hls4ml.backends.fpga package
Subpackages
- hls4ml.backends.fpga.passes package
- Submodules
- hls4ml.backends.fpga.passes.bram_weights module
- hls4ml.backends.fpga.passes.clone module
- hls4ml.backends.fpga.passes.codegen module
- hls4ml.backends.fpga.passes.embedding module
- hls4ml.backends.fpga.passes.final_reshape module
- hls4ml.backends.fpga.passes.fix_softmax_table_size module
- hls4ml.backends.fpga.passes.hgq_proxy_model module
- hls4ml.backends.fpga.passes.inplace_parallel_reshape module
- hls4ml.backends.fpga.passes.inplace_stream_flatten module
- hls4ml.backends.fpga.passes.remove_softmax module
- hls4ml.backends.fpga.passes.repack_stream module
- hls4ml.backends.fpga.passes.xnor_pooling module
- Module contents
Submodules
hls4ml.backends.fpga.fpga_backend module
- class hls4ml.backends.fpga.fpga_backend.FPGABackend(name)
Bases:
Backend
- compile(model)
Compile the generated project that can be linked into Python runtime.
- Parameters:
model (ModelGraph) – Model to compile.
- Raises:
Exception – If the project failed to compile
- Returns:
Returns the name of the compiled library.
- Return type:
string
- compute_conv1d_instructions(in_W, in_C, kernel_size=3, stride=1, pad=0)
- compute_conv2d_instructions(in_H, in_W, in_C, kernel_size=3, stride=1, pad=0)
- classmethod convert_precision_string(precision)
- create_layer_class(layer_class)
Wrap the original layer class into the backend-specific layer class.
Backends should extend base layer classes with new attributes and variables as needed. These new classes are then used within the model.
- Parameters:
layer_class (class) – Base class to extend
- generate_conv1d_line_buffer_fn(layer_idx, n_partitions, in_W, in_C, kernel=3, stride=1, pad=0, dilation=1)
Generate a C++ function that mimics the im2col algorithm. This function works for 1D convolution.
The HLS compiler produces suboptimal designs for a im2col algorithm implementation, so a trick we use is to generate a resulting a result of im2col transformation explicitly, instead of relying on loops. Since the result depends on the parameters of the convolution layer (the input size, the kernel size, stride etc), we need to do this for every convolution layer.
- Parameters:
layer_idx (int) – Index of layer (‘index’ attribute).
n_partitions (int) – Number of partitions to divide the input into. The pixels in each partition will be processed in parallel.
in_W (int) – Width of input.
in_C (int) – Number of channels.
kernel (int, optional) – Size of the kernel. Defaults to 3.
stride (int, optional) – Stride length. Defaults to 1.
pad (int or Iterable, optional) – Padding to apply. Defaults to 0. Specified as either a number or a list [left_pad, right_pad].
dilation (int, optional) – Dilation rate. Defaults to 1.
- Returns:
Generated C++ function
- Return type:
str
- generate_conv2d_line_buffer_fn(layer_idx, n_partitions, in_H, in_W, in_C, kernel=(3, 3), stride=(1, 1), pad=(0, 0, 0, 0), dilation=(1, 1))
Generate a C++ function that mimics the im2col algorithm. This function works for 2D convolution.
The HLS compiler produces suboptimal designs for a im2col algorithm implementation, so a trick we use is to generate a resulting a result of im2col transformation explicitly, instead of relying on loops. Since the result depends on the parameters of the convolution layer (the input size, the kernel size, stride etc), we need to do this for every convolution layer.
- Parameters:
layer_idx (int) – Index of layer (‘index’ attribute).
n_partitions (int) – Number of partitions to divide the input into. The pixels in each partition will be processed in parallel.
in_H (int) – Height of input.
in_W (int) – Width of input.
in_C (int) – Number of channels.
kernel (int or Iterable, optional) – Size of the kernel. Defaults to (3,3).
stride (int or Iterable, optional) – Stride length. Defaults to (1,1).
pad (int or Iterable, optional) – Padding to apply. Defaults to 0. Specified as either a number or a list [top_pad, bottom_pad, left_pad, right_pad].
dilation (int or Iterable, optional) – Dilation rate. Defaults to (1,1).
- Returns:
Generated C++ function
- Return type:
str
- get_closest_reuse_factor(valid_rf, chosen_rf)
Returns closest value to chosen_rf. valid_rf is sorted (obtained from get_valid_reuse_factors()) If two numbers are equally close, return the smallest number.
- get_layer_mult_size(layer)
- get_valid_conv_partition_splits(out_height, out_width)
Generate valid partition splits of a Conv1D/2D layer.
Essentially a list of divisors of the number of pixels of the output image.
- Parameters:
out_height (int) – The height of the output image
out_width (int) – The width of the output image
- Returns:
List of valid partition splits
- Return type:
list
- get_valid_reuse_factors(n_in, n_out)
- get_writer_flow()
- product_type(data_T, weight_T)
Helper function to determine which product implementation to use during inference
- set_closest_reuse_factor(layer, n_in, n_out, attribute='reuse_factor', include_max_rf=True)
- set_target_reuse_factor(layer)
- write(model)
Write the generated project to disk.
This function converts the model to C++ and writes the generated files in the output directory specified in the config.
- Parameters:
model (ModelGraph) – Model to write.
- write_hls(model)
hls4ml.backends.fpga.fpga_layers module
- class hls4ml.backends.fpga.fpga_layers.BatchNormalizationQuantizedTanh(model, name, attributes, inputs, outputs=None)
Bases:
Layer
Merged Batch Normalization and quantized (binary or ternary) Tanh layer. The mean, variance, beta, gamma parameters are folded into the threshold(s) at which the sign of the input flips after the quantized (binary or ternary) Tanh activation.
- initialize()
- set_thresholds(scale, bias, ternary_threshold=0.5)
hls4ml.backends.fpga.fpga_types module
- class hls4ml.backends.fpga.fpga_types.ACFixedPrecisionDefinition
Bases:
PrecisionDefinition
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.ACIntegerPrecisionDefinition
Bases:
PrecisionDefinition
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.ACTypeConverter
Bases:
FixedPrecisionConverter
- class hls4ml.backends.fpga.fpga_types.APFixedPrecisionDefinition
Bases:
PrecisionDefinition
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.APIntegerPrecisionDefinition
Bases:
PrecisionDefinition
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.APTypeConverter
Bases:
FixedPrecisionConverter
- class hls4ml.backends.fpga.fpga_types.ArrayVariableConverter(type_converter, prefix, definition_cls)
Bases:
object
- convert(tensor_var, pragma='partition')
- class hls4ml.backends.fpga.fpga_types.BramWeightVariableConverter
Bases:
object
- classmethod convert(weight_var)
- class hls4ml.backends.fpga.fpga_types.CompressedTypeConverter
Bases:
TypeDefinition
,TypePrecisionConverter
- convert_precision(precision_converter)
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.ExponentTypeConverter
Bases:
TypeDefinition
,TypePrecisionConverter
- convert_precision(precision_converter)
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.FixedPrecisionConverter(type_map, prefix)
Bases:
PrecisionConverter
- convert(precision_type)
- class hls4ml.backends.fpga.fpga_types.HLSTypeConverter(precision_converter)
Bases:
object
- convert(atype)
- class hls4ml.backends.fpga.fpga_types.InplaceStreamVariableConverter(type_converter, prefix, definition_cls)
Bases:
StreamVariableConverter
- convert(tensor_var, n_pack=1, depth=0)
- class hls4ml.backends.fpga.fpga_types.NamedTypeConverter
Bases:
TypeDefinition
,TypePrecisionConverter
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.PackedTypeConverter
Bases:
TypeDefinition
,TypePrecisionConverter
- definition_cpp()
- class hls4ml.backends.fpga.fpga_types.StaticWeightVariableConverter(type_converter)
Bases:
object
- convert(weight_var)
- class hls4ml.backends.fpga.fpga_types.StaticWeightVariableDefinition
Bases:
VariableDefinition
- definition_cpp(name_suffix='', as_reference=False)
- class hls4ml.backends.fpga.fpga_types.StreamVariableConverter(type_converter, prefix, definition_cls)
Bases:
object
- convert(tensor_var, n_pack=1, depth=0)
- class hls4ml.backends.fpga.fpga_types.StructMemberVariableConverter(type_converter, prefix, definition_cls)
Bases:
object
- convert(tensor_var, pragma='partition', struct_name=None)