hls4ml.backends.vivado.passes package
Submodules
hls4ml.backends.vivado.passes.bn_quant module
- class hls4ml.backends.vivado.passes.bn_quant.BatchNormalizationQuantizedTanhConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.bn_quant.BatchNormalizationQuantizedTanhFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.bn_quant.MergeBatchNormAndQuantizedTanh
Bases:
OptimizerPass
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- class hls4ml.backends.vivado.passes.bn_quant.QuantizeDenseOutput
Bases:
OptimizerPass
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- hls4ml.backends.vivado.passes.bn_quant.register_bn_quant(backend)
hls4ml.backends.vivado.passes.broadcast_stream module
- class hls4ml.backends.vivado.passes.broadcast_stream.Broadcast(model, name, attributes, inputs, outputs=None)
Bases:
Layer
Inserted between layers for broadcasting.
- initialize()
- class hls4ml.backends.vivado.passes.broadcast_stream.BroadcastConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.broadcast_stream.BroadcastFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.broadcast_stream.BroadcastStream
Bases:
OptimizerPass
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- hls4ml.backends.vivado.passes.broadcast_stream.register_broadcast_stream(backend)
hls4ml.backends.vivado.passes.conv_same_pad module
- class hls4ml.backends.vivado.passes.conv_same_pad.InsertZeroPaddingBeforeConv1D
Bases:
OptimizerPass
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- name = 'insert_zero_padding_before_conv1d'
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- class hls4ml.backends.vivado.passes.conv_same_pad.InsertZeroPaddingBeforeConv2D
Bases:
OptimizerPass
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- name = 'insert_zero_padding_before_conv2d'
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
hls4ml.backends.vivado.passes.conv_stream module
- class hls4ml.backends.vivado.passes.conv_stream.GenerateConvStreamingInstructions
Bases:
OptimizerPass
Generates the instructions for streaming implementation of CNNs
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
hls4ml.backends.vivado.passes.convolution_templates module
- class hls4ml.backends.vivado.passes.convolution_templates.Conv1DConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.Conv1DFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.Conv2DConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.Conv2DFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.DepthwiseConv1DFunctionTemplate
Bases:
Conv1DFunctionTemplate
- class hls4ml.backends.vivado.passes.convolution_templates.DepthwiseConv2DFunctionTemplate
Bases:
Conv2DFunctionTemplate
- class hls4ml.backends.vivado.passes.convolution_templates.SeparableConv1DConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.SeparableConv1DFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.SeparableConv2DConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.convolution_templates.SeparableConv2DFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
hls4ml.backends.vivado.passes.core_templates module
- class hls4ml.backends.vivado.passes.core_templates.ActivationConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.ActivationFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.BatchNormalizationConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.BatchNormalizationFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.DenseConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.DenseFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.HardActivationConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.PReLUFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.ParamActivationConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.ParametrizedActivationFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.core_templates.SoftmaxConfigTemplate
Bases:
ActivationConfigTemplate
hls4ml.backends.vivado.passes.fifo_depth_optimization module
- class hls4ml.backends.vivado.passes.fifo_depth_optimization.FifoDepthOptimization
Bases:
ConfigurableOptimizerPass
,ModelOptimizerPass
- transform(model)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- hls4ml.backends.vivado.passes.fifo_depth_optimization.generate_max_depth_file(model, maxs)
- hls4ml.backends.vivado.passes.fifo_depth_optimization.get_vcd_data(model)
- hls4ml.backends.vivado.passes.fifo_depth_optimization.populate_values(values, name, data, depth)
- hls4ml.backends.vivado.passes.fifo_depth_optimization.set_big_fifos(vars_to_profile, profiling_fifo_depth)
- hls4ml.backends.vivado.passes.fifo_depth_optimization.set_fifo_depth(model, maxs)
hls4ml.backends.vivado.passes.garnet_templates module
- class hls4ml.backends.vivado.passes.garnet_templates.GarNetConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- get_transforms_config(node, params)
- class hls4ml.backends.vivado.passes.garnet_templates.GarNetFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.garnet_templates.GarNetStackConfigTemplate
Bases:
GarNetConfigTemplate
- get_transforms_config(node, params)
- class hls4ml.backends.vivado.passes.garnet_templates.GarNetStackFunctionTemplate
Bases:
GarNetFunctionTemplate
hls4ml.backends.vivado.passes.merge_templates module
- class hls4ml.backends.vivado.passes.merge_templates.ConcatenateConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.merge_templates.DotConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.merge_templates.MergeConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.merge_templates.MergeFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
hls4ml.backends.vivado.passes.pipeline_style module
- class hls4ml.backends.vivado.passes.pipeline_style.SetPipelineStyle
Bases:
ModelOptimizerPass
- transform(model)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
hls4ml.backends.vivado.passes.pointwise module
- class hls4ml.backends.vivado.passes.pointwise.OptimizePointwiseConv
Bases:
OptimizerPass
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- class hls4ml.backends.vivado.passes.pointwise.PointwiseConv1DConfigTemplate
Bases:
Conv1DConfigTemplate
- class hls4ml.backends.vivado.passes.pointwise.PointwiseConv1DFunctionTemplate
Bases:
Conv1DFunctionTemplate
- class hls4ml.backends.vivado.passes.pointwise.PointwiseConv2DConfigTemplate
Bases:
Conv2DConfigTemplate
- class hls4ml.backends.vivado.passes.pointwise.PointwiseConv2DFunctionTemplate
Bases:
Conv2DFunctionTemplate
- hls4ml.backends.vivado.passes.pointwise.register_pointwise(backend)
hls4ml.backends.vivado.passes.pointwise_codegen module
- class hls4ml.backends.vivado.passes.pointwise_codegen.GeneratePointwiseConv1D
Bases:
OptimizerPass
Generates code for pointwise 1D convolution
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
- hls4ml.backends.vivado.passes.pointwise_codegen.generate_pointwise_conv1d_fn(layer_idx, reuse_factor=1)
Generate a C++ function for a pointwise convolution layer.
- Parameters:
layer_idx (int) – Index of layer (‘index’ attribute).
reuse_factor (int) – Number of partitions to divide the input into.
- Returns:
Generated C++ function
- Return type:
str
hls4ml.backends.vivado.passes.pooling_templates module
- class hls4ml.backends.vivado.passes.pooling_templates.PoolingConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.pooling_templates.PoolingFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
hls4ml.backends.vivado.passes.quantization_templates module
- class hls4ml.backends.vivado.passes.quantization_templates.ApplyAlphaConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.quantization_templates.ApplyAlphaFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
hls4ml.backends.vivado.passes.recurrent_templates module
- class hls4ml.backends.vivado.passes.recurrent_templates.RecurrentConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.recurrent_templates.RecurrentFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
hls4ml.backends.vivado.passes.reshaping_templates module
- class hls4ml.backends.vivado.passes.reshaping_templates.ResizeConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.reshaping_templates.ResizeFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.reshaping_templates.TransposeConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.reshaping_templates.TransposeFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- class hls4ml.backends.vivado.passes.reshaping_templates.ZeroPaddingConfigTemplate
Bases:
LayerConfigTemplate
- format(node)
- class hls4ml.backends.vivado.passes.reshaping_templates.ZeroPaddingFunctionTemplate
Bases:
FunctionCallTemplate
- format(node)
- hls4ml.backends.vivado.passes.reshaping_templates.permute_config_gen(name: str, shape: tuple[int, ...], perm: tuple[int, ...])
- Generate a configuration string for a permute operation. Operates by mapping the output index to input input index by:
unravel the output index
map each dimension to the corresponding stride in the input tensor, sum
The operation can be expressed as:
new_shape = tuple(shape[i] for i in perm) strides = np.cumprod((shapes[1:] + (1,))[::-1])[::-1] perm_strides = [strides[i] for i in perm] out[index] = inp[np.dot(np.unravel_index(index, new_shape), perm_strides)]
- Parameters:
name (str) – The name of the configuration.
shape (tuple[int, ...]) – The shape of the input tensor.
perm (tuple[int, ...]) – The permutation of the dimensions.
- Returns:
The formatted configuration string for the permute operation.
- Return type:
str
hls4ml.backends.vivado.passes.resource_strategy module
- class hls4ml.backends.vivado.passes.resource_strategy.ApplyResourceStrategy
Bases:
OptimizerPass
Transposes the weights to use the dense_resource matrix multiply routine
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
hls4ml.backends.vivado.passes.transform_types module
- class hls4ml.backends.vivado.passes.transform_types.TransformTypes
Bases:
GlobalOptimizerPass
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.
hls4ml.backends.vivado.passes.unrolled_codegen module
- class hls4ml.backends.vivado.passes.unrolled_codegen.GenerateUnrolledDenseResource
Bases:
OptimizerPass
Generates C++ code for unrolled Dense resource
- match(node)
Predicate to match on a given node.
- Parameters:
node (Layer) – Node in the model graph to try matching the optimizer on.
- transform(model, node)
Transformation to apply if matching was successful.
Transform should return a boolean value indicating if the model graph was altered (by adding/removing nodes).
- Parameters:
model (ModelGraph) – Model to optimize
node (Layer) – The matched node in the model graph.