loss: 0.4573 - accuracy: 0.8803

56/65 [========================>.....] - ETA: 4s - loss: 0.4563 - accuracy: 0.8807

57/65 [=========================>....] - ETA: 3s - loss: 0.4562 - accuracy: 0.8807

58/65 [=========================>....] - ETA: 3s - loss: 0.4562 - accuracy: 0.8808

59/65 [==========================>...] - ETA: 2s - loss: 0.4558 - accuracy: 0.8808

60/65 [==========================>...] - ETA: 2s - loss: 0.4557 - accuracy: 0.8809

61/65 [===========================>..] - ETA: 1s - loss: 0.4562 - accuracy: 0.8807

62/65 [===========================>..] - ETA: 1s - loss: 0.4555 - accuracy: 0.8810

63/65 [============================>.] - ETA: 0s - loss: 0.4550 - accuracy: 0.8809

64/65 [============================>.] - ETA: 0s - loss: 0.4547 - accuracy: 0.8809

65/65 [==============================] - ETA: 0s - loss: 0.4549 - accuracy: 0.8808

65/65 [==============================] - 31s 466ms/step - loss: 0.4549 - accuracy: 0.8808 - val_loss: 0.6239 - val_accuracy: 0.8301 - lr: 0.0015
Epoch 21/30
 1/65 [..............................] - ETA: 45s - loss: 0.5154 - accuracy: 0.8643

 2/65 [..............................] - ETA: 30s - loss: 0.4695 - accuracy: 0.8730

 3/65 [>.............................] - ETA: 29s - loss: 0.4614 - accuracy: 0.8779

 4/65 [>.............................] - ETA: 29s - loss: 0.4650 - accuracy: 0.8779

 5/65 [=>............................] - ETA: 28s - loss: 0.4653 - accuracy: 0.8785

 6/65 [=>............................] - ETA: 27s - loss: 0.4715 - accuracy: 0.8766

 7/65 [==>...........................] - ETA: 27s - loss: 0.4690 - accuracy: 0.8782

 8/65 [==>...........................] - ETA: 26s - loss: 0.4647 - accuracy: 0.8787

 9/65 [===>..........................] - ETA: 26s - loss: 0.4609 - accuracy: 0.8797

10/65 [===>..........................] - ETA: 25s - loss: 0.4588 - accuracy: 0.8809

11/65 [====>.........................] - ETA: 24s - loss: 0.4596 - accuracy: 0.8802

12/65 [====>.........................] - ETA: 24s - loss: 0.4580 - accuracy: 0.8813

13/65 [=====>........................] - ETA: 23s - loss: 0.4597 - accuracy: 0.8811

14/65 [=====>........................] - ETA: 23s - loss: 0.4578 - accuracy: 0.8815

15/65 [=====>........................] - ETA: 22s - loss: 0.4567 - accuracy: 0.8811

16/65 [======>.......................] - ETA: 22s - loss: 0.4573 - accuracy: 0.8805

17/65 [======>.......................] - ETA: 22s - loss: 0.4591 - accuracy: 0.8795

18/65 [=======>......................] - ETA: 21s - loss: 0.4588 - accuracy: 0.8793

19/65 [=======>......................] - ETA: 21s - loss: 0.4587 - accuracy: 0.8791

20/65 [========>.....................] - ETA: 20s - loss: 0.4574 - accuracy: 0.8796

21/65 [========>.....................] - ETA: 20s - loss: 0.4571 - accuracy: 0.8796

22/65 [=========>....................] - ETA: 19s - loss: 0.4578 - accuracy: 0.8790

23/65 [=========>....................] - ETA: 19s - loss: 0.4579 - accuracy: 0.8791

24/65 [==========>...................] - ETA: 18s - loss: 0.4562 - accuracy: 0.8796

25/65 [==========>...................] - ETA: 18s - loss: 0.4556 - accuracy: 0.8796

26/65 [===========>..................] - ETA: 17s - loss: 0.4556 - accuracy: 0.8797

27/65 [===========>..................] - ETA: 17s - loss: 0.4559 - accuracy: 0.8796

28/65 [===========>..................] - ETA: 16s - loss: 0.4559 - accuracy: 0.8796

29/65 [============>.................] - ETA: 16s - loss: 0.4547 - accuracy: 0.8799

30/65 [============>.................] - ETA: 16s - loss: 0.4545 - accuracy: 0.8798

31/65 [=============>................] - ETA: 15s - loss: 0.4546 - accuracy: 0.8799

32/65 [=============>................] - ETA: 15s - loss: 0.4553 - accuracy: 0.8795

33/65 [==============>...............] - ETA: 14s - loss: 0.4554 - accuracy: 0.8795

34/65 [==============>...............] - ETA: 14s - loss: 0.4548 - accuracy: 0.8797

35/65 [===============>..............] - ETA: 13s - loss: 0.4558 - accuracy: 0.8795

36/65 [===============>..............] - ETA: 13s - loss: 0.4554 - accuracy: 0.8796

37/65 [================>.............] - ETA: 12s - loss: 0.4562 - accuracy: 0.8791

38/65 [================>.............] - ETA: 12s - loss: 0.4562 - accuracy: 0.8792

39/65 [=================>............] - ETA: 11s - loss: 0.4547 - accuracy: 0.8796

40/65 [=================>............] - ETA: 11s - loss: 0.4539 - accuracy: 0.8796

41/65 [=================>............] - ETA: 11s - loss: 0.4524 - accuracy: 0.8804

42/65 [==================>...........] - ETA: 10s - loss: 0.4516 - accuracy: 0.8806

43/65 [==================>...........] - ETA: 10s - loss: 0.4521 - accuracy: 0.8805

44/65 [===================>..........] - ETA: 9s - loss: 0.4518 - accuracy: 0.8805 

45/65 [===================>..........] - ETA: 9s - loss: 0.4526 - accuracy: 0.8803

46/65 [====================>.........] - ETA: 8s - loss: 0.4525 - accuracy: 0.8806

47/65 [====================>.........] - ETA: 8s - loss: 0.4527 - accuracy: 0.8806

48/65 [=====================>........] - ETA: 7s - loss: 0.4515 - accuracy: 0.8809

49/65 [=====================>........] - ETA: 7s - loss: 0.4517 - accuracy: 0.8809

50/65 [======================>.......] - ETA: 6s - loss: 0.4516 - accuracy: 0.8810

51/65 [======================>.......] - ETA: 6s - loss: 0.4508 - accuracy: 0.8813

52/65 [=======================>......] - ETA: 5s - loss: 0.4504 - accuracy: 0.8816

53/65 [=======================>......] - ETA: 5s - loss: 0.4503 - accuracy: 0.8816

54/65 [=======================>......] - ETA: 5s - loss: 0.4499 - accuracy: 0.8817

55/65 [========================>.....] - ETA: 4s - loss: 0.4502 - accuracy: 0.8815

56/65 [========================>.....] - ETA: 4s - loss: 0.4500 - accuracy: 0.8816

57/65 [=========================>....] - ETA: 3s - loss: 0.4495 - accuracy: 0.8817

58/65 [=========================>....] - ETA: 3s - loss: 0.4492 - accuracy: 0.8819

59/65 [==========================>...] - ETA: 2s - loss: 0.4498 - accuracy: 0.8819

60/65 [==========================>...] - ETA: 2s - loss: 0.4505 - accuracy: 0.8815

61/65 [===========================>..] - ETA: 1s - loss: 0.4498 - accuracy: 0.8817

62/65 [===========================>..] - ETA: 1s - loss: 0.4497 - accuracy: 0.8817

63/65 [============================>.] - ETA: 0s - loss: 0.4491 - accuracy: 0.8818

64/65 [============================>.] - ETA: 0s - loss: 0.4490 - accuracy: 0.8819

65/65 [==============================] - ETA: 0s - loss: 0.4495 - accuracy: 0.8816

65/65 [==============================] - 31s 470ms/step - loss: 0.4495 - accuracy: 0.8816 - val_loss: 0.5804 - val_accuracy: 0.8391 - lr: 0.0015
Epoch 22/30
 1/65 [..............................] - ETA: 43s - loss: 0.4684 - accuracy: 0.8730

 2/65 [..............................] - ETA: 28s - loss: 0.4965 - accuracy: 0.8726

 3/65 [>.............................] - ETA: 27s - loss: 0.4776 - accuracy: 0.8760

 4/65 [>.............................] - ETA: 27s - loss: 0.4814 - accuracy: 0.8735

 5/65 [=>............................] - ETA: 27s - loss: 0.4714 - accuracy: 0.8764

 6/65 [=>............................] - ETA: 26s - loss: 0.4735 - accuracy: 0.8742

 7/65 [==>...........................] - ETA: 26s - loss: 0.4752 - accuracy: 0.8736

 8/65 [==>...........................] - ETA: 25s - loss: 0.4779 - accuracy: 0.8730

 9/65 [===>..........................] - ETA: 25s - loss: 0.4735 - accuracy: 0.8746

10/65 [===>..........................] - ETA: 24s - loss: 0.4685 - accuracy: 0.8745

11/65 [====>.........................] - ETA: 24s - loss: 0.4671 - accuracy: 0.8751

12/65 [====>.........................] - ETA: 24s - loss: 0.4615 - accuracy: 0.8770

13/65 [=====>........................] - ETA: 23s - loss: 0.4591 - accuracy: 0.8778

14/65 [=====>........................] - ETA: 23s - loss: 0.4582 - accuracy: 0.8785

15/65 [=====>........................] - ETA: 22s - loss: 0.4584 - accuracy: 0.8781

16/65 [======>.......................] - ETA: 22s - loss: 0.4607 - accuracy: 0.8779

17/65 [======>.......................] - ETA: 21s - loss: 0.4554 - accuracy: 0.8796

18/65 [=======>......................] - ETA: 21s - loss: 0.4530 - accuracy: 0.8799

19/65 [=======>......................] - ETA: 20s - loss: 0.4531 - accuracy: 0.8790

20/65 [========>.....................] - ETA: 20s - loss: 0.4513 - accuracy: 0.8793

21/65 [========>.....................] - ETA: 19s - loss: 0.4514 - accuracy: 0.8791

22/65 [=========>....................] - ETA: 19s - loss: 0.4520 - accuracy: 0.8789

23/65 [=========>....................] - ETA: 19s - loss: 0.4515 - accuracy: 0.8793

24/65 [==========>...................] - ETA: 18s - loss: 0.4521 - accuracy: 0.8793

25/65 [==========>...................] - ETA: 18s - loss: 0.4506 - accuracy: 0.8800

26/65 [===========>..................] - ETA: 17s - loss: 0.4493 - accuracy: 0.8806

27/65 [===========>..................] - ETA: 17s - loss: 0.4490 - accuracy: 0.8809

28/65 [===========>..................] - ETA: 16s - loss: 0.4498 - accuracy: 0.8806

29/65 [============>.................] - ETA: 16s - loss: 0.4507 - accuracy: 0.8804

30/65 [============>.................] - ETA: 15s - loss: 0.4502 - accuracy: 0.8808

31/65 [=============>................] - ETA: 15s - loss: 0.4492 - accuracy: 0.8809

32/65 [=============>................] - ETA: 15s - loss: 0.4495 - accuracy: 0.8806

33/65 [==============>...............] - ETA: 14s - loss: 0.4498 - accuracy: 0.8803

34/65 [==============>...............] - ETA: 14s - loss: 0.4493 - accuracy: 0.8806

35/65 [===============>..............] - ETA: 13s - loss: 0.4488 - accuracy: 0.8806

36/65 [===============>..............] - ETA: 13s - loss: 0.4495 - accuracy: 0.8806

37/65 [================>.............] - ETA: 12s - loss: 0.4487 - accuracy: 0.8810

38/65 [================>.............] - ETA: 12s - loss: 0.4480 - accuracy: 0.8813

39/65 [=================>............] - ETA: 11s - loss: 0.4476 - accuracy: 0.8816

40/65 [=================>............] - ETA: 11s - loss: 0.4478 - accuracy: 0.8817

41/65 [=================>............] - ETA: 10s - loss: 0.4476 - accuracy: 0.8817

42/65 [==================>...........] - ETA: 10s - loss: 0.4478 - accuracy: 0.8816

43/65 [==================>...........] - ETA: 10s - loss: 0.4477 - accuracy: 0.8819

44/65 [===================>..........] - ETA: 9s - loss: 0.4470 - accuracy: 0.8819 

45/65 [===================>..........] - ETA: 9s - loss: 0.4459 - accuracy: 0.8822

46/65 [====================>.........] - ETA: 8s - loss: 0.4466 - accuracy: 0.8821

47/65 [====================>.........] - ETA: 8s - loss: 0.4461 - accuracy: 0.8823

48/65 [=====================>........] - ETA: 7s - loss: 0.4459 - accuracy: 0.8821

49/65 [=====================>........] - ETA: 7s - loss: 0.4458 - accuracy: 0.8822

50/65 [======================>.......] - ETA: 6s - loss: 0.4459 - accuracy: 0.8822

51/65 [======================>.......] - ETA: 6s - loss: 0.4453 - accuracy: 0.8823

52/65 [=======================>......] - ETA: 5s - loss: 0.4457 - accuracy: 0.8821

53/65 [=======================>......] - ETA: 5s - loss: 0.4459 - accuracy: 0.8821

54/65 [=======================>......] - ETA: 5s - loss: 0.4460 - accuracy: 0.8821

55/65 [========================>.....] - ETA: 4s - loss: 0.4461 - accuracy: 0.8819

56/65 [========================>.....] - ETA: 4s - loss: 0.4467 - accuracy: 0.8817

57/65 [=========================>....] - ETA: 3s - loss: 0.4454 - accuracy: 0.8823

58/65 [=========================>....] - ETA: 3s - loss: 0.4462 - accuracy: 0.8821

59/65 [==========================>...] - ETA: 2s - loss: 0.4457 - accuracy: 0.8821

60/65 [==========================>...] - ETA: 2s - loss: 0.4453 - accuracy: 0.8824

61/65 [===========================>..] - ETA: 1s - loss: 0.4452 - accuracy: 0.8824

62/65 [===========================>..] - ETA: 1s - loss: 0.4451 - accuracy: 0.8825

63/65 [============================>.] - ETA: 0s - loss: 0.4450 - accuracy: 0.8823

64/65 [============================>.] - ETA: 0s - loss: 0.4453 - accuracy: 0.8822

65/65 [==============================] - ETA: 0s - loss: 0.4455 - accuracy: 0.8823
Epoch 22: ReduceLROnPlateau reducing learning rate to 0.000750000006519258.

65/65 [==============================] - 31s 469ms/step - loss: 0.4455 - accuracy: 0.8823 - val_loss: 0.5684 - val_accuracy: 0.8483 - lr: 0.0015
Epoch 23/30
 1/65 [..............................] - ETA: 43s - loss: 0.4860 - accuracy: 0.8711

 2/65 [..............................] - ETA: 27s - loss: 0.5065 - accuracy: 0.8657

 3/65 [>.............................] - ETA: 27s - loss: 0.4999 - accuracy: 0.8675

 4/65 [>.............................] - ETA: 27s - loss: 0.4805 - accuracy: 0.8718

 5/65 [=>............................] - ETA: 26s - loss: 0.4763 - accuracy: 0.8723

 6/65 [=>............................] - ETA: 26s - loss: 0.4795 - accuracy: 0.8745

 7/65 [==>...........................] - ETA: 26s - loss: 0.4772 - accuracy: 0.8743

 8/65 [==>...........................] - ETA: 25s - loss: 0.4760 - accuracy: 0.8752

 9/65 [===>..........................] - ETA: 25s - loss: 0.4713 - accuracy: 0.8770

10/65 [===>..........................] - ETA: 24s - loss: 0.4724 - accuracy: 0.8764

11/65 [====>.........................] - ETA: 24s - loss: 0.4659 - accuracy: 0.8780

12/65 [====>.........................] - ETA: 23s - loss: 0.4634 - accuracy: 0.8782

13/65 [=====>........................] - ETA: 23s - loss: 0.4646 - accuracy: 0.8779

14/65 [=====>........................] - ETA: 22s - loss: 0.4620 - accuracy: 0.8785

15/65 [=====>........................] - ETA: 22s - loss: 0.4600 - accuracy: 0.8786

16/65 [======>.......................] - ETA: 22s - loss: 0.4600 - accuracy: 0.8779

17/65 [======>.......................] - ETA: 21s - loss: 0.4582 - accuracy: 0.8788

18/65 [=======>......................] - ETA: 21s - loss: 0.4603 - accuracy: 0.8778

19/65 [=======>......................] - ETA: 20s - loss: 0.4602 - accuracy: 0.8784

20/65 [========>.....................] - ETA: 20s - loss: 0.4584 - accuracy: 0.8787

21/65 [========>.....................] - ETA: 19s - loss: 0.4560 - accuracy: 0.8791

22/65 [=========>....................] - ETA: 19s - loss: 0.4532 - accuracy: 0.8797

23/65 [=========>....................] - ETA: 18s - loss: 0.4531 - accuracy: 0.8796

24/65 [==========>...................] - ETA: 18s - loss: 0.4535 - accuracy: 0.8793

25/65 [==========>...................] - ETA: 17s - loss: 0.4527 - accuracy: 0.8794

26/65 [===========>..................] - ETA: 17s - loss: 0.4497 - accuracy: 0.8803

27/65 [===========>..................] - ETA: 17s - loss: 0.4482 - accuracy: 0.8808

28/65 [===========>..................] - ETA: 16s - loss: 0.4470 - accuracy: 0.8809

29/65 [============>.................] - ETA: 16s - loss: 0.4462 - accuracy: 0.8810

30/65 [============>.................] - ETA: 15s - loss: 0.4450 - accuracy: 0.8816

31/65 [=============>................] - ETA: 15s - loss: 0.4444 - accuracy: 0.8821

32/65 [=============>................] - ETA: 14s - loss: 0.4455 - accuracy: 0.8817

33/65 [==============>...............] - ETA: 14s - loss: 0.4453 - accuracy: 0.8820

34/65 [==============>...............] - ETA: 14s - loss: 0.4445 - accuracy: 0.8823

35/65 [===============>..............] - ETA: 13s - loss: 0.4441 - accuracy: 0.8824

36/65 [===============>..............] - ETA: 13s - loss: 0.4435 - accuracy: 0.8828

37/65 [================>.............] - ETA: 12s - loss: 0.4425 - accuracy: 0.8832

38/65 [================>.............] - ETA: 12s - loss: 0.4435 - accuracy: 0.8829

39/65 [=================>............] - ETA: 11s - loss: 0.4433 - accuracy: 0.8829

40/65 [=================>............] - ETA: 11s - loss: 0.4431 - accuracy: 0.8831

41/65 [=================>............] - ETA: 10s - loss: 0.4432 - accuracy: 0.8830

42/65 [==================>...........] - ETA: 10s - loss: 0.4424 - accuracy: 0.8830

43/65 [==================>...........] - ETA: 9s - loss: 0.4422 - accuracy: 0.8829 

44/65 [===================>..........] - ETA: 9s - loss: 0.4416 - accuracy: 0.8833

45/65 [===================>..........] - ETA: 9s - loss: 0.4411 - accuracy: 0.8835

46/65 [====================>.........] - ETA: 8s - loss: 0.4411 - accuracy: 0.8835

47/65 [====================>.........] - ETA: 8s - loss: 0.4409 - accuracy: 0.8835

48/65 [=====================>........] - ETA: 7s - loss: 0.4405 - accuracy: 0.8837

49/65 [=====================>........] - ETA: 7s - loss: 0.4399 - accuracy: 0.8836

50/65 [======================>.......] - ETA: 6s - loss: 0.4402 - accuracy: 0.8836

51/65 [======================>.......] - ETA: 6s - loss: 0.4394 - accuracy: 0.8838

52/65 [=======================>......] - ETA: 5s - loss: 0.4387 - accuracy: 0.8839

53/65 [=======================>......] - ETA: 5s - loss: 0.4398 - accuracy: 0.8837

54/65 [=======================>......] - ETA: 5s - loss: 0.4395 - accuracy: 0.8837

55/65 [========================>.....] - ETA: 4s - loss: 0.4393 - accuracy: 0.8836

56/65 [========================>.....] - ETA: 4s - loss: 0.4404 - accuracy: 0.8833

57/65 [=========================>....] - ETA: 3s - loss: 0.4398 - accuracy: 0.8835

58/65 [=========================>....] - ETA: 3s - loss: 0.4400 - accuracy: 0.8835

59/65 [==========================>...] - ETA: 2s - loss: 0.4395 - accuracy: 0.8835

60/65 [==========================>...] - ETA: 2s - loss: 0.4396 - accuracy: 0.8834

61/65 [===========================>..] - ETA: 1s - loss: 0.4400 - accuracy: 0.8832

62/65 [===========================>..] - ETA: 1s - loss: 0.4396 - accuracy: 0.8833

63/65 [============================>.] - ETA: 0s - loss: 0.4396 - accuracy: 0.8833

64/65 [============================>.] - ETA: 0s - loss: 0.4393 - accuracy: 0.8833

65/65 [==============================] - ETA: 0s - loss: 0.4390 - accuracy: 0.8834

65/65 [==============================] - 31s 468ms/step - loss: 0.4390 - accuracy: 0.8834 - val_loss: 0.5921 - val_accuracy: 0.8369 - lr: 7.5000e-04
Epoch 24/30
 1/65 [..............................] - ETA: 44s - loss: 0.4632 - accuracy: 0.8662

 2/65 [..............................] - ETA: 29s - loss: 0.4638 - accuracy: 0.8774

 3/65 [>.............................] - ETA: 29s - loss: 0.4711 - accuracy: 0.8747

 4/65 [>.............................] - ETA: 28s - loss: 0.4692 - accuracy: 0.8770

 5/65 [=>............................] - ETA: 28s - loss: 0.4616 - accuracy: 0.8803

 6/65 [=>............................] - ETA: 27s - loss: 0.4536 - accuracy: 0.8830

 7/65 [==>...........................] - ETA: 26s - loss: 0.4529 - accuracy: 0.8834

 8/65 [==>...........................] - ETA: 26s - loss: 0.4485 - accuracy: 0.8843

 9/65 [===>..........................] - ETA: 25s - loss: 0.4496 - accuracy: 0.8837

10/65 [===>..........................] - ETA: 25s - loss: 0.4518 - accuracy: 0.8823

11/65 [====>.........................] - ETA: 24s - loss: 0.4476 - accuracy: 0.8835

12/65 [====>.........................] - ETA: 24s - loss: 0.4479 - accuracy: 0.8828

13/65 [=====>........................] - ETA: 23s - loss: 0.4471 - accuracy: 0.8826

14/65 [=====>........................] - ETA: 23s - loss: 0.4473 - accuracy: 0.8821

15/65 [=====>........................] - ETA: 22s - loss: 0.4473 - accuracy: 0.8818

16/65 [======>.......................] - ETA: 22s - loss: 0.4457 - accuracy: 0.8821

17/65 [======>.......................] - ETA: 21s - loss: 0.4470 - accuracy: 0.8818

18/65 [=======>......................] - ETA: 21s - loss: 0.4454 - accuracy: 0.8817

19/65 [=======>......................] - ETA: 20s - loss: 0.4457 - accuracy: 0.8818

20/65 [========>.....................] - ETA: 20s - loss: 0.4458 - accuracy: 0.8817

21/65 [========>.....................] - ETA: 19s - loss: 0.4470 - accuracy: 0.8813

22/65 [=========>....................] - ETA: 19s - loss: 0.4453 - accuracy: 0.8821

23/65 [=========>....................] - ETA: 19s - loss: 0.4423 - accuracy: 0.8828

24/65 [==========>...................] - ETA: 18s - loss: 0.4418 - accuracy: 0.8835

25/65 [==========>...................] - ETA: 18s - loss: 0.4411 - accuracy: 0.8838

26/65 [===========>..................] - ETA: 17s - loss: 0.4407 - accuracy: 0.8841

27/65 [===========>..................] - ETA: 17s - loss: 0.4400 - accuracy: 0.8845

28/65 [===========>..................] - ETA: 16s - loss: 0.4396 - accuracy: 0.8845

29/65 [============>.................] - ETA: 16s - loss: 0.4407 - accuracy: 0.8841

30/65 [============>.................] - ETA: 15s - loss: 0.4393 - accuracy: 0.8848

31/65 [=============>................] - ETA: 15s - loss: 0.4375 - accuracy: 0.8854

32/65 [=============>................] - ETA: 15s - loss: 0.4380 - accuracy: 0.8852

33/65 [==============>...............] - ETA: 14s - loss: 0.4385 - accuracy: 0.8849

34/65 [==============>...............] - ETA: 14s - loss: 0.4382 - accuracy: 0.8849

35/65 [===============>..............] - ETA: 13s - loss: 0.4373 - accuracy: 0.8853

36/65 [===============>..............] - ETA: 13s - loss: 0.4374 - accuracy: 0.8853

37/65 [================>.............] - ETA: 12s - loss: 0.4387 - accuracy: 0.8852

38/65 [================>.............] - ETA: 12s - loss: 0.4385 - accuracy: 0.8850

39/65 [=================>............] - ETA: 11s - loss: 0.4385 - accuracy: 0.8851

40/65 [=================>............] - ETA: 11s - loss: 0.4382 - accuracy: 0.8852

41/65 [=================>............] - ETA: 11s - loss: 0.4383 - accuracy: 0.8851

42/65 [==================>...........] - ETA: 10s - loss: 0.4380 - accuracy: 0.8850

43/65 [==================>...........] - ETA: 10s - loss: 0.4368 - accuracy: 0.8854

44/65 [===================>..........] - ETA: 9s - loss: 0.4375 - accuracy: 0.8851 

45/65 [===================>..........] - ETA: 9s - loss: 0.4384 - accuracy: 0.8850

46/65 [====================>.........] - ETA: 8s - loss: 0.4391 - accuracy: 0.8851

47/65 [====================>.........] - ETA: 8s - loss: 0.4381 - accuracy: 0.8853

48/65 [=====================>........] - ETA: 7s - loss: 0.4381 - accuracy: 0.8851

49/65 [=====================>........] - ETA: 7s - loss: 0.4381 - accuracy: 0.8852

50/65 [======================>.......] - ETA: 6s - loss: 0.4392 - accuracy: 0.8848

51/65 [======================>.......] - ETA: 6s - loss: 0.4381 - accuracy: 0.8852

52/65 [=======================>......] - ETA: 5s - loss: 0.4381 - accuracy: 0.8851

53/65 [=======================>......] - ETA: 5s - loss: 0.4373 - accuracy: 0.8852

54/65 [=======================>......] - ETA: 5s - loss: 0.4374 - accuracy: 0.8849

55/65 [========================>.....] - ETA: 4s - loss: 0.4372 - accuracy: 0.8849

56/65 [========================>.....] - ETA: 4s - loss: 0.4369 - accuracy: 0.8851

57/65 [=========================>....] - ETA: 3s - loss: 0.4370 - accuracy: 0.8852

58/65 [=========================>....] - ETA: 3s - loss: 0.4373 - accuracy: 0.8851

59/65 [==========================>...] - ETA: 2s - loss: 0.4375 - accuracy: 0.8849

60/65 [==========================>...] - ETA: 2s - loss: 0.4376 - accuracy: 0.8850

61/65 [===========================>..] - ETA: 1s - loss: 0.4381 - accuracy: 0.8848

62/65 [===========================>..] - ETA: 1s - loss: 0.4377 - accuracy: 0.8850

63/65 [============================>.] - ETA: 0s - loss: 0.4372 - accuracy: 0.8850

64/65 [============================>.] - ETA: 0s - loss: 0.4368 - accuracy: 0.8849

65/65 [==============================] - ETA: 0s - loss: 0.4373 - accuracy: 0.8848

65/65 [==============================] - 31s 472ms/step - loss: 0.4373 - accuracy: 0.8848 - val_loss: 0.5346 - val_accuracy: 0.8553 - lr: 7.5000e-04
Epoch 25/30
 1/65 [..............................] - ETA: 43s - loss: 0.5430 - accuracy: 0.8613

 2/65 [..............................] - ETA: 29s - loss: 0.5070 - accuracy: 0.8750

 3/65 [>.............................] - ETA: 28s - loss: 0.4920 - accuracy: 0.8760

 4/65 [>.............................] - ETA: 28s - loss: 0.4827 - accuracy: 0.8757

 5/65 [=>............................] - ETA: 27s - loss: 0.4675 - accuracy: 0.8820

 6/65 [=>............................] - ETA: 27s - loss: 0.4674 - accuracy: 0.8799

 7/65 [==>...........................] - ETA: 26s - loss: 0.4656 - accuracy: 0.8797

 8/65 [==>...........................] - ETA: 26s - loss: 0.4620 - accuracy: 0.8793

 9/65 [===>..........................] - ETA: 25s - loss: 0.4559 - accuracy: 0.8814

10/65 [===>..........................] - ETA: 25s - loss: 0.4495 - accuracy: 0.8830

11/65 [====>.........................] - ETA: 24s - loss: 0.4519 - accuracy: 0.8820

12/65 [====>.........................] - ETA: 24s - loss: 0.4498 - accuracy: 0.8828

13/65 [=====>........................] - ETA: 23s - loss: 0.4507 - accuracy: 0.8825

14/65 [=====>........................] - ETA: 23s - loss: 0.4493 - accuracy: 0.8825

15/65 [=====>........................] - ETA: 22s - loss: 0.4507 - accuracy: 0.8822

16/65 [======>.......................] - ETA: 22s - loss: 0.4486 - accuracy: 0.8829

17/65 [======>.......................] - ETA: 21s - loss: 0.4491 - accuracy: 0.8828

18/65 [=======>......................] - ETA: 21s - loss: 0.4470 - accuracy: 0.8836

19/65 [=======>......................] - ETA: 20s - loss: 0.4469 - accuracy: 0.8835

20/65 [========>.....................] - ETA: 20s - loss: 0.4459 - accuracy: 0.8841

21/65 [========>.....................] - ETA: 20s - loss: 0.4448 - accuracy: 0.8845

22/65 [=========>....................] - ETA: 19s - loss: 0.4449 - accuracy: 0.8846

23/65 [=========>....................] - ETA: 19s - loss: 0.4446 - accuracy: 0.8847

24/65 [==========>...................] - ETA: 18s - loss: 0.4446 - accuracy: 0.8844

25/65 [==========>...................] - ETA: 18s - loss: 0.4437 - accuracy: 0.8846

26/65 [===========>..................] - ETA: 17s - loss: 0.4423 - accuracy: 0.8851

27/65 [===========>..................] - ETA: 17s - loss: 0.4418 - accuracy: 0.8851

28/65 [===========>..................] - ETA: 16s - loss: 0.4404 - accuracy: 0.8853

29/65 [============>.................] - ETA: 16s - loss: 0.4410 - accuracy: 0.8849

30/65 [============>.................] - ETA: 15s - loss: 0.4406 - accuracy: 0.8850

31/65 [=============>................] - ETA: 15s - loss: 0.4396 - accuracy: 0.8853

32/65 [=============>................] - ETA: 15s - loss: 0.4392 - accuracy: 0.8855

33/65 [==============>...............] - ETA: 14s - loss: 0.4396 - accuracy: 0.8855

34/65 [==============>...............] - ETA: 14s - loss: 0.4393 - accuracy: 0.8856

35/65 [===============>..............] - ETA: 13s - loss: 0.4386 - accuracy: 0.8857

36/65 [===============>..............] - ETA: 13s - loss: 0.4414 - accuracy: 0.8847

37/65 [================>.............] - ETA: 12s - loss: 0.4412 - accuracy: 0.8849

38/65 [================>.............] - ETA: 12s - loss: 0.4416 - accuracy: 0.8848

39/65 [=================>............] - ETA: 11s - loss: 0.4420 - accuracy: 0.8847

40/65 [=================>............] - ETA: 11s - loss: 0.4416 - accuracy: 0.8848

41/65 [=================>............] - ETA: 10s - loss: 0.4416 - accuracy: 0.8848

42/65 [==================>...........] - ETA: 10s - loss: 0.4425 - accuracy: 0.8847

43/65 [==================>...........] - ETA: 10s - loss: 0.4415 - accuracy: 0.8851

44/65 [===================>..........] - ETA: 9s - loss: 0.4413 - accuracy: 0.8850 

45/65 [===================>..........] - ETA: 9s - loss: 0.4408 - accuracy: 0.8852

46/65 [====================>.........] - ETA: 8s - loss: 0.4412 - accuracy: 0.8850

47/65 [====================>.........] - ETA: 8s - loss: 0.4414 - accuracy: 0.8849

48/65 [=====================>........] - ETA: 7s - loss: 0.4412 - accuracy: 0.8850

49/65 [=====================>........] - ETA: 7s - loss: 0.4407 - accuracy: 0.8853

50/65 [======================>.......] - ETA: 6s - loss: 0.4401 - accuracy: 0.8855

51/65 [======================>.......] - ETA: 6s - loss: 0.4399 - accuracy: 0.8854

52/65 [=======================>......] - ETA: 5s - loss: 0.4396 - accuracy: 0.8854

53/65 [=======================>......] - ETA: 5s - loss: 0.4401 - accuracy: 0.8852

54/65 [=======================>......] - ETA: 5s - loss: 0.4406 - accuracy: 0.8851

55/65 [========================>.....] - ETA: 4s - loss: 0.4397 - accuracy: 0.8854

56/65 [========================>.....] - ETA: 4s - loss: 0.4383 - accuracy: 0.8859

57/65 [=========================>....] - ETA: 3s - loss: 0.4382 - accuracy: 0.8858

58/65 [=========================>....] - ETA: 3s - loss: 0.4382 - accuracy: 0.8859

59/65 [==========================>...] - ETA: 2s - loss: 0.4383 - accuracy: 0.8857

60/65 [==========================>...] - ETA: 2s - loss: 0.4391 - accuracy: 0.8854

61/65 [===========================>..] - ETA: 1s - loss: 0.4396 - accuracy: 0.8851

62/65 [===========================>..] - ETA: 1s - loss: 0.4402 - accuracy: 0.8848

63/65 [============================>.] - ETA: 0s - loss: 0.4400 - accuracy: 0.8848

64/65 [============================>.] - ETA: 0s - loss: 0.4404 - accuracy: 0.8848

65/65 [==============================] - ETA: 0s - loss: 0.4408 - accuracy: 0.8847

65/65 [==============================] - 31s 467ms/step - loss: 0.4408 - accuracy: 0.8847 - val_loss: 0.5814 - val_accuracy: 0.8432 - lr: 7.5000e-04
Epoch 26/30
 1/65 [..............................] - ETA: 42s - loss: 0.4817 - accuracy: 0.8711

 2/65 [..............................] - ETA: 29s - loss: 0.4944 - accuracy: 0.8726

 3/65 [>.............................] - ETA: 28s - loss: 0.4844 - accuracy: 0.8753

 4/65 [>.............................] - ETA: 28s - loss: 0.4676 - accuracy: 0.8816

 5/65 [=>............................] - ETA: 28s - loss: 0.4624 - accuracy: 0.8834

 6/65 [=>............................] - ETA: 27s - loss: 0.4583 - accuracy: 0.8830

 7/65 [==>...........................] - ETA: 26s - loss: 0.4586 - accuracy: 0.8817

 8/65 [==>...........................] - ETA: 26s - loss: 0.4606 - accuracy: 0.8809

 9/65 [===>..........................] - ETA: 25s - loss: 0.4567 - accuracy: 0.8819

10/65 [===>..........................] - ETA: 25s - loss: 0.4554 - accuracy: 0.8822

11/65 [====>.........................] - ETA: 24s - loss: 0.4530 - accuracy: 0.8825

12/65 [====>.........................] - ETA: 24s - loss: 0.4519 - accuracy: 0.8828

13/65 [=====>........................] - ETA: 23s - loss: 0.4497 - accuracy: 0.8836

14/65 [=====>........................] - ETA: 23s - loss: 0.4524 - accuracy: 0.8827

15/65 [=====>........................] - ETA: 22s - loss: 0.4489 - accuracy: 0.8847

16/65 [======>.......................] - ETA: 22s - loss: 0.4475 - accuracy: 0.8844

17/65 [======>.......................] - ETA: 22s - loss: 0.4495 - accuracy: 0.8832

18/65 [=======>......................] - ETA: 21s - loss: 0.4473 - accuracy: 0.8838

19/65 [=======>......................] - ETA: 21s - loss: 0.4448 - accuracy: 0.8847

20/65 [========>.....................] - ETA: 20s - loss: 0.4433 - accuracy: 0.8852

21/65 [========>.....................] - ETA: 20s - loss: 0.4423 - accuracy: 0.8852

22/65 [=========>....................] - ETA: 19s - loss: 0.4422 - accuracy: 0.8852

23/65 [=========>....................] - ETA: 19s - loss: 0.4411 - accuracy: 0.8855

24/65 [==========>...................] - ETA: 18s - loss: 0.4410 - accuracy: 0.8854

25/65 [==========>...................] - ETA: 18s - loss: 0.4415 - accuracy: 0.8851

26/65 [===========>..................] - ETA: 17s - loss: 0.4423 - accuracy: 0.8844

27/65 [===========>..................] - ETA: 17s - loss: 0.4431 - accuracy: 0.8843

28/65 [===========>..................] - ETA: 17s - loss: 0.4424 - accuracy: 0.8846

29/65 [============>.................] - ETA: 16s - loss: 0.4436 - accuracy: 0.8844

30/65 [============>.................] - ETA: 16s - loss: 0.4425 - accuracy: 0.8850

31/65 [=============>................] - ETA: 15s - loss: 0.4430 - accuracy: 0.8850

32/65 [=============>................] - ETA: 15s - loss: 0.4417 - accuracy: 0.8854

33/65 [==============>...............] - ETA: 14s - loss: 0.4429 - accuracy: 0.8851

34/65 [==============>...............] - ETA: 14s - loss: 0.4434 - accuracy: 0.8850

35/65 [===============>..............] - ETA: 13s - loss: 0.4442 - accuracy: 0.8848

36/65 [===============>..............] - ETA: 13s - loss: 0.4459 - accuracy: 0.8844

37/65 [================>.............] - ETA: 12s - loss: 0.4461 - accuracy: 0.8841

38/65 [================>.............] - ETA: 12s - loss: 0.4446 - accuracy: 0.8846

39/65 [=================>............] - ETA: 11s - loss: 0.4442 - accuracy: 0.8849

40/65 [=================>............] - ETA: 11s - loss: 0.4444 - accuracy: 0.8847

41/65 [=================>............] - ETA: 11s - loss: 0.4443 - accuracy: 0.8849

42/65 [==================>...........] - ETA: 10s - loss: 0.4440 - accuracy: 0.8850

43/65 [==================>...........] - ETA: 10s - loss: 0.4451 - accuracy: 0.8844

44/65 [===================>..........] - ETA: 9s - loss: 0.4442 - accuracy: 0.8847 

45/65 [===================>..........] - ETA: 9s - loss: 0.4435 - accuracy: 0.8849

46/65 [====================>.........] - ETA: 8s - loss: 0.4429 - accuracy: 0.8850

47/65 [====================>.........] - ETA: 8s - loss: 0.4427 - accuracy: 0.8849

48/65 [=====================>........] - ETA: 7s - loss: 0.4421 - accuracy: 0.8852

49/65 [=====================>........] - ETA: 7s - loss: 0.4415 - accuracy: 0.8855

50/65 [======================>.......] - ETA: 6s - loss: 0.4414 - accuracy: 0.8856

51/65 [======================>.......] - ETA: 6s - loss: 0.4408 - accuracy: 0.8856

52/65 [=======================>......] - ETA: 5s - loss: 0.4417 - accuracy: 0.8854

53/65 [=======================>......] - ETA: 5s - loss: 0.4412 - accuracy: 0.8854

54/65 [=======================>......] - ETA: 5s - loss: 0.4404 - accuracy: 0.8855

55/65 [========================>.....] - ETA: 4s - loss: 0.4403 - accuracy: 0.8855

56/65 [========================>.....] - ETA: 4s - loss: 0.4400 - accuracy: 0.8854

57/65 [=========================>....] - ETA: 3s - loss: 0.4399 - accuracy: 0.8853

58/65 [=========================>....] - ETA: 3s - loss: 0.4392 - accuracy: 0.8854

59/65 [==========================>...] - ETA: 2s - loss: 0.4394 - accuracy: 0.8852

60/65 [==========================>...] - ETA: 2s - loss: 0.4399 - accuracy: 0.8850

61/65 [===========================>..] - ETA: 1s - loss: 0.4404 - accuracy: 0.8847

62/65 [===========================>..] - ETA: 1s - loss: 0.4405 - accuracy: 0.8847

63/65 [============================>.] - ETA: 0s - loss: 0.4405 - accuracy: 0.8845

64/65 [============================>.] - ETA: 0s - loss: 0.4402 - accuracy: 0.8846

65/65 [==============================] - ETA: 0s - loss: 0.4398 - accuracy: 0.8847

65/65 [==============================] - 31s 470ms/step - loss: 0.4398 - accuracy: 0.8847 - val_loss: 0.5413 - val_accuracy: 0.8530 - lr: 7.5000e-04
Epoch 27/30
 1/65 [..............................] - ETA: 45s - loss: 0.4714 - accuracy: 0.8760

 2/65 [..............................] - ETA: 29s - loss: 0.4639 - accuracy: 0.8818

 3/65 [>.............................] - ETA: 29s - loss: 0.4684 - accuracy: 0.8805

 4/65 [>.............................] - ETA: 28s - loss: 0.4673 - accuracy: 0.8806

 5/65 [=>............................] - ETA: 27s - loss: 0.4524 - accuracy: 0.8836

 6/65 [=>............................] - ETA: 27s - loss: 0.4641 - accuracy: 0.8781

 7/65 [==>...........................] - ETA: 26s - loss: 0.4602 - accuracy: 0.8800

 8/65 [==>...........................] - ETA: 26s - loss: 0.4596 - accuracy: 0.8802

 9/65 [===>..........................] - ETA: 25s - loss: 0.4577 - accuracy: 0.8812

10/65 [===>..........................] - ETA: 25s - loss: 0.4562 - accuracy: 0.8808

11/65 [====>.........................] - ETA: 24s - loss: 0.4537 - accuracy: 0.8817

12/65 [====>.........................] - ETA: 23s - loss: 0.4525 - accuracy: 0.8815

13/65 [=====>........................] - ETA: 23s - loss: 0.4531 - accuracy: 0.8815

14/65 [=====>........................] - ETA: 22s - loss: 0.4535 - accuracy: 0.8813

15/65 [=====>........................] - ETA: 22s - loss: 0.4508 - accuracy: 0.8820

16/65 [======>.......................] - ETA: 22s - loss: 0.4501 - accuracy: 0.8823

17/65 [======>.......................] - ETA: 21s - loss: 0.4462 - accuracy: 0.8832

18/65 [=======>......................] - ETA: 21s - loss: 0.4468 - accuracy: 0.8838

19/65 [=======>......................] - ETA: 21s - loss: 0.4475 - accuracy: 0.8836

20/65 [========>.....................] - ETA: 20s - loss: 0.4461 - accuracy: 0.8837

21/65 [========>.....................] - ETA: 20s - loss: 0.4450 - accuracy: 0.8839

22/65 [=========>....................] - ETA: 19s - loss: 0.4445 - accuracy: 0.8839

23/65 [=========>....................] - ETA: 19s - loss: 0.4425 - accuracy: 0.8846

24/65 [==========>...................] - ETA: 18s - loss: 0.4419 - accuracy: 0.8844

25/65 [==========>...................] - ETA: 18s - loss: 0.4410 - accuracy: 0.8844

26/65 [===========>..................] - ETA: 17s - loss: 0.4396 - accuracy: 0.8847

27/65 [===========>..................] - ETA: 17s - loss: 0.4391 - accuracy: 0.8844

28/65 [===========>..................] - ETA: 17s - loss: 0.4382 - accuracy: 0.8848

29/65 [============>.................] - ETA: 16s - loss: 0.4384 - accuracy: 0.8848

30/65 [============>.................] - ETA: 16s - loss: 0.4372 - accuracy: 0.8850

31/65 [=============>................] - ETA: 15s - loss: 0.4381 - accuracy: 0.8847

32/65 [=============>................] - ETA: 15s - loss: 0.4393 - accuracy: 0.8846

33/65 [==============>...............] - ETA: 14s - loss: 0.4391 - accuracy: 0.8849

34/65 [==============>...............] - ETA: 14s - loss: 0.4395 - accuracy: 0.8847

35/65 [===============>..............] - ETA: 13s - loss: 0.4401 - accuracy: 0.8846

36/65 [===============>..............] - ETA: 13s - loss: 0.4403 - accuracy: 0.8843

37/65 [================>.............] - ETA: 12s - loss: 0.4407 - accuracy: 0.8839

38/65 [================>.............] - ETA: 12s - loss: 0.4402 - accuracy: 0.8840

39/65 [=================>............] - ETA: 11s - loss: 0.4407 - accuracy: 0.8839

40/65 [=================>............] - ETA: 11s - loss: 0.4400 - accuracy: 0.8842

41/65 [=================>............] - ETA: 11s - loss: 0.4398 - accuracy: 0.8843

42/65 [==================>...........] - ETA: 10s - loss: 0.4391 - accuracy: 0.8844

43/65 [==================>...........] - ETA: 10s - loss: 0.4392 - accuracy: 0.8845

44/65 [===================>..........] - ETA: 9s - loss: 0.4394 - accuracy: 0.8843 

45/65 [===================>..........] - ETA: 9s - loss: 0.4396 - accuracy: 0.8844

46/65 [====================>.........] - ETA: 8s - loss: 0.4398 - accuracy: 0.8843

47/65 [====================>.........] - ETA: 8s - loss: 0.4396 - accuracy: 0.8845

48/65 [=====================>........] - ETA: 7s - loss: 0.4388 - accuracy: 0.8849

49/65 [=====================>........] - ETA: 7s - loss: 0.4388 - accuracy: 0.8848

50/65 [======================>.......] - ETA: 6s - loss: 0.4383 - accuracy: 0.8849

51/65 [======================>.......] - ETA: 6s - loss: 0.4393 - accuracy: 0.8846

52/65 [=======================>......] - ETA: 5s - loss: 0.4396 - accuracy: 0.8846

53/65 [=======================>......] - ETA: 5s - loss: 0.4388 - accuracy: 0.8845

54/65 [=======================>......] - ETA: 5s - loss: 0.4397 - accuracy: 0.8845

55/65 [========================>.....] - ETA: 4s - loss: 0.4391 - accuracy: 0.8846

56/65 [========================>.....] - ETA: 4s - loss: 0.4389 - accuracy: 0.8847

57/65 [=========================>....] - ETA: 3s - loss: 0.4390 - accuracy: 0.8844

58/65 [=========================>....] - ETA: 3s - loss: 0.4390 - accuracy: 0.8843

59/65 [==========================>...] - ETA: 2s - loss: 0.4398 - accuracy: 0.8842

60/65 [==========================>...] - ETA: 2s - loss: 0.4396 - accuracy: 0.8842

61/65 [===========================>..] - ETA: 1s - loss: 0.4400 - accuracy: 0.8841

62/65 [===========================>..] - ETA: 1s - loss: 0.4411 - accuracy: 0.8837

63/65 [============================>.] - ETA: 0s - loss: 0.4407 - accuracy: 0.8839

64/65 [============================>.] - ETA: 0s - loss: 0.4408 - accuracy: 0.8840

65/65 [==============================] - ETA: 0s - loss: 0.4409 - accuracy: 0.8839
Epoch 27: ReduceLROnPlateau reducing learning rate to 0.000375000003259629.

65/65 [==============================] - 31s 470ms/step - loss: 0.4409 - accuracy: 0.8839 - val_loss: 0.5539 - val_accuracy: 0.8489 - lr: 7.5000e-04
Epoch 28/30
 1/65 [..............................] - ETA: 43s - loss: 0.4766 - accuracy: 0.8809

 2/65 [..............................] - ETA: 28s - loss: 0.4778 - accuracy: 0.8784

 3/65 [>.............................] - ETA: 28s - loss: 0.4785 - accuracy: 0.8789

 4/65 [>.............................] - ETA: 27s - loss: 0.4706 - accuracy: 0.8806

 5/65 [=>............................] - ETA: 27s - loss: 0.4670 - accuracy: 0.8811

 6/65 [=>............................] - ETA: 26s - loss: 0.4694 - accuracy: 0.8791

 7/65 [==>...........................] - ETA: 25s - loss: 0.4679 - accuracy: 0.8799

 8/65 [==>...........................] - ETA: 25s - loss: 0.4642 - accuracy: 0.8802

 9/65 [===>..........................] - ETA: 24s - loss: 0.4639 - accuracy: 0.8811

10/65 [===>..........................] - ETA: 24s - loss: 0.4582 - accuracy: 0.8813

11/65 [====>.........................] - ETA: 24s - loss: 0.4574 - accuracy: 0.8821

12/65 [====>.........................] - ETA: 23s - loss: 0.4552 - accuracy: 0.8826

13/65 [=====>........................] - ETA: 23s - loss: 0.4562 - accuracy: 0.8819

14/65 [=====>........................] - ETA: 22s - loss: 0.4533 - accuracy: 0.8829

15/65 [=====>........................] - ETA: 22s - loss: 0.4532 - accuracy: 0.8830

16/65 [======>.......................] - ETA: 21s - loss: 0.4502 - accuracy: 0.8827

17/65 [======>.......................] - ETA: 21s - loss: 0.4514 - accuracy: 0.8820

18/65 [=======>......................] - ETA: 21s - loss: 0.4501 - accuracy: 0.8818

19/65 [=======>......................] - ETA: 20s - loss: 0.4485 - accuracy: 0.8822

20/65 [========>.....................] - ETA: 20s - loss: 0.4492 - accuracy: 0.8822

21/65 [========>.....................] - ETA: 19s - loss: 0.4513 - accuracy: 0.8811

22/65 [=========>....................] - ETA: 19s - loss: 0.4504 - accuracy: 0.8814

23/65 [=========>....................] - ETA: 18s - loss: 0.4497 - accuracy: 0.8818

24/65 [==========>...................] - ETA: 18s - loss: 0.4494 - accuracy: 0.8819

25/65 [==========>...................] - ETA: 18s - loss: 0.4505 - accuracy: 0.8814

26/65 [===========>..................] - ETA: 17s - loss: 0.4483 - accuracy: 0.8820

27/65 [===========>..................] - ETA: 17s - loss: 0.4479 - accuracy: 0.8820

28/65 [===========>..................] - ETA: 16s - loss: 0.4474 - accuracy: 0.8824

29/65 [============>.................] - ETA: 16s - loss: 0.4486 - accuracy: 0.8818

30/65 [============>.................] - ETA: 15s - loss: 0.4468 - accuracy: 0.8826

31/65 [=============>................] - ETA: 15s - loss: 0.4462 - accuracy: 0.8828

32/65 [=============>................] - ETA: 14s - loss: 0.4463 - accuracy: 0.8831

33/65 [==============>...............] - ETA: 14s - loss: 0.4465 - accuracy: 0.8828

34/65 [==============>...............] - ETA: 14s - loss: 0.4450 - accuracy: 0.8834

35/65 [===============>..............] - ETA: 13s - loss: 0.4454 - accuracy: 0.8832

36/65 [===============>..............] - ETA: 13s - loss: 0.4457 - accuracy: 0.8833

37/65 [================>.............] - ETA: 12s - loss: 0.4462 - accuracy: 0.8831

38/65 [================>.............] - ETA: 12s - loss: 0.4448 - accuracy: 0.8837

39/65 [=================>............] - ETA: 11s - loss: 0.4429 - accuracy: 0.8842

40/65 [=================>............] - ETA: 11s - loss: 0.4440 - accuracy: 0.8837

41/65 [=================>............] - ETA: 10s - loss: 0.4435 - accuracy: 0.8840

42/65 [==================>...........] - ETA: 10s - loss: 0.4434 - accuracy: 0.8842

43/65 [==================>...........] - ETA: 10s - loss: 0.4433 - accuracy: 0.8840

44/65 [===================>..........] - ETA: 9s - loss: 0.4426 - accuracy: 0.8843 

45/65 [===================>..........] - ETA: 9s - loss: 0.4424 - accuracy: 0.8842

46/65 [====================>.........] - ETA: 8s - loss: 0.4425 - accuracy: 0.8842

47/65 [====================>.........] - ETA: 8s - loss: 0.4430 - accuracy: 0.8842

48/65 [=====================>........] - ETA: 7s - loss: 0.4418 - accuracy: 0.8846

49/65 [=====================>........] - ETA: 7s - loss: 0.4415 - accuracy: 0.8847

50/65 [======================>.......] - ETA: 6s - loss: 0.4415 - accuracy: 0.8847

51/65 [======================>.......] - ETA: 6s - loss: 0.4413 - accuracy: 0.8848

52/65 [=======================>......] - ETA: 5s - loss: 0.4402 - accuracy: 0.8850

53/65 [=======================>......] - ETA: 5s - loss: 0.4395 - accuracy: 0.8850

54/65 [=======================>......] - ETA: 5s - loss: 0.4395 - accuracy: 0.8851

55/65 [========================>.....] - ETA: 4s - loss: 0.4389 - accuracy: 0.8853

56/65 [========================>.....] - ETA: 4s - loss: 0.4390 - accuracy: 0.8850

57/65 [=========================>....] - ETA: 3s - loss: 0.4386 - accuracy: 0.8851

58/65 [=========================>....] - ETA: 3s - loss: 0.4390 - accuracy: 0.8849

59/65 [==========================>...] - ETA: 2s - loss: 0.4387 - accuracy: 0.8850

60/65 [==========================>...] - ETA: 2s - loss: 0.4383 - accuracy: 0.8854

61/65 [===========================>..] - ETA: 1s - loss: 0.4386 - accuracy: 0.8851

62/65 [===========================>..] - ETA: 1s - loss: 0.4378 - accuracy: 0.8853

63/65 [============================>.] - ETA: 0s - loss: 0.4377 - accuracy: 0.8853

64/65 [============================>.] - ETA: 0s - loss: 0.4383 - accuracy: 0.8852

65/65 [==============================] - ETA: 0s - loss: 0.4382 - accuracy: 0.8851

65/65 [==============================] - 31s 469ms/step - loss: 0.4382 - accuracy: 0.8851 - val_loss: 0.5310 - val_accuracy: 0.8589 - lr: 3.7500e-04
Epoch 29/30
 1/65 [..............................] - ETA: 42s - loss: 0.4677 - accuracy: 0.8779

 2/65 [..............................] - ETA: 28s - loss: 0.4546 - accuracy: 0.8877

 3/65 [>.............................] - ETA: 27s - loss: 0.4559 - accuracy: 0.8848

 4/65 [>.............................] - ETA: 27s - loss: 0.4688 - accuracy: 0.8813

 5/65 [=>............................] - ETA: 26s - loss: 0.4692 - accuracy: 0.8795

 6/65 [=>............................] - ETA: 26s - loss: 0.4625 - accuracy: 0.8805

 7/65 [==>...........................] - ETA: 25s - loss: 0.4571 - accuracy: 0.8818

 8/65 [==>...........................] - ETA: 25s - loss: 0.4514 - accuracy: 0.8831

 9/65 [===>..........................] - ETA: 25s - loss: 0.4491 - accuracy: 0.8839

10/65 [===>..........................] - ETA: 24s - loss: 0.4479 - accuracy: 0.8841

11/65 [====>.........................] - ETA: 24s - loss: 0.4465 - accuracy: 0.8845

12/65 [====>.........................] - ETA: 24s - loss: 0.4415 - accuracy: 0.8856

13/65 [=====>........................] - ETA: 23s - loss: 0.4457 - accuracy: 0.8849

14/65 [=====>........................] - ETA: 23s - loss: 0.4427 - accuracy: 0.8860

15/65 [=====>........................] - ETA: 22s - loss: 0.4434 - accuracy: 0.8852

16/65 [======>.......................] - ETA: 22s - loss: 0.4445 - accuracy: 0.8846

17/65 [======>.......................] - ETA: 21s - loss: 0.4435 - accuracy: 0.8848

18/65 [=======>......................] - ETA: 21s - loss: 0.4417 - accuracy: 0.8858

19/65 [=======>......................] - ETA: 20s - loss: 0.4401 - accuracy: 0.8861

20/65 [========>.....................] - ETA: 20s - loss: 0.4377 - accuracy: 0.8867

21/65 [========>.....................] - ETA: 20s - loss: 0.4391 - accuracy: 0.8863

22/65 [=========>....................] - ETA: 19s - loss: 0.4377 - accuracy: 0.8864

23/65 [=========>....................] - ETA: 19s - loss: 0.4362 - accuracy: 0.8868

24/65 [==========>...................] - ETA: 18s - loss: 0.4357 - accuracy: 0.8866

25/65 [==========>...................] - ETA: 18s - loss: 0.4349 - accuracy: 0.8867

26/65 [===========>..................] - ETA: 17s - loss: 0.4375 - accuracy: 0.8862

27/65 [===========>..................] - ETA: 17s - loss: 0.4373 - accuracy: 0.8863

28/65 [===========>..................] - ETA: 16s - loss: 0.4363 - accuracy: 0.8868

29/65 [============>.................] - ETA: 16s - loss: 0.4365 - accuracy: 0.8863

30/65 [============>.................] - ETA: 16s - loss: 0.4370 - accuracy: 0.8860

31/65 [=============>................] - ETA: 15s - loss: 0.4376 - accuracy: 0.8858

32/65 [=============>................] - ETA: 15s - loss: 0.4398 - accuracy: 0.8854

33/65 [==============>...............] - ETA: 14s - loss: 0.4394 - accuracy: 0.8854

34/65 [==============>...............] - ETA: 14s - loss: 0.4386 - accuracy: 0.8855

35/65 [===============>..............] - ETA: 13s - loss: 0.4393 - accuracy: 0.8853

36/65 [===============>..............] - ETA: 13s - loss: 0.4382 - accuracy: 0.8858

37/65 [================>.............] - ETA: 12s - loss: 0.4400 - accuracy: 0.8851

38/65 [================>.............] - ETA: 12s - loss: 0.4408 - accuracy: 0.8849

39/65 [=================>............] - ETA: 11s - loss: 0.4408 - accuracy: 0.8849

40/65 [=================>............] - ETA: 11s - loss: 0.4403 - accuracy: 0.8849

41/65 [=================>............] - ETA: 11s - loss: 0.4393 - accuracy: 0.8851

42/65 [==================>...........] - ETA: 10s - loss: 0.4390 - accuracy: 0.8852

43/65 [==================>...........] - ETA: 10s - loss: 0.4386 - accuracy: 0.8852

44/65 [===================>..........] - ETA: 9s - loss: 0.4383 - accuracy: 0.8854 

45/65 [===================>..........] - ETA: 9s - loss: 0.4374 - accuracy: 0.8854

46/65 [====================>.........] - ETA: 8s - loss: 0.4372 - accuracy: 0.8856

47/65 [====================>.........] - ETA: 8s - loss: 0.4379 - accuracy: 0.8855

48/65 [=====================>........] - ETA: 7s - loss: 0.4382 - accuracy: 0.8852

49/65 [=====================>........] - ETA: 7s - loss: 0.4375 - accuracy: 0.8856

50/65 [======================>.......] - ETA: 6s - loss: 0.4383 - accuracy: 0.8853

51/65 [======================>.......] - ETA: 6s - loss: 0.4382 - accuracy: 0.8855

52/65 [=======================>......] - ETA: 5s - loss: 0.4373 - accuracy: 0.8859

53/65 [=======================>......] - ETA: 5s - loss: 0.4378 - accuracy: 0.8857

54/65 [=======================>......] - ETA: 5s - loss: 0.4374 - accuracy: 0.8858

55/65 [========================>.....] - ETA: 4s - loss: 0.4370 - accuracy: 0.8860

56/65 [========================>.....] - ETA: 4s - loss: 0.4367 - accuracy: 0.8862

57/65 [=========================>....] - ETA: 3s - loss: 0.4365 - accuracy: 0.8863

58/65 [=========================>....] - ETA: 3s - loss: 0.4366 - accuracy: 0.8862

59/65 [==========================>...] - ETA: 2s - loss: 0.4358 - accuracy: 0.8864

60/65 [==========================>...] - ETA: 2s - loss: 0.4357 - accuracy: 0.8863

61/65 [===========================>..] - ETA: 1s - loss: 0.4356 - accuracy: 0.8865

62/65 [===========================>..] - ETA: 1s - loss: 0.4357 - accuracy: 0.8864

63/65 [============================>.] - ETA: 0s - loss: 0.4353 - accuracy: 0.8864

64/65 [============================>.] - ETA: 0s - loss: 0.4362 - accuracy: 0.8862

65/65 [==============================] - ETA: 0s - loss: 0.4363 - accuracy: 0.8862

65/65 [==============================] - 31s 470ms/step - loss: 0.4363 - accuracy: 0.8862 - val_loss: 0.5324 - val_accuracy: 0.8580 - lr: 3.7500e-04
Epoch 30/30
 1/65 [..............................] - ETA: 42s - loss: 0.4640 - accuracy: 0.8760

 2/65 [..............................] - ETA: 28s - loss: 0.4564 - accuracy: 0.8774

 3/65 [>.............................] - ETA: 28s - loss: 0.4682 - accuracy: 0.8776

 4/65 [>.............................] - ETA: 28s - loss: 0.4675 - accuracy: 0.8792

 5/65 [=>............................] - ETA: 27s - loss: 0.4637 - accuracy: 0.8807

 6/65 [=>............................] - ETA: 27s - loss: 0.4600 - accuracy: 0.8807

 7/65 [==>...........................] - ETA: 26s - loss: 0.4560 - accuracy: 0.8811

 8/65 [==>...........................] - ETA: 26s - loss: 0.4569 - accuracy: 0.8807

 9/65 [===>..........................] - ETA: 25s - loss: 0.4584 - accuracy: 0.8803

10/65 [===>..........................] - ETA: 25s - loss: 0.4578 - accuracy: 0.8802

11/65 [====>.........................] - ETA: 24s - loss: 0.4544 - accuracy: 0.8814

12/65 [====>.........................] - ETA: 24s - loss: 0.4513 - accuracy: 0.8818

13/65 [=====>........................] - ETA: 23s - loss: 0.4466 - accuracy: 0.8830

14/65 [=====>........................] - ETA: 23s - loss: 0.4471 - accuracy: 0.8830

15/65 [=====>........................] - ETA: 23s - loss: 0.4471 - accuracy: 0.8823

16/65 [======>.......................] - ETA: 22s - loss: 0.4484 - accuracy: 0.8821

17/65 [======>.......................] - ETA: 22s - loss: 0.4490 - accuracy: 0.8818

18/65 [=======>......................] - ETA: 21s - loss: 0.4466 - accuracy: 0.8822

19/65 [=======>......................] - ETA: 21s - loss: 0.4442 - accuracy: 0.8828

20/65 [========>.....................] - ETA: 20s - loss: 0.4446 - accuracy: 0.8828

21/65 [========>.....................] - ETA: 20s - loss: 0.4429 - accuracy: 0.8827

22/65 [=========>....................] - ETA: 19s - loss: 0.4416 - accuracy: 0.8831

23/65 [=========>....................] - ETA: 19s - loss: 0.4422 - accuracy: 0.8829

24/65 [==========>...................] - ETA: 19s - loss: 0.4423 - accuracy: 0.8829

25/65 [==========>...................] - ETA: 18s - loss: 0.4434 - accuracy: 0.8829

26/65 [===========>..................] - ETA: 18s - loss: 0.4429 - accuracy: 0.8831

27/65 [===========>..................] - ETA: 17s - loss: 0.4428 - accuracy: 0.8829

28/65 [===========>..................] - ETA: 17s - loss: 0.4438 - accuracy: 0.8824

29/65 [============>.................] - ETA: 16s - loss: 0.4438 - accuracy: 0.8822

30/65 [============>.................] - ETA: 16s - loss: 0.4424 - accuracy: 0.8825

31/65 [=============>................] - ETA: 15s - loss: 0.4406 - accuracy: 0.8831

32/65 [=============>................] - ETA: 15s - loss: 0.4420 - accuracy: 0.8830

33/65 [==============>...............] - ETA: 14s - loss: 0.4414 - accuracy: 0.8829

34/65 [==============>...............] - ETA: 14s - loss: 0.4409 - accuracy: 0.8830

35/65 [===============>..............] - ETA: 14s - loss: 0.4403 - accuracy: 0.8836

36/65 [===============>..............] - ETA: 13s - loss: 0.4405 - accuracy: 0.8834

37/65 [================>.............] - ETA: 13s - loss: 0.4401 - accuracy: 0.8834

38/65 [================>.............] - ETA: 12s - loss: 0.4401 - accuracy: 0.8835

39/65 [=================>............] - ETA: 12s - loss: 0.4397 - accuracy: 0.8836

40/65 [=================>............] - ETA: 11s - loss: 0.4406 - accuracy: 0.8834

41/65 [=================>............] - ETA: 11s - loss: 0.4405 - accuracy: 0.8836

42/65 [==================>...........] - ETA: 10s - loss: 0.4398 - accuracy: 0.8837

43/65 [==================>...........] - ETA: 10s - loss: 0.4385 - accuracy: 0.8843

44/65 [===================>..........] - ETA: 9s - loss: 0.4386 - accuracy: 0.8845 

45/65 [===================>..........] - ETA: 9s - loss: 0.4383 - accuracy: 0.8848

46/65 [====================>.........] - ETA: 8s - loss: 0.4382 - accuracy: 0.8848

47/65 [====================>.........] - ETA: 8s - loss: 0.4384 - accuracy: 0.8848

48/65 [=====================>........] - ETA: 7s - loss: 0.4381 - accuracy: 0.8849

49/65 [=====================>........] - ETA: 7s - loss: 0.4377 - accuracy: 0.8852

50/65 [======================>.......] - ETA: 6s - loss: 0.4380 - accuracy: 0.8852

51/65 [======================>.......] - ETA: 6s - loss: 0.4373 - accuracy: 0.8854

52/65 [=======================>......] - ETA: 6s - loss: 0.4376 - accuracy: 0.8851

53/65 [=======================>......] - ETA: 5s - loss: 0.4370 - accuracy: 0.8853

54/65 [=======================>......] - ETA: 5s - loss: 0.4372 - accuracy: 0.8851

55/65 [========================>.....] - ETA: 4s - loss: 0.4370 - accuracy: 0.8852

56/65 [========================>.....] - ETA: 4s - loss: 0.4368 - accuracy: 0.8853

57/65 [=========================>....] - ETA: 3s - loss: 0.4370 - accuracy: 0.8852

58/65 [=========================>....] - ETA: 3s - loss: 0.4372 - accuracy: 0.8850

59/65 [==========================>...] - ETA: 2s - loss: 0.4373 - accuracy: 0.8848

60/65 [==========================>...] - ETA: 2s - loss: 0.4377 - accuracy: 0.8847

61/65 [===========================>..] - ETA: 1s - loss: 0.4376 - accuracy: 0.8847

62/65 [===========================>..] - ETA: 1s - loss: 0.4364 - accuracy: 0.8850

63/65 [============================>.] - ETA: 0s - loss: 0.4363 - accuracy: 0.8849

64/65 [============================>.] - ETA: 0s - loss: 0.4363 - accuracy: 0.8849

65/65 [==============================] - ETA: 0s - loss: 0.4363 - accuracy: 0.8849

65/65 [==============================] - 31s 474ms/step - loss: 0.4363 - accuracy: 0.8849 - val_loss: 0.5115 - val_accuracy: 0.8651 - lr: 3.7500e-04
 It took 15.584588424364727 minutes to train!

We note that training a model quantization aware, takes around twice as long as when not quantizing during training! The validation accuracy is very similar to that of the floating point model equivalent, despite containing significantly less information

Performance#

Let’s look at some ROC curves to compare the performance. Lets choose a few numbers so it doesn’t get confusing. Feel free to change the numbers in labels.

predict_baseline = model_pruned.predict(X_test)
test_score_baseline = model_pruned.evaluate(X_test, Y_test)

predict_qkeras = qmodel_pruned.predict(X_test)
test_score_qkeras = qmodel_pruned.evaluate(X_test, Y_test)

print('Keras accuracy = {} , QKeras 6-bit accuracy = {}'.format(test_score_baseline[1], test_score_qkeras[1]))
  1/814 [..............................] - ETA: 1:49

 19/814 [..............................] - ETA: 2s  

 37/814 [>.............................] - ETA: 2s

 55/814 [=>............................] - ETA: 2s

 73/814 [=>............................] - ETA: 2s

 91/814 [==>...........................] - ETA: 2s

109/814 [===>..........................] - ETA: 2s

127/814 [===>..........................] - ETA: 1s

146/814 [====>.........................] - ETA: 1s

164/814 [=====>........................] - ETA: 1s

182/814 [=====>........................] - ETA: 1s

201/814 [======>.......................] - ETA: 1s

220/814 [=======>......................] - ETA: 1s

239/814 [=======>......................] - ETA: 1s

258/814 [========>.....................] - ETA: 1s

276/814 [=========>....................] - ETA: 1s

295/814 [=========>....................] - ETA: 1s

313/814 [==========>...................] - ETA: 1s

331/814 [===========>..................] - ETA: 1s

350/814 [===========>..................] - ETA: 1s

368/814 [============>.................] - ETA: 1s

387/814 [=============>................] - ETA: 1s

406/814 [=============>................] - ETA: 1s

424/814 [==============>...............] - ETA: 1s

443/814 [===============>..............] - ETA: 1s

462/814 [================>.............] - ETA: 0s

481/814 [================>.............] - ETA: 0s

499/814 [=================>............] - ETA: 0s

517/814 [==================>...........] - ETA: 0s

536/814 [==================>...........] - ETA: 0s

554/814 [===================>..........] - ETA: 0s

574/814 [====================>.........] - ETA: 0s

594/814 [====================>.........] - ETA: 0s

614/814 [=====================>........] - ETA: 0s

634/814 [======================>.......] - ETA: 0s

654/814 [=======================>......] - ETA: 0s

674/814 [=======================>......] - ETA: 0s

694/814 [========================>.....] - ETA: 0s

714/814 [=========================>....] - ETA: 0s

734/814 [==========================>...] - ETA: 0s

754/814 [==========================>...] - ETA: 0s

774/814 [===========================>..] - ETA: 0s

794/814 [============================>.] - ETA: 0s

814/814 [==============================] - ETA: 0s

814/814 [==============================] - 2s 3ms/step
  1/814 [..............................] - ETA: 13s - loss: 0.2692 - accuracy: 0.9688

 19/814 [..............................] - ETA: 2s - loss: 0.4755 - accuracy: 0.8865 

 37/814 [>.............................] - ETA: 2s - loss: 0.4671 - accuracy: 0.8860

 54/814 [>.............................] - ETA: 2s - loss: 0.4683 - accuracy: 0.8877

 72/814 [=>............................] - ETA: 2s - loss: 0.4524 - accuracy: 0.8867

 89/814 [==>...........................] - ETA: 2s - loss: 0.4572 - accuracy: 0.8813

107/814 [==>...........................] - ETA: 2s - loss: 0.4574 - accuracy: 0.8817

126/814 [===>..........................] - ETA: 1s - loss: 0.4529 - accuracy: 0.8842

145/814 [====>.........................] - ETA: 1s - loss: 0.4641 - accuracy: 0.8797

164/814 [=====>........................] - ETA: 1s - loss: 0.4674 - accuracy: 0.8780

182/814 [=====>........................] - ETA: 1s - loss: 0.4601 - accuracy: 0.8807

200/814 [======>.......................] - ETA: 1s - loss: 0.4579 - accuracy: 0.8819

218/814 [=======>......................] - ETA: 1s - loss: 0.4559 - accuracy: 0.8817

236/814 [=======>......................] - ETA: 1s - loss: 0.4581 - accuracy: 0.8815

254/814 [========>.....................] - ETA: 1s - loss: 0.4577 - accuracy: 0.8816

272/814 [=========>....................] - ETA: 1s - loss: 0.4545 - accuracy: 0.8836

291/814 [=========>....................] - ETA: 1s - loss: 0.4545 - accuracy: 0.8839

310/814 [==========>...................] - ETA: 1s - loss: 0.4586 - accuracy: 0.8832

329/814 [===========>..................] - ETA: 1s - loss: 0.4597 - accuracy: 0.8835

348/814 [===========>..................] - ETA: 1s - loss: 0.4598 - accuracy: 0.8833

367/814 [============>.................] - ETA: 1s - loss: 0.4616 - accuracy: 0.8826

386/814 [=============>................] - ETA: 1s - loss: 0.4605 - accuracy: 0.8826

405/814 [=============>................] - ETA: 1s - loss: 0.4576 - accuracy: 0.8828

422/814 [==============>...............] - ETA: 1s - loss: 0.4560 - accuracy: 0.8831

441/814 [===============>..............] - ETA: 1s - loss: 0.4587 - accuracy: 0.8826

460/814 [===============>..............] - ETA: 0s - loss: 0.4569 - accuracy: 0.8832

479/814 [================>.............] - ETA: 0s - loss: 0.4580 - accuracy: 0.8834

498/814 [=================>............] - ETA: 0s - loss: 0.4601 - accuracy: 0.8830

517/814 [==================>...........] - ETA: 0s - loss: 0.4597 - accuracy: 0.8829

536/814 [==================>...........] - ETA: 0s - loss: 0.4602 - accuracy: 0.8829

553/814 [===================>..........] - ETA: 0s - loss: 0.4635 - accuracy: 0.8822

571/814 [====================>.........] - ETA: 0s - loss: 0.4645 - accuracy: 0.8824

590/814 [====================>.........] - ETA: 0s - loss: 0.4649 - accuracy: 0.8827

608/814 [=====================>........] - ETA: 0s - loss: 0.4656 - accuracy: 0.8823

625/814 [======================>.......] - ETA: 0s - loss: 0.4641 - accuracy: 0.8828

642/814 [======================>.......] - ETA: 0s - loss: 0.4634 - accuracy: 0.8828

659/814 [=======================>......] - ETA: 0s - loss: 0.4636 - accuracy: 0.8829

676/814 [=======================>......] - ETA: 0s - loss: 0.4648 - accuracy: 0.8827

693/814 [========================>.....] - ETA: 0s - loss: 0.4647 - accuracy: 0.8828

710/814 [=========================>....] - ETA: 0s - loss: 0.4648 - accuracy: 0.8826

728/814 [=========================>....] - ETA: 0s - loss: 0.4656 - accuracy: 0.8826

746/814 [==========================>...] - ETA: 0s - loss: 0.4642 - accuracy: 0.8831

764/814 [===========================>..] - ETA: 0s - loss: 0.4630 - accuracy: 0.8835

780/814 [===========================>..] - ETA: 0s - loss: 0.4621 - accuracy: 0.8835

798/814 [============================>.] - ETA: 0s - loss: 0.4626 - accuracy: 0.8835

814/814 [==============================] - 2s 3ms/step - loss: 0.4652 - accuracy: 0.8830
  1/814 [..............................] - ETA: 5:23

 11/814 [..............................] - ETA: 4s  

 22/814 [..............................] - ETA: 3s

 32/814 [>.............................] - ETA: 3s

 42/814 [>.............................] - ETA: 3s

 52/814 [>.............................] - ETA: 3s

 62/814 [=>............................] - ETA: 3s

 72/814 [=>............................] - ETA: 3s

 83/814 [==>...........................] - ETA: 3s

 93/814 [==>...........................] - ETA: 3s

103/814 [==>...........................] - ETA: 3s

114/814 [===>..........................] - ETA: 3s

125/814 [===>..........................] - ETA: 3s

136/814 [====>.........................] - ETA: 3s

147/814 [====>.........................] - ETA: 3s

157/814 [====>.........................] - ETA: 3s

167/814 [=====>........................] - ETA: 3s

177/814 [=====>........................] - ETA: 3s

187/814 [=====>........................] - ETA: 3s

197/814 [======>.......................] - ETA: 3s

207/814 [======>.......................] - ETA: 3s

218/814 [=======>......................] - ETA: 3s

228/814 [=======>......................] - ETA: 2s

238/814 [=======>......................] - ETA: 2s

248/814 [========>.....................] - ETA: 2s

259/814 [========>.....................] - ETA: 2s

270/814 [========>.....................] - ETA: 2s

281/814 [=========>....................] - ETA: 2s

292/814 [=========>....................] - ETA: 2s

303/814 [==========>...................] - ETA: 2s

313/814 [==========>...................] - ETA: 2s

324/814 [==========>...................] - ETA: 2s

335/814 [===========>..................] - ETA: 2s

346/814 [===========>..................] - ETA: 2s

357/814 [============>.................] - ETA: 2s

368/814 [============>.................] - ETA: 2s

378/814 [============>.................] - ETA: 2s

389/814 [=============>................] - ETA: 2s

400/814 [=============>................] - ETA: 2s

411/814 [==============>...............] - ETA: 2s

421/814 [==============>...............] - ETA: 1s

431/814 [==============>...............] - ETA: 1s

442/814 [===============>..............] - ETA: 1s

453/814 [===============>..............] - ETA: 1s

463/814 [================>.............] - ETA: 1s

474/814 [================>.............] - ETA: 1s

484/814 [================>.............] - ETA: 1s

495/814 [=================>............] - ETA: 1s

506/814 [=================>............] - ETA: 1s

516/814 [==================>...........] - ETA: 1s

526/814 [==================>...........] - ETA: 1s

537/814 [==================>...........] - ETA: 1s

547/814 [===================>..........] - ETA: 1s

558/814 [===================>..........] - ETA: 1s

569/814 [===================>..........] - ETA: 1s

580/814 [====================>.........] - ETA: 1s

591/814 [====================>.........] - ETA: 1s

601/814 [=====================>........] - ETA: 1s

612/814 [=====================>........] - ETA: 1s

623/814 [=====================>........] - ETA: 0s

633/814 [======================>.......] - ETA: 0s

644/814 [======================>.......] - ETA: 0s

655/814 [=======================>......] - ETA: 0s

665/814 [=======================>......] - ETA: 0s

676/814 [=======================>......] - ETA: 0s

687/814 [========================>.....] - ETA: 0s

698/814 [========================>.....] - ETA: 0s

709/814 [=========================>....] - ETA: 0s

719/814 [=========================>....] - ETA: 0s

728/814 [=========================>....] - ETA: 0s

738/814 [==========================>...] - ETA: 0s

749/814 [==========================>...] - ETA: 0s

759/814 [==========================>...] - ETA: 0s

770/814 [===========================>..] - ETA: 0s

781/814 [===========================>..] - ETA: 0s

792/814 [============================>.] - ETA: 0s

802/814 [============================>.] - ETA: 0s

813/814 [============================>.] - ETA: 0s

814/814 [==============================] - 4s 5ms/step
  1/814 [..............................] - ETA: 15s - loss: 0.4816 - accuracy: 0.8750

 11/814 [..............................] - ETA: 4s - loss: 0.5048 - accuracy: 0.8665 

 21/814 [..............................] - ETA: 4s - loss: 0.5240 - accuracy: 0.8586

 32/814 [>.............................] - ETA: 3s - loss: 0.5013 - accuracy: 0.8643

 42/814 [>.............................] - ETA: 3s - loss: 0.5403 - accuracy: 0.8594

 52/814 [>.............................] - ETA: 3s - loss: 0.5296 - accuracy: 0.8624

 62/814 [=>............................] - ETA: 3s - loss: 0.5166 - accuracy: 0.8644

 72/814 [=>............................] - ETA: 3s - loss: 0.5231 - accuracy: 0.8624

 81/814 [=>............................] - ETA: 3s - loss: 0.5304 - accuracy: 0.8623

 91/814 [==>...........................] - ETA: 3s - loss: 0.5414 - accuracy: 0.8592

101/814 [==>...........................] - ETA: 3s - loss: 0.5375 - accuracy: 0.8605

111/814 [===>..........................] - ETA: 3s - loss: 0.5445 - accuracy: 0.8573

121/814 [===>..........................] - ETA: 3s - loss: 0.5381 - accuracy: 0.8592

131/814 [===>..........................] - ETA: 3s - loss: 0.5324 - accuracy: 0.8578

141/814 [====>.........................] - ETA: 3s - loss: 0.5447 - accuracy: 0.8535

151/814 [====>.........................] - ETA: 3s - loss: 0.5445 - accuracy: 0.8524

161/814 [====>.........................] - ETA: 3s - loss: 0.5438 - accuracy: 0.8521

171/814 [=====>........................] - ETA: 3s - loss: 0.5399 - accuracy: 0.8534

182/814 [=====>........................] - ETA: 3s - loss: 0.5367 - accuracy: 0.8539

193/814 [======>.......................] - ETA: 3s - loss: 0.5310 - accuracy: 0.8548

204/814 [======>.......................] - ETA: 3s - loss: 0.5316 - accuracy: 0.8540

215/814 [======>.......................] - ETA: 3s - loss: 0.5291 - accuracy: 0.8547

226/814 [=======>......................] - ETA: 2s - loss: 0.5286 - accuracy: 0.8551

237/814 [=======>......................] - ETA: 2s - loss: 0.5293 - accuracy: 0.8555

248/814 [========>.....................] - ETA: 2s - loss: 0.5285 - accuracy: 0.8566

259/814 [========>.....................] - ETA: 2s - loss: 0.5264 - accuracy: 0.8570

270/814 [========>.....................] - ETA: 2s - loss: 0.5271 - accuracy: 0.8569

281/814 [=========>....................] - ETA: 2s - loss: 0.5260 - accuracy: 0.8574

292/814 [=========>....................] - ETA: 2s - loss: 0.5270 - accuracy: 0.8565

302/814 [==========>...................] - ETA: 2s - loss: 0.5268 - accuracy: 0.8568

313/814 [==========>...................] - ETA: 2s - loss: 0.5273 - accuracy: 0.8565

325/814 [==========>...................] - ETA: 2s - loss: 0.5292 - accuracy: 0.8564

336/814 [===========>..................] - ETA: 2s - loss: 0.5297 - accuracy: 0.8567

347/814 [===========>..................] - ETA: 2s - loss: 0.5276 - accuracy: 0.8576

358/814 [============>.................] - ETA: 2s - loss: 0.5276 - accuracy: 0.8577

369/814 [============>.................] - ETA: 2s - loss: 0.5279 - accuracy: 0.8576

380/814 [=============>................] - ETA: 2s - loss: 0.5291 - accuracy: 0.8573

391/814 [=============>................] - ETA: 2s - loss: 0.5288 - accuracy: 0.8576

402/814 [=============>................] - ETA: 2s - loss: 0.5272 - accuracy: 0.8577

413/814 [==============>...............] - ETA: 1s - loss: 0.5267 - accuracy: 0.8577

423/814 [==============>...............] - ETA: 1s - loss: 0.5251 - accuracy: 0.8580

434/814 [==============>...............] - ETA: 1s - loss: 0.5267 - accuracy: 0.8576

445/814 [===============>..............] - ETA: 1s - loss: 0.5275 - accuracy: 0.8576

456/814 [===============>..............] - ETA: 1s - loss: 0.5284 - accuracy: 0.8577

467/814 [================>.............] - ETA: 1s - loss: 0.5285 - accuracy: 0.8579

477/814 [================>.............] - ETA: 1s - loss: 0.5289 - accuracy: 0.8577

487/814 [================>.............] - ETA: 1s - loss: 0.5294 - accuracy: 0.8577

497/814 [=================>............] - ETA: 1s - loss: 0.5312 - accuracy: 0.8572

507/814 [=================>............] - ETA: 1s - loss: 0.5300 - accuracy: 0.8572

517/814 [==================>...........] - ETA: 1s - loss: 0.5315 - accuracy: 0.8568

528/814 [==================>...........] - ETA: 1s - loss: 0.5311 - accuracy: 0.8572

539/814 [==================>...........] - ETA: 1s - loss: 0.5319 - accuracy: 0.8573

550/814 [===================>..........] - ETA: 1s - loss: 0.5321 - accuracy: 0.8572

561/814 [===================>..........] - ETA: 1s - loss: 0.5355 - accuracy: 0.8557

572/814 [====================>.........] - ETA: 1s - loss: 0.5357 - accuracy: 0.8556

583/814 [====================>.........] - ETA: 1s - loss: 0.5369 - accuracy: 0.8554

594/814 [====================>.........] - ETA: 1s - loss: 0.5363 - accuracy: 0.8555

605/814 [=====================>........] - ETA: 1s - loss: 0.5363 - accuracy: 0.8555

616/814 [=====================>........] - ETA: 0s - loss: 0.5355 - accuracy: 0.8557

627/814 [======================>.......] - ETA: 0s - loss: 0.5366 - accuracy: 0.8552

638/814 [======================>.......] - ETA: 0s - loss: 0.5366 - accuracy: 0.8553

649/814 [======================>.......] - ETA: 0s - loss: 0.5376 - accuracy: 0.8554

660/814 [=======================>......] - ETA: 0s - loss: 0.5376 - accuracy: 0.8556

671/814 [=======================>......] - ETA: 0s - loss: 0.5373 - accuracy: 0.8557

682/814 [========================>.....] - ETA: 0s - loss: 0.5380 - accuracy: 0.8552

692/814 [========================>.....] - ETA: 0s - loss: 0.5382 - accuracy: 0.8551

702/814 [========================>.....] - ETA: 0s - loss: 0.5394 - accuracy: 0.8547

713/814 [=========================>....] - ETA: 0s - loss: 0.5393 - accuracy: 0.8550

723/814 [=========================>....] - ETA: 0s - loss: 0.5391 - accuracy: 0.8551

733/814 [==========================>...] - ETA: 0s - loss: 0.5412 - accuracy: 0.8546

743/814 [==========================>...] - ETA: 0s - loss: 0.5420 - accuracy: 0.8545

753/814 [==========================>...] - ETA: 0s - loss: 0.5414 - accuracy: 0.8547

763/814 [===========================>..] - ETA: 0s - loss: 0.5406 - accuracy: 0.8549

773/814 [===========================>..] - ETA: 0s - loss: 0.5404 - accuracy: 0.8550

783/814 [===========================>..] - ETA: 0s - loss: 0.5409 - accuracy: 0.8549

793/814 [============================>.] - ETA: 0s - loss: 0.5411 - accuracy: 0.8550

803/814 [============================>.] - ETA: 0s - loss: 0.5419 - accuracy: 0.8549

813/814 [============================>.] - ETA: 0s - loss: 0.5423 - accuracy: 0.8546

814/814 [==============================] - 4s 5ms/step - loss: 0.5421 - accuracy: 0.8546
Keras accuracy = 0.8829517364501953 , QKeras 6-bit accuracy = 0.8546404242515564
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import metrics


labels = ['%i' % nr for nr in range(0, n_classes)]  # If you want to look at all the labels
# labels = ['0','1','9'] # Look at only a few labels, here for digits 0, 1 and 9
print('Plotting ROC for labels {}'.format(labels))

df = pd.DataFrame()
df_q = pd.DataFrame()
fpr = {}
tpr = {}
auc1 = {}
fpr_q = {}
tpr_q = {}
auc1_q = {}
%matplotlib inline
colors = ['#67001f', '#b2182b', '#d6604d', '#f4a582', '#fddbc7', '#d1e5f0', '#92c5de', '#4393c3', '#2166ac', '#053061']
fig, ax = plt.subplots(figsize=(10, 10))
for i, label in enumerate(labels):
    df[label] = Y_test[:, int(label)]
    df[label + '_pred'] = predict_baseline[:, int(label)]
    fpr[label], tpr[label], threshold = metrics.roc_curve(df[label], df[label + '_pred'])
    auc1[label] = metrics.auc(fpr[label], tpr[label])

    df_q[label] = Y_test[:, int(label)]
    df_q[label + '_pred'] = predict_qkeras[:, int(label)]
    fpr_q[label], tpr_q[label], threshold_q = metrics.roc_curve(df_q[label], df_q[label + '_pred'])
    auc1_q[label] = metrics.auc(fpr_q[label], tpr_q[label])

    plt.plot(
        fpr[label],
        tpr[label],
        label=r'{}, AUC Keras = {:.1f}% AUC QKeras = {:.1f}%)'.format(label, auc1[label] * 100, auc1_q[label] * 100),
        linewidth=1.5,
        c=colors[i],
        linestyle='solid',
    )
    plt.plot(fpr_q[label], tpr_q[label], linewidth=1.5, c=colors[i], linestyle='dotted')

plt.semilogx()
plt.ylabel("True Positive Rate")
plt.xlabel("False Positive Rate")
plt.xlim(0.01, 1.0)
plt.ylim(0.5, 1.1)
plt.legend(loc='lower right')
plt.figtext(
    0.2,
    0.83,
    r'Accuracy Keras = {:.1f}% QKeras 8-bit = {:.1f}%'.format(test_score_baseline[1] * 100, test_score_qkeras[1] * 100),
    wrap=True,
    horizontalalignment='left',
    verticalalignment='center',
)
from matplotlib.lines import Line2D

lines = [Line2D([0], [0], ls='-'), Line2D([0], [0], ls='--')]
from matplotlib.legend import Legend

leg = Legend(ax, lines, labels=['Keras', 'QKeras'], loc='lower right', frameon=False)
ax.add_artist(leg)
Plotting ROC for labels ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
<matplotlib.legend.Legend at 0x7fc924e56470>
_images/2f753ef69919d8770d55a4c0d3868059631842c7b16277fe36cc51b2d039a1b4.png

The difference in AUC between the fp32 Keras model and the 8-bit QKeras model, is small, as we have seen for the previous examples. You can find a bonus exercise below, Bonus: Automatic quantization, where we’ll use AutoQKeras to find the best heterogeneously quantized model, given a set of resource and accuracy constriants.

Check sparsity#

Let’s also check the per-layer sparsity:

def doWeights(model):
    allWeightsByLayer = {}
    for layer in model.layers:
        if (layer._name).find("batch") != -1 or len(layer.get_weights()) < 1:
            continue
        weights = layer.weights[0].numpy().flatten()
        allWeightsByLayer[layer._name] = weights
        print('Layer {}: % of zeros = {}'.format(layer._name, np.sum(weights == 0) / np.size(weights)))

    labelsW = []
    histosW = []

    for key in reversed(sorted(allWeightsByLayer.keys())):
        labelsW.append(key)
        histosW.append(allWeightsByLayer[key])

    fig = plt.figure(figsize=(10, 10))
    bins = np.linspace(-1.5, 1.5, 50)
    plt.hist(histosW, bins, histtype='stepfilled', stacked=True, label=labelsW, edgecolor='black')
    plt.legend(frameon=False, loc='upper left')
    plt.ylabel('Number of Weights')
    plt.xlabel('Weights')
    plt.figtext(0.2, 0.38, model._name, wrap=True, horizontalalignment='left', verticalalignment='center')


doWeights(model_pruned)
doWeights(qmodel_pruned)
Layer prune_low_magnitude_conv_0: % of zeros = 0.5
Layer bn_conv_0: % of zeros = 0.0
Layer prune_low_magnitude_conv_1: % of zeros = 0.5
Layer bn_conv_1: % of zeros = 0.0
Layer prune_low_magnitude_conv_2: % of zeros = 0.5
Layer bn_conv_2: % of zeros = 0.0
Layer prune_low_magnitude_dense_0: % of zeros = 0.5
Layer bn_dense_0: % of zeros = 0.0
Layer prune_low_magnitude_dense_1: % of zeros = 0.5
Layer bn_dense_1: % of zeros = 0.0
Layer output_dense: % of zeros = 0.0
Layer prune_low_magnitude_fused_convbn_0: % of zeros = 0.5
Layer prune_low_magnitude_fused_convbn_1: % of zeros = 0.5
Layer prune_low_magnitude_fused_convbn_2: % of zeros = 0.5
Layer prune_low_magnitude_dense_0: % of zeros = 0.5
Layer bn_dense_0: % of zeros = 0.0
Layer prune_low_magnitude_dense_1: % of zeros = 0.5
Layer bn_dense_1: % of zeros = 0.0
Layer output_dense: % of zeros = 0.0
_images/8fdf9214f2e5de73f95127f350b5b4c5111a4bdc91363093446c005278bd1267.png _images/1cc795e174aeac83a40b219a15ac985ae658e254f094ef53b50270464dfe3b2c.png

We see that 50% of the weights per layer are set to zero, as expected. Now, let’s synthesize the floating point Keras model and the QKeras quantized model!

CNNs in hls4ml#

In this part, we will take the two models we trained above (the floating-point 32 Keras model and the 6-bit QKeras model), and synthesize them with hls4ml. Although your models are probably already in memory, let’s load them from scratch. We need to pass the appropriate custom QKeras/pruning layers when loading, and remove the pruning parameters that were saved together with the model.

from tensorflow_model_optimization.sparsity.keras import strip_pruning
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_wrapper

from qkeras.utils import _add_supported_quantized_objects

co = {}
_add_supported_quantized_objects(co)
co['PruneLowMagnitude'] = pruning_wrapper.PruneLowMagnitude

model = tf.keras.models.load_model('pruned_cnn_model.h5', custom_objects=co)
model = strip_pruning(model)

qmodel = tf.keras.models.load_model('quantized_pruned_cnn_model.h5', custom_objects=co)
qmodel = strip_pruning(qmodel)

Now, we need to define the hls4ml and Vivado configurations. Two things will change with respect to what was done in the previous exercises. First, we will use IOType= 'io_stream' in the Vivado configuration.


You must use IOType= 'io_stream' if attempting to synthesize a large convolutional neural network.


The CNN implementation in hls4ml is based on streams, which are synthesized in hardware as first in, first out (FIFO) buffers. Shift registers are used to keep track of the last <kernel height - 1> rows of input pixels, and maintains a shifting snapshot of the convolution kernel.

This is illustrated in the gif below. Here, the input image is at the top-left and the output image at the bottom left. The top right image shows the internal state of the shift registers and convolutional kernel. The red square indicates the current pixels contained within the convolutional kernel.

alt text

Lastly, we will use ['Strategy'] = 'Latency' for all the layers in the hls4ml configuration. If one layer would have >4096 elements, we sould set ['Strategy'] = 'Resource' for that layer, or increase the reuse factor by hand. You can find examples of how to do this below.

import hls4ml
import plotting

# First, the baseline model
hls_config = hls4ml.utils.config_from_keras_model(model, granularity='name')

# Set the precision and reuse factor for the full model
hls_config['Model']['Precision'] = 'ap_fixed<16,6>'
hls_config['Model']['ReuseFactor'] = 1

# Create an entry for each layer, here you can for instance change the strategy for a layer to 'resource'
# or increase the reuse factor individually for large layers.
# In this case, we designed the model to be small enough for a fully parallel implementation
# so we use the latency strategy and reuse factor of 1 for all layers.
for Layer in hls_config['LayerName'].keys():
    hls_config['LayerName'][Layer]['Strategy'] = 'Latency'
    hls_config['LayerName'][Layer]['ReuseFactor'] = 1
# If you want best numerical performance for high-accuray models, while the default latency strategy is faster but numerically more unstable
hls_config['LayerName']['output_softmax']['Strategy'] = 'Stable'
plotting.print_dict(hls_config)

cfg = hls4ml.converters.create_config(backend='Vivado')
cfg['IOType'] = 'io_stream'  # Must set this if using CNNs!
cfg['HLSConfig'] = hls_config
cfg['KerasModel'] = model
cfg['OutputDir'] = 'pruned_cnn/'
cfg['XilinxPart'] = 'xcu250-figd2104-2L-e'

hls_model = hls4ml.converters.keras_to_hls(cfg)
hls_model.compile()
/home/runner/miniconda3/envs/hls4ml-tutorial/lib/python3.10/site-packages/hls4ml/converters/__init__.py:27: UserWarning: WARNING: Pytorch converter is not enabled!
  warnings.warn("WARNING: Pytorch converter is not enabled!", stacklevel=1)
WARNING: Failed to import handlers from pooling.py: No module named 'torch'.
WARNING: Failed to import handlers from merge.py: No module named 'torch'.
WARNING: Failed to import handlers from convolution.py: No module named 'torch'.
WARNING: Failed to import handlers from core.py: No module named 'torch'.
WARNING: Failed to import handlers from reshape.py: No module named 'torch'.
Interpreting Model
Topology:
Layer name: input_1, layer type: InputLayer, input shapes: [[None, 32, 32, 3]], output shape: [None, 32, 32, 3]
Layer name: conv_0, layer type: Conv2D, input shapes: [[None, 32, 32, 3]], output shape: [None, 30, 30, 16]
Layer name: bn_conv_0, layer type: BatchNormalization, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: conv_act_0, layer type: Activation, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: pool_0, layer type: MaxPooling2D, input shapes: [[None, 30, 30, 16]], output shape: [None, 15, 15, 16]
Layer name: conv_1, layer type: Conv2D, input shapes: [[None, 15, 15, 16]], output shape: [None, 13, 13, 16]
Layer name: bn_conv_1, layer type: BatchNormalization, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: conv_act_1, layer type: Activation, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: pool_1, layer type: MaxPooling2D, input shapes: [[None, 13, 13, 16]], output shape: [None, 6, 6, 16]
Layer name: conv_2, layer type: Conv2D, input shapes: [[None, 6, 6, 16]], output shape: [None, 4, 4, 24]
Layer name: bn_conv_2, layer type: BatchNormalization, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: conv_act_2, layer type: Activation, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: pool_2, layer type: MaxPooling2D, input shapes: [[None, 4, 4, 24]], output shape: [None, 2, 2, 24]
Layer name: flatten, layer type: Reshape, input shapes: [[None, 2, 2, 24]], output shape: [None, 96]
Layer name: dense_0, layer type: Dense, input shapes: [[None, 96]], output shape: [None, 42]
Layer name: bn_dense_0, layer type: BatchNormalization, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_act_0, layer type: Activation, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_1, layer type: Dense, input shapes: [[None, 42]], output shape: [None, 64]
Layer name: bn_dense_1, layer type: BatchNormalization, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: dense_act_1, layer type: Activation, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: output_dense, layer type: Dense, input shapes: [[None, 64]], output shape: [None, 10]
Layer name: output_softmax, layer type: Softmax, input shapes: [[None, 10]], output shape: [None, 10]
Model
  Precision:         ap_fixed<16,6>
  ReuseFactor:       1
  Strategy:          Latency
  BramFactor:        1000000000
  TraceOutput:       False
LayerName
  input_1
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_0_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  bn_conv_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_act_0
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  pool_0
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_1_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  bn_conv_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_act_1
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  pool_1
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_2
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_2_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  bn_conv_2
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  conv_act_2
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  pool_2
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  flatten
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  dense_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  dense_0_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  bn_dense_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  dense_act_0
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  dense_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  dense_1_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  bn_dense_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  dense_act_1
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  output_dense
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  output_dense_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Latency
    ReuseFactor:     1
  output_softmax
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Stable
    ReuseFactor:     1
Interpreting Model
Topology:
Layer name: input_1, layer type: InputLayer, input shapes: [[None, 32, 32, 3]], output shape: [None, 32, 32, 3]
Layer name: conv_0, layer type: Conv2D, input shapes: [[None, 32, 32, 3]], output shape: [None, 30, 30, 16]
Layer name: bn_conv_0, layer type: BatchNormalization, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: conv_act_0, layer type: Activation, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: pool_0, layer type: MaxPooling2D, input shapes: [[None, 30, 30, 16]], output shape: [None, 15, 15, 16]
Layer name: conv_1, layer type: Conv2D, input shapes: [[None, 15, 15, 16]], output shape: [None, 13, 13, 16]
Layer name: bn_conv_1, layer type: BatchNormalization, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: conv_act_1, layer type: Activation, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: pool_1, layer type: MaxPooling2D, input shapes: [[None, 13, 13, 16]], output shape: [None, 6, 6, 16]
Layer name: conv_2, layer type: Conv2D, input shapes: [[None, 6, 6, 16]], output shape: [None, 4, 4, 24]
Layer name: bn_conv_2, layer type: BatchNormalization, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: conv_act_2, layer type: Activation, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: pool_2, layer type: MaxPooling2D, input shapes: [[None, 4, 4, 24]], output shape: [None, 2, 2, 24]
Layer name: flatten, layer type: Reshape, input shapes: [[None, 2, 2, 24]], output shape: [None, 96]
Layer name: dense_0, layer type: Dense, input shapes: [[None, 96]], output shape: [None, 42]
Layer name: bn_dense_0, layer type: BatchNormalization, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_act_0, layer type: Activation, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_1, layer type: Dense, input shapes: [[None, 42]], output shape: [None, 64]
Layer name: bn_dense_1, layer type: BatchNormalization, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: dense_act_1, layer type: Activation, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: output_dense, layer type: Dense, input shapes: [[None, 64]], output shape: [None, 10]
Layer name: output_softmax, layer type: Softmax, input shapes: [[None, 10]], output shape: [None, 10]
Creating HLS model
WARNING: Layer conv_0 requires "dataflow" pipeline style. Switching to "dataflow" pipeline style.
Writing HLS project
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
Done

Let’s get a nice overview over the various shapes and precisions used for each layer through hls4ml.utils.plot_model, as well as look at the weight profile using hls4ml.model.profiling.numerical. The weight profiling returns two plots: Before (top) and after (bottom) various optimizations applied to the HLS model before the final translation to HLS, for instance the fusing of Dense and BatchNormalization layers.

hls4ml.utils.plot_model(hls_model, show_shapes=True, show_precision=True, to_file=None)
_images/25dfbf4d2a68a71bd033f8fd9de55135a1136df404b3e7f05632f881d0fc8d33.png
hls4ml.model.profiling.numerical(model=model, hls_model=hls_model)
Interpreting Model
Topology:
Layer name: input_1, layer type: InputLayer, input shapes: [[None, 32, 32, 3]], output shape: [None, 32, 32, 3]
Layer name: conv_0, layer type: Conv2D, input shapes: [[None, 32, 32, 3]], output shape: [None, 30, 30, 16]
Layer name: bn_conv_0, layer type: BatchNormalization, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: conv_act_0, layer type: Activation, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: pool_0, layer type: MaxPooling2D, input shapes: [[None, 30, 30, 16]], output shape: [None, 15, 15, 16]
Layer name: conv_1, layer type: Conv2D, input shapes: [[None, 15, 15, 16]], output shape: [None, 13, 13, 16]
Layer name: bn_conv_1, layer type: BatchNormalization, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: conv_act_1, layer type: Activation, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: pool_1, layer type: MaxPooling2D, input shapes: [[None, 13, 13, 16]], output shape: [None, 6, 6, 16]
Layer name: conv_2, layer type: Conv2D, input shapes: [[None, 6, 6, 16]], output shape: [None, 4, 4, 24]
Layer name: bn_conv_2, layer type: BatchNormalization, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: conv_act_2, layer type: Activation, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: pool_2, layer type: MaxPooling2D, input shapes: [[None, 4, 4, 24]], output shape: [None, 2, 2, 24]
Layer name: flatten, layer type: Reshape, input shapes: [[None, 2, 2, 24]], output shape: [None, 96]
Layer name: dense_0, layer type: Dense, input shapes: [[None, 96]], output shape: [None, 42]
Layer name: bn_dense_0, layer type: BatchNormalization, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_act_0, layer type: Activation, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_1, layer type: Dense, input shapes: [[None, 42]], output shape: [None, 64]
Layer name: bn_dense_1, layer type: BatchNormalization, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: dense_act_1, layer type: Activation, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: output_dense, layer type: Dense, input shapes: [[None, 64]], output shape: [None, 10]
Layer name: output_softmax, layer type: Softmax, input shapes: [[None, 10]], output shape: [None, 10]
Creating HLS model
WARNING: Layer conv_0 requires "dataflow" pipeline style. Switching to "dataflow" pipeline style.
Profiling weights (before optimization)
Profiling weights (final / after optimization)
(<Figure size 640x480 with 1 Axes>,
 <Figure size 640x480 with 1 Axes>,
 None,
 None)
_images/0c5c550891dd3da2bba4ff8294d14d1f9cf0d42ddee0a9ec649396847339cfb1.png _images/734540fc58895c488c7c76357c83acc4ce8cd2e971a9d4dca5e76a66896c1ef1.png

The colored boxes are the distribution of the weights of the model, and the gray band illustrates the numerical range covered by the chosen fixed point precision. As we configured, this model uses a precision of ap_fixed<16,6> for all layers of the model. Let’s now build our QKeras model

# Then the QKeras model
hls_config_q = hls4ml.utils.config_from_keras_model(qmodel, granularity='name')
hls_config_q['Model']['ReuseFactor'] = 1
hls_config['Model']['Precision'] = 'ap_fixed<16,6>'
hls_config_q['LayerName']['output_softmax']['Strategy'] = 'Stable'
plotting.print_dict(hls_config_q)

cfg_q = hls4ml.converters.create_config(backend='Vivado')
cfg_q['IOType'] = 'io_stream'  # Must set this if using CNNs!
cfg_q['HLSConfig'] = hls_config_q
cfg_q['KerasModel'] = qmodel
cfg_q['OutputDir'] = 'quantized_pruned_cnn/'
cfg_q['XilinxPart'] = 'xcu250-figd2104-2L-e'

hls_model_q = hls4ml.converters.keras_to_hls(cfg_q)
hls_model_q.compile()
Interpreting Model
Topology:
Layer name: input_2, layer type: InputLayer, input shapes: [[None, 32, 32, 3]], output shape: [None, 32, 32, 3]
Layer name: fused_convbn_0, layer type: QConv2DBatchnorm, input shapes: [[None, 32, 32, 3]], output shape: [None, 30, 30, 16]
Layer name: conv_act_0, layer type: Activation, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: pool_0, layer type: MaxPooling2D, input shapes: [[None, 30, 30, 16]], output shape: [None, 15, 15, 16]
Layer name: fused_convbn_1, layer type: QConv2DBatchnorm, input shapes: [[None, 15, 15, 16]], output shape: [None, 13, 13, 16]
Layer name: conv_act_1, layer type: Activation, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: pool_1, layer type: MaxPooling2D, input shapes: [[None, 13, 13, 16]], output shape: [None, 6, 6, 16]
Layer name: fused_convbn_2, layer type: QConv2DBatchnorm, input shapes: [[None, 6, 6, 16]], output shape: [None, 4, 4, 24]
Layer name: conv_act_2, layer type: Activation, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: pool_2, layer type: MaxPooling2D, input shapes: [[None, 4, 4, 24]], output shape: [None, 2, 2, 24]
Layer name: flatten_1, layer type: Reshape, input shapes: [[None, 2, 2, 24]], output shape: [None, 96]
Layer name: dense_0, layer type: QDense, input shapes: [[None, 96]], output shape: [None, 42]
Layer name: bn_dense_0, layer type: BatchNormalization, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_act_0, layer type: Activation, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_1, layer type: QDense, input shapes: [[None, 42]], output shape: [None, 64]
Layer name: bn_dense_1, layer type: BatchNormalization, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: dense_act_1, layer type: Activation, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: output_dense, layer type: Dense, input shapes: [[None, 64]], output shape: [None, 10]
Layer name: output_softmax, layer type: Softmax, input shapes: [[None, 10]], output shape: [None, 10]
Model
  Precision:         fixed<16,6>
  ReuseFactor:       1
  Strategy:          Latency
  BramFactor:        1000000000
  TraceOutput:       False
LayerName
  input_2
    Trace:           False
    Precision
      result:        fixed<16,6>
  fused_convbn_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<6,1>
      bias:          fixed<6,1>
  fused_convbn_0_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
  conv_act_0
    Trace:           False
    Precision
      result:        ufixed<6,0,RND_CONV,SAT>
  pool_0
    Trace:           False
    Precision
      result:        fixed<16,6>
  fused_convbn_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<6,1>
      bias:          fixed<6,1>
  fused_convbn_1_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
  conv_act_1
    Trace:           False
    Precision
      result:        ufixed<6,0,RND_CONV,SAT>
  pool_1
    Trace:           False
    Precision
      result:        fixed<16,6>
  fused_convbn_2
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<6,1>
      bias:          fixed<6,1>
  fused_convbn_2_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
  conv_act_2
    Trace:           False
    Precision
      result:        ufixed<6,0,RND_CONV,SAT>
  pool_2
    Trace:           False
    Precision
      result:        fixed<16,6>
  flatten_1
    Trace:           False
    Precision
      result:        fixed<16,6>
  dense_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<6,1>
      bias:          fixed<16,6>
  dense_0_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
  bn_dense_0
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
  dense_act_0
    Trace:           False
    Precision
      result:        ufixed<6,0,RND_CONV,SAT>
  dense_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<6,1>
      bias:          fixed<16,6>
  dense_1_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
  bn_dense_1
    Trace:           False
    Precision
      result:        fixed<16,6>
      scale:         fixed<16,6>
      bias:          fixed<16,6>
  dense_act_1
    Trace:           False
    Precision
      result:        ufixed<6,0,RND_CONV,SAT>
  output_dense
    Trace:           False
    Precision
      result:        fixed<16,6>
      weight:        fixed<16,6>
      bias:          fixed<16,6>
  output_dense_linear
    Trace:           False
    Precision
      result:        fixed<16,6>
  output_softmax
    Trace:           False
    Precision
      result:        fixed<16,6>
    Strategy:        Stable
Interpreting Model
Topology:
Layer name: input_2, layer type: InputLayer, input shapes: [[None, 32, 32, 3]], output shape: [None, 32, 32, 3]
Layer name: fused_convbn_0, layer type: QConv2DBatchnorm, input shapes: [[None, 32, 32, 3]], output shape: [None, 30, 30, 16]
Layer name: conv_act_0, layer type: Activation, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: pool_0, layer type: MaxPooling2D, input shapes: [[None, 30, 30, 16]], output shape: [None, 15, 15, 16]
Layer name: fused_convbn_1, layer type: QConv2DBatchnorm, input shapes: [[None, 15, 15, 16]], output shape: [None, 13, 13, 16]
Layer name: conv_act_1, layer type: Activation, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: pool_1, layer type: MaxPooling2D, input shapes: [[None, 13, 13, 16]], output shape: [None, 6, 6, 16]
Layer name: fused_convbn_2, layer type: QConv2DBatchnorm, input shapes: [[None, 6, 6, 16]], output shape: [None, 4, 4, 24]
Layer name: conv_act_2, layer type: Activation, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: pool_2, layer type: MaxPooling2D, input shapes: [[None, 4, 4, 24]], output shape: [None, 2, 2, 24]
Layer name: flatten_1, layer type: Reshape, input shapes: [[None, 2, 2, 24]], output shape: [None, 96]
Layer name: dense_0, layer type: QDense, input shapes: [[None, 96]], output shape: [None, 42]
Layer name: bn_dense_0, layer type: BatchNormalization, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_act_0, layer type: Activation, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_1, layer type: QDense, input shapes: [[None, 42]], output shape: [None, 64]
Layer name: bn_dense_1, layer type: BatchNormalization, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: dense_act_1, layer type: Activation, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: output_dense, layer type: Dense, input shapes: [[None, 64]], output shape: [None, 10]
Layer name: output_softmax, layer type: Softmax, input shapes: [[None, 10]], output shape: [None, 10]
Creating HLS model
WARNING: Layer fused_convbn_0 requires "dataflow" pipeline style. Switching to "dataflow" pipeline style.
Writing HLS project
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
Done

Let’s plot the model and profile the weights her too

hls4ml.model.profiling.numerical(model=qmodel, hls_model=hls_model_q)
hls4ml.utils.plot_model(hls_model_q, show_shapes=True, show_precision=True, to_file=None)
Interpreting Model
Topology:
Layer name: input_2, layer type: InputLayer, input shapes: [[None, 32, 32, 3]], output shape: [None, 32, 32, 3]
Layer name: fused_convbn_0, layer type: QConv2DBatchnorm, input shapes: [[None, 32, 32, 3]], output shape: [None, 30, 30, 16]
Layer name: conv_act_0, layer type: Activation, input shapes: [[None, 30, 30, 16]], output shape: [None, 30, 30, 16]
Layer name: pool_0, layer type: MaxPooling2D, input shapes: [[None, 30, 30, 16]], output shape: [None, 15, 15, 16]
Layer name: fused_convbn_1, layer type: QConv2DBatchnorm, input shapes: [[None, 15, 15, 16]], output shape: [None, 13, 13, 16]
Layer name: conv_act_1, layer type: Activation, input shapes: [[None, 13, 13, 16]], output shape: [None, 13, 13, 16]
Layer name: pool_1, layer type: MaxPooling2D, input shapes: [[None, 13, 13, 16]], output shape: [None, 6, 6, 16]
Layer name: fused_convbn_2, layer type: QConv2DBatchnorm, input shapes: [[None, 6, 6, 16]], output shape: [None, 4, 4, 24]
Layer name: conv_act_2, layer type: Activation, input shapes: [[None, 4, 4, 24]], output shape: [None, 4, 4, 24]
Layer name: pool_2, layer type: MaxPooling2D, input shapes: [[None, 4, 4, 24]], output shape: [None, 2, 2, 24]
Layer name: flatten_1, layer type: Reshape, input shapes: [[None, 2, 2, 24]], output shape: [None, 96]
Layer name: dense_0, layer type: QDense, input shapes: [[None, 96]], output shape: [None, 42]
Layer name: bn_dense_0, layer type: BatchNormalization, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_act_0, layer type: Activation, input shapes: [[None, 42]], output shape: [None, 42]
Layer name: dense_1, layer type: QDense, input shapes: [[None, 42]], output shape: [None, 64]
Layer name: bn_dense_1, layer type: BatchNormalization, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: dense_act_1, layer type: Activation, input shapes: [[None, 64]], output shape: [None, 64]
Layer name: output_dense, layer type: Dense, input shapes: [[None, 64]], output shape: [None, 10]
Layer name: output_softmax, layer type: Softmax, input shapes: [[None, 10]], output shape: [None, 10]
Creating HLS model
WARNING: Layer fused_convbn_0 requires "dataflow" pipeline style. Switching to "dataflow" pipeline style.
Profiling weights (before optimization)
Weights for dense_0 are only zeros, ignoring.
Weights for dense_1 are only zeros, ignoring.
Profiling weights (final / after optimization)
Weights for dense_0 are only zeros, ignoring.
Weights for dense_1 are only zeros, ignoring.
_images/a5912387d8f15d04a6c07ee720c3cfef599806346829bb6d7c3e72f01b65dcbc.png _images/310ee06dab225056cf0dbf09bc55981a194652e0c64526842be24abaab1a9d92.png _images/4182e8220aee8189df052385e0beec953550b58531f8836a66ebbfdef1b4f1ec.png

For the 6-bit QKeras model, we see that different precisions are used for different layers.

Accuracy with bit-accurate emulation#

Let’s check that the hls4ml accuracy matches the original. This usually takes some time, so let’s do it over a reduced dataset

X_test_reduced = X_test[:3000]
Y_test_reduced = Y_test[:3000]
y_predict = model.predict(X_test_reduced)
y_predict_hls4ml = hls_model.predict(np.ascontiguousarray(X_test_reduced))
 1/94 [..............................] - ETA: 7s

22/94 [======>.......................] - ETA: 0s

43/94 [============>.................] - ETA: 0s

64/94 [===================>..........] - ETA: 0s

83/94 [=========================>....] - ETA: 0s

94/94 [==============================] - 0s 3ms/step
y_predict_q = qmodel.predict(X_test_reduced)
y_predict_hls4ml_q = hls_model_q.predict(np.ascontiguousarray(X_test_reduced))
 1/94 [..............................] - ETA: 31s

12/94 [==>...........................] - ETA: 0s 

23/94 [======>.......................] - ETA: 0s

35/94 [==========>...................] - ETA: 0s

47/94 [==============>...............] - ETA: 0s

59/94 [=================>............] - ETA: 0s

71/94 [=====================>........] - ETA: 0s

83/94 [=========================>....] - ETA: 0s

94/94 [==============================] - 1s 4ms/step
import plotting
from sklearn.metrics import accuracy_score


def plotROC(Y, y_pred, y_pred_hls4ml, label="Model"):
    accuracy_keras = float(accuracy_score(np.argmax(Y, axis=1), np.argmax(y_pred, axis=1)))
    accuracy_hls4ml = float(accuracy_score(np.argmax(Y, axis=1), np.argmax(y_pred_hls4ml, axis=1)))

    print("Accuracy Keras:  {}".format(accuracy_keras))
    print("Accuracy hls4ml: {}".format(accuracy_hls4ml))

    fig, ax = plt.subplots(figsize=(9, 9))
    _ = plotting.makeRoc(Y, y_pred, labels=['%i' % nr for nr in range(n_classes)])
    plt.gca().set_prop_cycle(None)  # reset the colors
    _ = plotting.makeRoc(Y, y_pred_hls4ml, labels=['%i' % nr for nr in range(n_classes)], linestyle='--')

    from matplotlib.lines import Line2D

    lines = [Line2D([0], [0], ls='-'), Line2D([0], [0], ls='--')]
    from matplotlib.legend import Legend

    leg = Legend(ax, lines, labels=['Keras', 'hls4ml'], loc='lower right', frameon=False)
    ax.add_artist(leg)
    plt.figtext(0.2, 0.38, label, wrap=True, horizontalalignment='left', verticalalignment='center')
    plt.ylim(0.01, 1.0)
    plt.xlim(0.7, 1.0)


# Plot the pruned floating point model:
plotROC(Y_test_reduced, y_predict, y_predict_hls4ml, label="Keras")

# Plot the pruned and quantized QKeras model
plotROC(Y_test_reduced, y_predict_q, y_predict_hls4ml_q, label="QKeras")
Accuracy Keras:  0.8816666666666667
Accuracy hls4ml: 0.8816666666666667
Accuracy Keras:  0.8603333333333333
Accuracy hls4ml: 0.8586666666666667
_images/0f6f21bbd98db772cf1139f0df1cf7a0932355c46a906c2baadf8f496ff0f508.png _images/ae7dd10dc49fc9cdd0cb43d3c90aeee45fb5bf70bb83ff98336475d9b35d7c5c.png

Looks good! Let’s synthesize the models.

Logic synthesis#

This takes quite a while for CNN models, up to one hour for the models considered here. In the interest of time, we have therefore provided the neccessary reports for the models considered. You can also synthesize them yourself if you have time, and as usual follow the progress using tail -f pruned_cnn/vivado_hls.log and tail -f quantized_pruned_cnn/vivado_hls.log.

import os

os.environ['PATH'] = os.environ['XILINX_VIVADO'] + '/bin:' + os.environ['PATH']

synth = False  # Only if you want to synthesize the models yourself (>1h per model) rather than look at the provided reports.
if synth:
    hls_model.build(csim=False, synth=True, vsynth=True)
    hls_model_q.build(csim=False, synth=True, vsynth=True)
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[26], line 3
      1 import os
----> 3 os.environ['PATH'] = os.environ['XILINX_VIVADO'] + '/bin:' + os.environ['PATH']
      5 synth = False  # Only if you want to synthesize the models yourself (>1h per model) rather than look at the provided reports.
      6 if synth:

File ~/miniconda3/envs/hls4ml-tutorial/lib/python3.10/os.py:680, in _Environ.__getitem__(self, key)
    677     value = self._data[self.encodekey(key)]
    678 except KeyError:
    679     # raise KeyError with the original key value
--> 680     raise KeyError(key) from None
    681 return self.decodevalue(value)

KeyError: 'XILINX_VIVADO'

We extract the latency from the C synthesis, namely the report in <project_dir>/myproject_prj/solution1/syn/report/myproject_csynth.rpt. A more accurate latency estimate can be obtained from running cosim by passing hls_model.build(csim=False, synth=True, vsynth=True, cosim=True) ( = C/RTL cosimulation, synthesised HLS code is run on a simulator and tested on C test bench) but this takes a lot of time so we will skip it here. The resource estimates are obtained from the Vivado logic synthesis, and can be extracted from the report in <project_dir>/vivado_synth.rpt. Let’s fetch the most relevant numbers:

def getReports(indir):
    data_ = {}

    report_vsynth = Path('{}/vivado_synth.rpt'.format(indir))
    report_csynth = Path('{}/myproject_prj/solution1/syn/report/myproject_csynth.rpt'.format(indir))

    if report_vsynth.is_file() and report_csynth.is_file():
        print('Found valid vsynth and synth in {}! Fetching numbers'.format(indir))

        # Get the resources from the logic synthesis report
        with report_vsynth.open() as report:
            lines = np.array(report.readlines())
            data_['lut'] = int(lines[np.array(['CLB LUTs*' in line for line in lines])][0].split('|')[2])
            data_['ff'] = int(lines[np.array(['CLB Registers' in line for line in lines])][0].split('|')[2])
            data_['bram'] = float(lines[np.array(['Block RAM Tile' in line for line in lines])][0].split('|')[2])
            data_['dsp'] = int(lines[np.array(['DSPs' in line for line in lines])][0].split('|')[2])
            data_['lut_rel'] = float(lines[np.array(['CLB LUTs*' in line for line in lines])][0].split('|')[5])
            data_['ff_rel'] = float(lines[np.array(['CLB Registers' in line for line in lines])][0].split('|')[5])
            data_['bram_rel'] = float(lines[np.array(['Block RAM Tile' in line for line in lines])][0].split('|')[5])
            data_['dsp_rel'] = float(lines[np.array(['DSPs' in line for line in lines])][0].split('|')[5])

        with report_csynth.open() as report:
            lines = np.array(report.readlines())
            lat_line = lines[np.argwhere(np.array(['Latency (cycles)' in line for line in lines])).flatten()[0] + 3]
            data_['latency_clks'] = int(lat_line.split('|')[2])
            data_['latency_mus'] = float(lat_line.split('|')[2]) * 5.0 / 1000.0
            data_['latency_ii'] = int(lat_line.split('|')[6])

    return data_
from pathlib import Path
import pprint

data_pruned_ref = getReports('pruned_cnn')
data_quantized_pruned = getReports('quantized_pruned_cnn')

print("\n Resource usage and latency: Pruned")
pprint.pprint(data_pruned_ref)
print("\n Resource usage and latency: Pruned + quantized")
pprint.pprint(data_quantized_pruned)

We see that the latency is of around 5 microseconds for both the quantized and the unquantized model, but that the resources are signifcantly reduced using QKeras.

Congratulations! You have now reached the end of this notebook. If you have some spare time, you can have a look at the bonus exercise below, where you will learn how to perform a bayesian optimization over the QKeras quantizers in order to obtain an optimally heterogeneously quantized model.

Bonus exercise: Automatic quantization with AutoQKeras#

In this bonus exercise, you will learn how to find the optimal heterogeneously quantized model using AutoQKeras. For more details, you can look at the AutoQKeras notebook.

Let’s first check the estimated energy consumption of the QKeras 6-bit model using QTools. By setting for_reference=True you can print out the unquantized model energy consumption and compare the two. Note that this only works for QKeras layers.

filters_per_conv_layer = [16, 16, 24]
neurons_per_dense_layer = [42, 64]

x = x_in = Input(input_shape)

for i, f in enumerate(filters_per_conv_layer):
    print(('Adding convolutional block {} with N={} filters').format(i, f))
    x = Conv2D(
        int(f),
        kernel_size=(3, 3),
        strides=(1, 1),
        kernel_initializer='lecun_uniform',
        kernel_regularizer=l1(0.0001),
        use_bias=False,
        name='conv_{}'.format(i),
    )(x)
    x = BatchNormalization(name='bn_conv_{}'.format(i))(x)
    x = Activation('relu', name='conv_act_%i' % i)(x)
    x = MaxPooling2D(pool_size=(2, 2), name='pool_{}'.format(i))(x)
x = Flatten()(x)

for i, n in enumerate(neurons_per_dense_layer):
    print(('Adding dense block {} with N={} neurons').format(i, n))
    x = Dense(n, kernel_initializer='lecun_uniform', kernel_regularizer=l1(0.0001), name='dense_%i' % i, use_bias=False)(x)
    x = BatchNormalization(name='bn_dense_{}'.format(i))(x)
    x = Activation('relu', name='dense_act_%i' % i)(x)
x = Dense(int(n_classes), name='output_dense')(x)
x_out = Activation('softmax', name='output_softmax')(x)

baseline_model = Model(inputs=[x_in], outputs=[x_out], name='keras_baseline')

LOSS = tf.keras.losses.CategoricalCrossentropy()
OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=3e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True)

baseline_model.compile(loss=LOSS, optimizer=OPTIMIZER, metrics=["accuracy"])
from qkeras import print_qstats

# for automatic quantization
import pprint
from qkeras.autoqkeras import *
from qkeras import *
from qkeras.utils import model_quantize

from qkeras.qtools import run_qtools
from qkeras.qtools import settings as qtools_settings
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_wrapper
from qkeras import quantized_bits
from qkeras import QDense, QActivation

q = run_qtools.QTools(
    baseline_model,
    process="horowitz",
    source_quantizers=[quantized_bits(16, 5, 1)],
    is_inference=True,
    weights_path=None,
    keras_quantizer="fp16",
    keras_accumulator="fp16",
    for_reference=False,
)
q.qtools_stats_print()

energy_dict = q.pe(
    weights_on_memory="fixed", activations_on_memory="fixed", min_sram_size=8 * 16 * 1024 * 1024, rd_wr_on_io=False
)

# get stats of energy distribution in each layer
energy_profile = q.extract_energy_profile(qtools_settings.cfg.include_energy, energy_dict)
# extract sum of energy of each layer according to the rule specified in
# qtools_settings.cfg.include_energy
total_energy = q.extract_energy_sum(qtools_settings.cfg.include_energy, energy_dict)

pprint.pprint(energy_profile)
print()

print("Total energy: {:.6f} uJ".format(total_energy / 1000000.0))

Now, lets use AutoQKeras to find an optimally heterogeneously quantized model for us. For more details, check the AutoQKeras tutorial linked above. As baseline model, we’ll use the pruned floating point Keras model from above.

# These are the quantizers we'll test in the bayesian optimization
quantization_config = {
    "kernel": {
        "quantized_bits(2,0,1,alpha=1.0)": 2,
        "quantized_bits(4,0,1,alpha=1.0)": 4,
        "quantized_bits(6,0,1,alpha=1.0)": 6,
        "quantized_bits(8,0,1,alpha=1.0)": 8,
    },
    "bias": {
        "quantized_bits(2,0,1,alpha=1.0)": 2,
        "quantized_bits(4,0,1,alpha=1.0)": 4,
        "quantized_bits(6,0,1,alpha=1.0)": 6,
        "quantized_bits(8,0,1,alpha=1.0)": 8,
    },
    "activation": {
        "quantized_relu(3,1)": 3,
        "quantized_relu(4,2)": 4,
        "quantized_relu(8,2)": 8,
        "quantized_relu(8,4)": 8,
        "quantized_relu(16,6)": 16,
    },
    "linear": {
        "quantized_bits(2,0,1,alpha=1.0)": 2,
        "quantized_bits(4,0,1,alpha=1.0)": 4,
        "quantized_bits(6,0,1,alpha=1.0)": 6,
        "quantized_bits(8,0,1,alpha=1.0)": 8,
    },
}

# These are the layer types we will quantize
limit = {
    "Dense": [8, 8, 16],
    "Conv2D": [8, 8, 16],
    "Activation": [16],
}

# Use this if you want to minimize the model bit size
goal_bits = {
    "type": "bits",
    "params": {
        "delta_p": 8.0,  # We tolerate up to a +8% accuracy change
        "delta_n": 8.0,  # We tolerate down to a -8% accuracy change
        "rate": 2.0,  # We want a x2 times smaller model
        "stress": 1.0,  # Force the reference model size to be smaller by setting stress<1
        "input_bits": 8,
        "output_bits": 8,
        "ref_bits": 8,
        "config": {"default": ["parameters", "activations"]},
    },
}

# Use this if you want to minimize the model energy consumption
goal_energy = {
    "type": "energy",
    "params": {
        "delta_p": 8.0,
        "delta_n": 8.0,
        "rate": 2.0,
        "stress": 1.0,
        "process": "horowitz",
        "parameters_on_memory": ["sram", "sram"],
        "activations_on_memory": ["sram", "sram"],
        "rd_wr_on_io": [False, False],
        "min_sram_size": [0, 0],
        "source_quantizers": ["fp32"],
        "reference_internal": "int8",
        "reference_accumulator": "int32",
    },
}

run_config = {
    "goal": goal_energy,
    "quantization_config": quantization_config,
    "learning_rate_optimizer": False,
    "transfer_weights": False,  # Randomely initialize weights
    "mode": "bayesian",  # This can be bayesian,random,hyperband
    "seed": 42,
    "limit": limit,
    "tune_filters": "layer",
    "tune_filters_exceptions": "^output",
    "distribution_strategy": None,
    "max_trials": 5,  # Let's just do 5 trials for this demonstrator, ideally you should do as many as possible
}
from qkeras.autoqkeras import AutoQKeras

autoqk = AutoQKeras(baseline_model, output_dir="autoq_cnn", metrics=["acc"], custom_objects={}, **run_config)
autoqk.fit(train_data, validation_data=val_data, epochs=15)

aqmodel = autoqk.get_best_model()
print_qmodel_summary(aqmodel)

# Train for the full epochs
callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=10, verbose=1),
    tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1),
]

start = time.time()
history = aqmodel.fit(train_data, epochs=n_epochs, validation_data=val_data, callbacks=callbacks, verbose=1)
end = time.time()
print('\n It took {} minutes to train!\n'.format((end - start) / 60.0))
# This model has some remnants from the optimization procedure attached to it, so let's define a new one
aqmodel.save_weights("autoqkeras_cnn_weights.h5")

layers = [l for l in aqmodel.layers]
x = layers[0].output
for i in range(1, len(layers)):
    x = layers[i](x)

new_model = Model(inputs=[layers[0].input], outputs=[x])
LOSS = tf.keras.losses.CategoricalCrossentropy()
OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=3e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True)

new_model.compile(loss=LOSS, optimizer=OPTIMIZER, metrics=["accuracy"])
new_model.summary()
new_model.load_weights("autoqkeras_cnn_weights.h5")
print_qmodel_summary(new_model)

Let’s check what the best heterogeneously quantized model looks like (keep in mind we only did a few trials, the optimization obviosuly didn’t have time to converge at the minimum but yo get the idea!)

hls_config_aq = hls4ml.utils.config_from_keras_model(new_model, granularity='name')
hls_config_aq['Model']['ReuseFactor'] = 1
hls_config_aq['Model']['Precision'] = 'ap_fixed<16,6>'
hls_config_aq['LayerName']['output_softmax']['Strategy'] = 'Stable'
plotting.print_dict(hls_config_aq)

cfg_aq = hls4ml.converters.create_config(backend='Vivado')
cfg_aq['IOType'] = 'io_stream'  # Must set this if using CNNs!
cfg_aq['HLSConfig'] = hls_config_aq
cfg_aq['KerasModel'] = new_model
cfg_aq['OutputDir'] = 'autoqkeras_cnn/'
cfg_aq['XilinxPart'] = 'xcu250-figd2104-2L-e'

hls_model_aq = hls4ml.converters.keras_to_hls(cfg_aq)
hls_model_aq.compile()
y_predict_aq = aqmodel.predict(X_test_reduced)
y_predict_hls4ml_aq = hls_model_aq.predict(np.ascontiguousarray(X_test_reduced))


accuracy_keras = float(accuracy_score(np.argmax(Y_test_reduced, axis=1), np.argmax(y_predict_aq, axis=1)))
accuracy_hls4ml = float(accuracy_score(np.argmax(Y_test_reduced, axis=1), np.argmax(y_predict_hls4ml_aq, axis=1)))

print("Accuracy AutoQ Keras:  {}".format(accuracy_keras))
print("Accuracy AutoQ hls4ml: {}".format(accuracy_hls4ml))

The accuracy is slightly lower for this heterogeneously quantized model. Due to some randomness in the optimization procedure, you’re going to have to synthesize this one yourself!

synth = True
if synth:
    hls_model_aq.build(csim=False, synth=True, vsynth=True)
    data_autoq = getReports('autoq_cnn')

    print("\n Resource usage and latency: AutoQ")
    pprint.pprint(data_autoq)